keyspan_remote.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * keyspan_remote: USB driver for the Keyspan DMR
  4. *
  5. * Copyright (C) 2005 Zymeta Corporation - Michael Downey ([email protected])
  6. *
  7. * This driver has been put together with the support of Innosys, Inc.
  8. * and Keyspan, Inc the manufacturers of the Keyspan USB DMR product.
  9. */
  10. #include <linux/kernel.h>
  11. #include <linux/errno.h>
  12. #include <linux/slab.h>
  13. #include <linux/module.h>
  14. #include <linux/usb/input.h>
  15. /* Parameters that can be passed to the driver. */
  16. static int debug;
  17. module_param(debug, int, 0444);
  18. MODULE_PARM_DESC(debug, "Enable extra debug messages and information");
  19. /* Vendor and product ids */
  20. #define USB_KEYSPAN_VENDOR_ID 0x06CD
  21. #define USB_KEYSPAN_PRODUCT_UIA11 0x0202
  22. /* Defines for converting the data from the remote. */
  23. #define ZERO 0x18
  24. #define ZERO_MASK 0x1F /* 5 bits for a 0 */
  25. #define ONE 0x3C
  26. #define ONE_MASK 0x3F /* 6 bits for a 1 */
  27. #define SYNC 0x3F80
  28. #define SYNC_MASK 0x3FFF /* 14 bits for a SYNC sequence */
  29. #define STOP 0x00
  30. #define STOP_MASK 0x1F /* 5 bits for the STOP sequence */
  31. #define GAP 0xFF
  32. #define RECV_SIZE 8 /* The UIA-11 type have a 8 byte limit. */
  33. /*
  34. * Table that maps the 31 possible keycodes to input keys.
  35. * Currently there are 15 and 17 button models so RESERVED codes
  36. * are blank areas in the mapping.
  37. */
  38. static const unsigned short keyspan_key_table[] = {
  39. KEY_RESERVED, /* 0 is just a place holder. */
  40. KEY_RESERVED,
  41. KEY_STOP,
  42. KEY_PLAYCD,
  43. KEY_RESERVED,
  44. KEY_PREVIOUSSONG,
  45. KEY_REWIND,
  46. KEY_FORWARD,
  47. KEY_NEXTSONG,
  48. KEY_RESERVED,
  49. KEY_RESERVED,
  50. KEY_RESERVED,
  51. KEY_PAUSE,
  52. KEY_VOLUMEUP,
  53. KEY_RESERVED,
  54. KEY_RESERVED,
  55. KEY_RESERVED,
  56. KEY_VOLUMEDOWN,
  57. KEY_RESERVED,
  58. KEY_UP,
  59. KEY_RESERVED,
  60. KEY_MUTE,
  61. KEY_LEFT,
  62. KEY_ENTER,
  63. KEY_RIGHT,
  64. KEY_RESERVED,
  65. KEY_RESERVED,
  66. KEY_DOWN,
  67. KEY_RESERVED,
  68. KEY_KPASTERISK,
  69. KEY_RESERVED,
  70. KEY_MENU
  71. };
  72. /* table of devices that work with this driver */
  73. static const struct usb_device_id keyspan_table[] = {
  74. { USB_DEVICE(USB_KEYSPAN_VENDOR_ID, USB_KEYSPAN_PRODUCT_UIA11) },
  75. { } /* Terminating entry */
  76. };
  77. /* Structure to store all the real stuff that a remote sends to us. */
  78. struct keyspan_message {
  79. u16 system;
  80. u8 button;
  81. u8 toggle;
  82. };
  83. /* Structure used for all the bit testing magic needed to be done. */
  84. struct bit_tester {
  85. u32 tester;
  86. int len;
  87. int pos;
  88. int bits_left;
  89. u8 buffer[32];
  90. };
  91. /* Structure to hold all of our driver specific stuff */
  92. struct usb_keyspan {
  93. char name[128];
  94. char phys[64];
  95. unsigned short keymap[ARRAY_SIZE(keyspan_key_table)];
  96. struct usb_device *udev;
  97. struct input_dev *input;
  98. struct usb_interface *interface;
  99. struct usb_endpoint_descriptor *in_endpoint;
  100. struct urb* irq_urb;
  101. int open;
  102. dma_addr_t in_dma;
  103. unsigned char *in_buffer;
  104. /* variables used to parse messages from remote. */
  105. struct bit_tester data;
  106. int stage;
  107. int toggle;
  108. };
  109. static struct usb_driver keyspan_driver;
  110. /*
  111. * Debug routine that prints out what we've received from the remote.
