rxe_recv.c 7.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351
  1. // SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB
  2. /*
  3. * Copyright (c) 2016 Mellanox Technologies Ltd. All rights reserved.
  4. * Copyright (c) 2015 System Fabric Works, Inc. All rights reserved.
  5. */
  6. #include <linux/skbuff.h>
  7. #include "rxe.h"
  8. #include "rxe_loc.h"
  9. /* check that QP matches packet opcode type and is in a valid state */
  10. static int check_type_state(struct rxe_dev *rxe, struct rxe_pkt_info *pkt,
  11. struct rxe_qp *qp)
  12. {
  13. unsigned int pkt_type;
  14. if (unlikely(!qp->valid))
  15. return -EINVAL;
  16. pkt_type = pkt->opcode & 0xe0;
  17. switch (qp_type(qp)) {
  18. case IB_QPT_RC:
  19. if (unlikely(pkt_type != IB_OPCODE_RC))
  20. return -EINVAL;
  21. break;
  22. case IB_QPT_UC:
  23. if (unlikely(pkt_type != IB_OPCODE_UC))
  24. return -EINVAL;
  25. break;
  26. case IB_QPT_UD:
  27. case IB_QPT_GSI:
  28. if (unlikely(pkt_type != IB_OPCODE_UD))
  29. return -EINVAL;
  30. break;
  31. default:
  32. return -EINVAL;
  33. }
  34. if (pkt->mask & RXE_REQ_MASK) {
  35. if (unlikely(qp->resp.state != QP_STATE_READY))
  36. return -EINVAL;
  37. } else if (unlikely(qp->req.state < QP_STATE_READY ||
  38. qp->req.state > QP_STATE_DRAINED))
  39. return -EINVAL;
  40. return 0;
  41. }
  42. static void set_bad_pkey_cntr(struct rxe_port *port)
  43. {
  44. spin_lock_bh(&port->port_lock);
  45. port->attr.bad_pkey_cntr = min((u32)0xffff,
  46. port->attr.bad_pkey_cntr + 1);
  47. spin_unlock_bh(&port->port_lock);
  48. }
  49. static void set_qkey_viol_cntr(struct rxe_port *port)
  50. {
  51. spin_lock_bh(&port->port_lock);
  52. port->attr.qkey_viol_cntr = min((u32)0xffff,
  53. port->attr.qkey_viol_cntr + 1);
  54. spin_unlock_bh(&port->port_lock);
  55. }
  56. static int check_keys(struct rxe_dev *rxe, struct rxe_pkt_info *pkt,
  57. u32 qpn, struct rxe_qp *qp)
  58. {
  59. struct rxe_port *port = &rxe->port;
  60. u16 pkey = bth_pkey(pkt);
  61. pkt->pkey_index = 0;
  62. if (!pkey_match(pkey, IB_DEFAULT_PKEY_FULL)) {
  63. set_bad_pkey_cntr(port);
  64. return -EINVAL;
  65. }
  66. if (qp_type(qp) == IB_QPT_UD || qp_type(qp) == IB_QPT_GSI) {
  67. u32 qkey = (qpn == 1) ? GSI_QKEY : qp->attr.qkey;
  68. if (unlikely(deth_qkey(pkt) != qkey)) {
  69. set_qkey_viol_cntr(port);
  70. return -EINVAL;
  71. }
  72. }
  73. return 0;
  74. }
  75. static int check_addr(struct rxe_dev *rxe, struct rxe_pkt_info *pkt,
  76. struct rxe_qp *qp)
  77. {
  78. struct sk_buff *skb = PKT_TO_SKB(pkt);
  79. if (qp_type(qp) != IB_QPT_RC && qp_type(qp) != IB_QPT_UC)
  80. return 0;
  81. if (unlikely(pkt->port_num != qp->attr.port_num))
  82. return -EINVAL;
  83. if (skb->protocol == htons(ETH_P_IP)) {
  84. struct in_addr *saddr =
  85. &qp->pri_av.sgid_addr._sockaddr_in.sin_addr;
  86. struct in_addr *daddr =
  87. &qp->pri_av.dgid_addr._sockaddr_in.sin_addr;
  88. if ((ip_hdr(skb)->daddr != saddr->s_addr) ||
  89. (ip_hdr(skb)->saddr != daddr->s_addr))
  90. return -EINVAL;
  91. } else if (skb->protocol == htons(ETH_P_IPV6)) {
  92. struct in6_addr *saddr =
  93. &qp->pri_av.sgid_addr._sockaddr_in6.sin6_addr;
  94. struct in6_addr *daddr =
  95. &qp->pri_av.dgid_addr._sockaddr_in6.sin6_addr;
  96. if (memcmp(&ipv6_hdr(skb)->daddr, saddr, sizeof(*saddr)) ||
  97. memcmp(&ipv6_hdr(skb)->saddr, daddr, sizeof(*daddr)))
  98. return -EINVAL;
  99. }
  100. return 0;
  101. }
  102. static int hdr_check(struct rxe_pkt_info *pkt)
  103. {
  104. struct rxe_dev *rxe = pkt->rxe;
  105. struct rxe_port *port = &rxe->port;
  106. struct rxe_qp *qp = NULL;
  107. u32 qpn = bth_qpn(pkt);
  108. int index;
  109. int err;
  110. if (unlikely(bth_tver(pkt) != BTH_TVER))
  111. goto err1;
  112. if (unlikely(qpn == 0))
  113. goto err1;
  114. if (qpn != IB_MULTICAST_QPN) {
  115. index = (qpn == 1) ? port->qp_gsi_index : qpn;
  116. qp = rxe_pool_get_index(&rxe->qp_pool, index);
  117. if (unlikely(!qp))
  118. goto err1;
  119. err = check_type_state(rxe, pkt, qp);
  120. if (unlikely(err))
  121. goto err2;
  122. err = check_addr(rxe, pkt, qp);
  123. if (unlikely(err))
  124. goto err2;
  125. err = check_keys(rxe, pkt, qpn, qp);
  126. if (unlikely(err))
  127. goto err2;
  128. } else {
  129. if (unlikely((pkt->mask & RXE_GRH_MASK) == 0))
  130. goto err1;
  131. }
  132. pkt->qp = qp;
  133. return 0;
  134. err2:
  135. rxe_put(qp);
  136. err1:
  137. return -EINVAL;
  138. }
  139. static inline void rxe_rcv_pkt(struct rxe_pkt_info *pkt, struct sk_buff *skb)
  140. {
  141. if (pkt->mask & RXE_REQ_MASK)
  142. rxe_resp_queue_pkt(pkt->qp, skb);
  143. else
  144. rxe_comp_queue_pkt(pkt->qp, skb);
  145. }
  146. static void rxe_rcv_mcast_pkt(struct rxe_dev *rxe, struct sk_buff *skb)
  147. {
  148. struct rxe_pkt_info *pkt = SKB_TO_PKT(skb);
  149. struct rxe_mcg *mcg;
  150. struct rxe_mca *mca;
  151. struct rxe_qp *qp;
  152. union ib_gid dgid;
  153. int err;
  154. if (skb->protocol == htons(ETH_P_IP))
  155. ipv6_addr_set_v4mapped(ip_hdr(skb)->daddr,
  156. (struct in6_addr *)&dgid);
  157. else if (skb->protocol == htons(ETH_P_IPV6))
  158. memcpy(&dgid, &ipv6_hdr(skb)->daddr, sizeof(dgid));
  159. /* lookup mcast group corresponding to mgid, takes a ref */
  160. mcg = rxe_lookup_mcg(rxe, &dgid);
  161. if (!mcg)
  162. goto drop; /* mcast group not registered */
  163. spin_lock_bh(&rxe->mcg_lock);
  164. /* this is unreliable datagram service so we let
  165. * failures to deliver a multicast packet to a
  166. * single QP happen and just move on and try
  167. * the rest of them on the list
  168. */
  169. list_for_each_entry(mca, &mcg->qp_list, qp_list) {
  170. qp = mca->qp;
  171. /* validate qp for incoming packet */
  172. err = check_type_state(rxe, pkt, qp);
  173. if (err)
  174. continue;
  175. err = check_keys(rxe, pkt, bth_qpn(pkt), qp);
  176. if (err)
  177. continue;
  178. /* for all but the last QP create a new clone of the
  179. * skb and pass to the QP. Pass the original skb to
  180. * the last QP in the list.