  112. */
  113. static void keyspan_print(struct usb_keyspan* dev) /*unsigned char* data)*/
  114. {
  115. char codes[4 * RECV_SIZE];
  116. int i;
  117. for (i = 0; i < RECV_SIZE; i++)
  118. snprintf(codes + i * 3, 4, "%02x ", dev->in_buffer[i]);
  119. dev_info(&dev->udev->dev, "%s\n", codes);
  120. }
  121. /*
  122. * Routine that manages the bit_tester structure. It makes sure that there are
  123. * at least bits_needed bits loaded into the tester.
  124. */
  125. static int keyspan_load_tester(struct usb_keyspan* dev, int bits_needed)
  126. {
  127. if (dev->data.bits_left >= bits_needed)
  128. return 0;
  129. /*
  130. * Somehow we've missed the last message. The message will be repeated
  131. * though so it's not too big a deal
  132. */
  133. if (dev->data.pos >= dev->data.len) {
  134. dev_dbg(&dev->interface->dev,
  135. "%s - Error ran out of data. pos: %d, len: %d\n",
  136. __func__, dev->data.pos, dev->data.len);
  137. return -1;
  138. }
  139. /* Load as much as we can into the tester. */
  140. while ((dev->data.bits_left + 7 < (sizeof(dev->data.tester) * 8)) &&
  141. (dev->data.pos < dev->data.len)) {
  142. dev->data.tester += (dev->data.buffer[dev->data.pos++] << dev->data.bits_left);
  143. dev->data.bits_left += 8;
  144. }
  145. return 0;
  146. }
  147. static void keyspan_report_button(struct usb_keyspan *remote, int button, int press)
  148. {
  149. struct input_dev *input = remote->input;
  150. input_event(input, EV_MSC, MSC_SCAN, button);
  151. input_report_key(input, remote->keymap[button], press);
  152. input_sync(input);
  153. }
  154. /*
  155. * Routine that handles all the logic needed to parse out the message from the remote.
  156. */
  157. static void keyspan_check_data(struct usb_keyspan *remote)
  158. {
  159. int i;
  160. int found = 0;
  161. struct keyspan_message message;
  162. switch(remote->stage) {
  163. case 0:
  164. /*
  165. * In stage 0 we want to find the start of a message. The remote sends a 0xFF as filler.
  166. * So the first byte that isn't a FF should be the start of a new message.
  167. */
  168. for (i = 0; i < RECV_SIZE && remote->in_buffer[i] == GAP; ++i);
  169. if (i < RECV_SIZE) {
  170. memcpy(remote->data.buffer, remote->in_buffer, RECV_SIZE);
  171. remote->data.len = RECV_SIZE;
  172. remote->data.pos = 0;
  173. remote->data.tester = 0;
  174. remote->data.bits_left = 0;
  175. remote->stage = 1;
  176. }
  177. break;
  178. case 1:
  179. /*
  180. * Stage 1 we should have 16 bytes and should be able to detect a
  181. * SYNC. The SYNC is 14 bits, 7 0's and then 7 1's.
  182. */
  183. memcpy(remote->data.buffer + remote->data.len, remote->in_buffer, RECV_SIZE);
  184. remote->data.len += RECV_SIZE;
  185. found = 0;
  186. while ((remote->data.bits_left >= 14 || remote->data.pos < remote->data.len) && !found) {
  187. for (i = 0; i < 8; ++i) {
  188. if (keyspan_load_tester(remote, 14) != 0) {
  189. remote->stage = 0;
  190. return;
  191. }
  192. if ((remote->data.tester & SYNC_MASK) == SYNC) {
  193. remote->data.tester = remote->data.tester >> 14;
  194. remote->data.bits_left -= 14;
  195. found = 1;
  196. break;
  197. } else {
  198. remote->data.tester = remote->data.tester >> 1;
  199. --remote->data.bits_left;
  200. }
  201. }
  202. }
  203. if (!found) {
  204. remote->stage = 0;
  205. remote->data.len = 0;
  206. } else {
  207. remote->stage = 2;
  208. }
  209. break;
  210. case 2:
  211. /*
  212. * Stage 2 we should have 24 bytes which will be enough for a full
  213. * message. We need to parse out the system code, button code,
  214. * toggle code, and stop.
  215. */
  216. memcpy(remote->data.buffer + remote->data.len, remote->in_buffer, RECV_SIZE);
  217. remote->data.len += RECV_SIZE;
  218. message.system = 0;
  219. for (i = 0; i < 9; i++) {
  220. keyspan_load_tester(remote, 6);
  221. if ((remote->data.tester & ZERO_MASK) == ZERO) {
  222. message.system = message.system << 1;
  223. remote->data.tester = remote->data.tester >> 5;
  224. remote->data.bits_left -= 5;
  225. } else if ((remote->data.tester & ONE_MASK) == ONE) {
  226. message.system = (message.system << 1) + 1;
  227. remote->data.tester = remote->data.tester >> 6;
  228. remote->data.bits_left -= 6;
  229. } else {
  230. dev_err(&remote->interface->dev,
  231. "%s - Unknown sequence found in system data.\n",
  232. __func__);
  233. remote->stage = 0;
  234. return;
  235. }
  236. }
  237. message.button = 0;
  238. for (i = 0; i < 5; i++) {
  239. keyspan_load_tester(remote, 6);
  240. if ((remote->data.tester & ZERO_MASK) == ZERO) {
  241. message.button = message.button << 1;
  242. remote->data.tester = remote->data.tester >> 5;
  243. remote->data.bits_left -= 5;
  244. } else if ((remote->data.tester & ONE_MASK) == ONE) {
  245. message.button = (message.button << 1) + 1;
  246. remote->data.tester = remote->data.tester >> 6;
  247. remote->data.bits_left -= 6;
  248. } else {
  249. dev_err(&remote->interface->dev,
  250. "%s - Unknown sequence found in button data.\n",
  251. __func__);
  252. remote->stage = 0;
  253. return;
  254. }
  255. }
  256. keyspan_load_tester(remote, 6);
  257. if ((remote->data.tester & ZERO_MASK) == ZERO) {
  258. message.toggle = 0;
  259. remote->data.tester = remote->data.tester >> 5;
  260. remote->data.bits_left -= 5;
  261. } else if ((remote->data.tester & ONE_MASK) == ONE) {
  262. message.toggle = 1;
  263. remote->data.tester = remote->data.tester >> 6;
  264. remote->data.bits_left -= 6;
  265. } else {
  266. dev_err(&remote->interface->dev,
  267. "%s - Error in message, invalid toggle.\n",
  268. __func__);
  269. remote->stage = 0;
  270. return;
  271. }
  272. keyspan_load_tester(remote, 5);
  273. if ((remote->data.tester & STOP_MASK) == STOP) {
  274. remote->data.tester = remote->data.tester >> 5;
  275. remote->data.bits_left -= 5;
  276. } else {
  277. dev_err(&remote->interface->dev,
  278. "Bad message received, no stop bit found.\n");
  279. }
  280. dev_dbg(&remote->interface->dev,
  281. "%s found valid message: system: %d, button: %d, toggle: %d\n",
  282. __func__, message.system, message.button, message.toggle);
  283. if (message.toggle != remote->toggle) {
  284. keyspan_report_button(remote, message.button, 1);
  285. keyspan_report_button(remote, message.button, 0);
  286. remote->toggle = message.toggle;
  287. }
  288. remote->stage = 0;
  289. break;
  290. }
  291. }
  292. /*
  293. * Routine for sending all the initialization messages to the remote.