  181. */
  182. if (mca->qp_list.next != &mcg->qp_list) {
  183. struct sk_buff *cskb;
  184. struct rxe_pkt_info *cpkt;
  185. cskb = skb_clone(skb, GFP_ATOMIC);
  186. if (unlikely(!cskb))
  187. continue;
  188. if (WARN_ON(!ib_device_try_get(&rxe->ib_dev))) {
  189. kfree_skb(cskb);
  190. break;
  191. }
  192. cpkt = SKB_TO_PKT(cskb);
  193. cpkt->qp = qp;
  194. rxe_get(qp);
  195. rxe_rcv_pkt(cpkt, cskb);
  196. } else {
  197. pkt->qp = qp;
  198. rxe_get(qp);
  199. rxe_rcv_pkt(pkt, skb);
  200. skb = NULL; /* mark consumed */
  201. }
  202. }
  203. spin_unlock_bh(&rxe->mcg_lock);
  204. kref_put(&mcg->ref_cnt, rxe_cleanup_mcg);
  205. if (likely(!skb))
  206. return;
  207. /* This only occurs if one of the checks fails on the last
  208. * QP in the list above
  209. */
  210. drop:
  211. kfree_skb(skb);
  212. ib_device_put(&rxe->ib_dev);
  213. }
  214. /**
  215. * rxe_chk_dgid - validate destination IP address
  216. * @rxe: rxe device that received packet
  217. * @skb: the received packet buffer
  218. *
  219. * Accept any loopback packets
  220. * Extract IP address from packet and
  221. * Accept if multicast packet
  222. * Accept if matches an SGID table entry
  223. */
  224. static int rxe_chk_dgid(struct rxe_dev *rxe, struct sk_buff *skb)
  225. {
  226. struct rxe_pkt_info *pkt = SKB_TO_PKT(skb);
  227. const struct ib_gid_attr *gid_attr;
  228. union ib_gid dgid;
  229. union ib_gid *pdgid;
  230. if (pkt->mask & RXE_LOOPBACK_MASK)
  231. return 0;
  232. if (skb->protocol == htons(ETH_P_IP)) {
  233. ipv6_addr_set_v4mapped(ip_hdr(skb)->daddr,
  234. (struct in6_addr *)&dgid);
  235. pdgid = &dgid;
  236. } else {
  237. pdgid = (union ib_gid *)&ipv6_hdr(skb)->daddr;
  238. }
  239. if (rdma_is_multicast_addr((struct in6_addr *)pdgid))
  240. return 0;
  241. gid_attr = rdma_find_gid_by_port(&rxe->ib_dev, pdgid,
  242. IB_GID_TYPE_ROCE_UDP_ENCAP,
  243. 1, skb->dev);
  244. if (IS_ERR(gid_attr))
  245. return PTR_ERR(gid_attr);
  246. rdma_put_gid_attr(gid_attr);
  247. return 0;
  248. }
  249. /* rxe_rcv is called from the interface driver */
  250. void rxe_rcv(struct sk_buff *skb)
  251. {
  252. int err;
  253. struct rxe_pkt_info *pkt = SKB_TO_PKT(skb);
  254. struct rxe_dev *rxe = pkt->rxe;
  255. if (unlikely(skb->len < RXE_BTH_BYTES))
  256. goto drop;
  257. if (rxe_chk_dgid(rxe, skb) < 0)
  258. goto drop;
  259. pkt->opcode = bth_opcode(pkt);
  260. pkt->psn = bth_psn(pkt);
  261. pkt->qp = NULL;
  262. pkt->mask |= rxe_opcode[pkt->opcode].mask;
  263. if (unlikely(skb->len < header_size(pkt)))
  264. goto drop;
  265. err = hdr_check(pkt);
  266. if (unlikely(err))
  267. goto drop;
  268. err = rxe_icrc_check(skb, pkt);
  269. if (unlikely(err))
  270. goto drop;
  271. rxe_counter_inc(rxe, RXE_CNT_RCVD_PKTS);
  272. if (unlikely(bth_qpn(pkt) == IB_MULTICAST_QPN))
  273. rxe_rcv_mcast_pkt(rxe, skb);
  274. else
  275. rxe_rcv_pkt(pkt, skb);
  276. return;
  277. drop:
  278. if (pkt->qp)
  279. rxe_put(pkt->qp);
  280. kfree_skb(skb);
  281. ib_device_put(&rxe->ib_dev);
  282. }