  294. */
  295. static int keyspan_setup(struct usb_device* dev)
  296. {
  297. int retval = 0;
  298. retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
  299. 0x11, 0x40, 0x5601, 0x0, NULL, 0,
  300. USB_CTRL_SET_TIMEOUT);
  301. if (retval) {
  302. dev_dbg(&dev->dev, "%s - failed to set bit rate due to error: %d\n",
  303. __func__, retval);
  304. return(retval);
  305. }
  306. retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
  307. 0x44, 0x40, 0x0, 0x0, NULL, 0,
  308. USB_CTRL_SET_TIMEOUT);
  309. if (retval) {
  310. dev_dbg(&dev->dev, "%s - failed to set resume sensitivity due to error: %d\n",
  311. __func__, retval);
  312. return(retval);
  313. }
  314. retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
  315. 0x22, 0x40, 0x0, 0x0, NULL, 0,
  316. USB_CTRL_SET_TIMEOUT);
  317. if (retval) {
  318. dev_dbg(&dev->dev, "%s - failed to turn receive on due to error: %d\n",
  319. __func__, retval);
  320. return(retval);
  321. }
  322. dev_dbg(&dev->dev, "%s - Setup complete.\n", __func__);
  323. return(retval);
  324. }
  325. /*
  326. * Routine used to handle a new message that has come in.
  327. */
  328. static void keyspan_irq_recv(struct urb *urb)
  329. {
  330. struct usb_keyspan *dev = urb->context;
  331. int retval;
  332. /* Check our status in case we need to bail out early. */
  333. switch (urb->status) {
  334. case 0:
  335. break;
  336. /* Device went away so don't keep trying to read from it. */
  337. case -ECONNRESET:
  338. case -ENOENT:
  339. case -ESHUTDOWN:
  340. return;
  341. default:
  342. goto resubmit;
  343. }
  344. if (debug)
  345. keyspan_print(dev);
  346. keyspan_check_data(dev);
  347. resubmit:
  348. retval = usb_submit_urb(urb, GFP_ATOMIC);
  349. if (retval)
  350. dev_err(&dev->interface->dev,
  351. "%s - usb_submit_urb failed with result: %d\n",
  352. __func__, retval);
  353. }
  354. static int keyspan_open(struct input_dev *dev)
  355. {
  356. struct usb_keyspan *remote = input_get_drvdata(dev);
  357. remote->irq_urb->dev = remote->udev;
  358. if (usb_submit_urb(remote->irq_urb, GFP_KERNEL))
  359. return -EIO;
  360. return 0;
  361. }
  362. static void keyspan_close(struct input_dev *dev)
  363. {
  364. struct usb_keyspan *remote = input_get_drvdata(dev);
  365. usb_kill_urb(remote->irq_urb);
  366. }
  367. static struct usb_endpoint_descriptor *keyspan_get_in_endpoint(struct usb_host_interface *iface)
  368. {
  369. struct usb_endpoint_descriptor *endpoint;
  370. int i;
  371. for (i = 0; i < iface->desc.bNumEndpoints; ++i) {
  372. endpoint = &iface->endpoint[i].desc;
  373. if (usb_endpoint_is_int_in(endpoint)) {
  374. /* we found our interrupt in endpoint */
  375. return endpoint;
  376. }
  377. }
  378. return NULL;
  379. }
  380. /*
  381. * Routine that sets up the driver to handle a specific USB device detected on the bus.
  382. */
  383. static int keyspan_probe(struct usb_interface *interface, const struct usb_device_id *id)
  384. {
  385. struct usb_device *udev = interface_to_usbdev(interface);
  386. struct usb_endpoint_descriptor *endpoint;
  387. struct usb_keyspan *remote;
  388. struct input_dev *input_dev;
  389. int i, error;
  390. endpoint = keyspan_get_in_endpoint(interface->cur_altsetting);
  391. if (!endpoint)
  392. return -ENODEV;
  393. remote = kzalloc(sizeof(*remote), GFP_KERNEL);
  394. input_dev = input_allocate_device();
  395. if (!remote || !input_dev) {
  396. error = -ENOMEM;
  397. goto fail1;
  398. }
  399. remote->udev = udev;
  400. remote->input = input_dev;
  401. remote->interface = interface;
  402. remote->in_endpoint = endpoint;
  403. remote->toggle = -1; /* Set to -1 so we will always not match the toggle from the first remote message. */
  404. remote->in_buffer = usb_alloc_coherent(udev, RECV_SIZE, GFP_KERNEL, &remote->in_dma);
  405. if (!remote->in_buffer) {
  406. error = -ENOMEM;
  407. goto fail1;
  408. }
  409. remote->irq_urb = usb_alloc_urb(0, GFP_KERNEL);
  410. if (!remote->irq_urb) {
  411. error = -ENOMEM;
  412. goto fail2;
  413. }
  414. error = keyspan_setup(udev);
  415. if (error) {
  416. error = -ENODEV;
  417. goto fail3;
  418. }
  419. if (udev->manufacturer)
  420. strscpy(remote->name, udev->manufacturer, sizeof(remote->name));
  421. if (udev->product) {
  422. if (udev->manufacturer)
  423. strlcat(remote->name, " ", sizeof(remote->name));
  424. strlcat(remote->name, udev->product, sizeof(remote->name));
  425. }
  426. if (!strlen(remote->name))
  427. snprintf(remote->name, sizeof(remote->name),
  428. "USB Keyspan Remote %04x:%04x",
  429. le16_to_cpu(udev->descriptor.idVendor),
  430. le16_to_cpu(udev->descriptor.idProduct));
  431. usb_make_path(udev, remote->phys, sizeof(remote->phys));
  432. strlcat(remote->phys, "/input0", sizeof(remote->phys));
  433. memcpy(remote->keymap, keyspan_key_table, sizeof(remote->keymap));
  434. input_dev->name = remote->name;
  435. input_dev->phys = remote->phys;
  436. usb_to_input_id(udev, &input_dev->id);
  437. input_dev->dev.parent = &interface->dev;
  438. input_dev->keycode = remote->keymap;
  439. input_dev->keycodesize = sizeof(unsigned short);
  440. input_dev->keycodemax = ARRAY_SIZE(remote->keymap);
  441. input_set_capability(input_dev, EV_MSC, MSC_SCAN);
  442. __set_bit(EV_KEY, input_dev->evbit);
  443. for (i = 0; i < ARRAY_SIZE(keyspan_key_table); i++)
  444. __set_bit(keyspan_key_table[i], input_dev->keybit);
  445. __clear_bit(KEY_RESERVED, input_dev->keybit);
  446. input_set_drvdata(input_dev, remote);
  447. input_dev->open = keyspan_open;
  448. input_dev->close = keyspan_close;
  449. /*
  450. * Initialize the URB to access the device.
  451. * The urb gets sent to the device in keyspan_open()
  452. */
  453. usb_fill_int_urb(remote->irq_urb,
  454. remote->udev,
  455. usb_rcvintpipe(remote->udev, endpoint->bEndpointAddress),
  456. remote->in_buffer, RECV_SIZE, keyspan_irq_recv, remote,
  457. endpoint->bInterval);
  458. remote->irq_urb->transfer_dma = remote->in_dma;
  459. remote->irq_urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
  460. /* we can register the device now, as it is ready */
  461. error = input_register_device(remote->input);
  462. if (error)
  463. goto fail3;
  464. /* save our data pointer in this interface device */
  465. usb_set_intfdata(interface, remote);
  466. return 0;
  467. fail3: usb_free_urb(remote->irq_urb);
  468. fail2: usb_free_coherent(udev, RECV_SIZE, remote->in_buffer, remote->in_dma);
  469. fail1: kfree(remote);
  470. input_free_device(input_dev);
  471. return error;
  472. }
  473. /*
  474. * Routine called when a device is disconnected from the USB.
  475. */
  476. static void keyspan_disconnect(struct usb_interface *interface)
  477. {
  478. struct usb_keyspan *remote;
  479. remote = usb_get_intfdata(interface);
  480. usb_set_intfdata(interface, NULL);
  481. if (remote) { /* We have a valid driver structure so clean up everything we allocated. */
  482. input_unregister_device(remote->input);
  483. usb_kill_urb(remote->irq_urb);
  484. usb_free_urb(remote->irq_urb);
  485. usb_free_coherent(remote->udev, RECV_SIZE, remote->in_buffer, remote->in_dma);
  486. kfree(remote);
  487. }
  488. }
  489. /*
  490. * Standard driver set up sections
  491. */
  492. static struct usb_driver keyspan_driver =
  493. {
  494. .name = "keyspan_remote",
  495. .probe = keyspan_probe,
  496. .disconnect = keyspan_disconnect,
  497. .id_table = keyspan_table
  498. };
  499. module_usb_driver(keyspan_driver);
  500. MODULE_DEVICE_TABLE(usb, keyspan_table);
  501. MODULE_AUTHOR("Michael Downey <[email protected]>");
  502. MODULE_DESCRIPTION("Driver for the USB Keyspan remote control.");
  503. MODULE_LICENSE("GPL");