stts22h.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * STMicroelectronics stts22h temperature driver
  4. *
  5. * MEMS Software Solutions Team
  6. *
  7. * Copyright 2021 STMicroelectronics Inc.
  8. */
  9. #include <linux/delay.h>
  10. #include <linux/i2c.h>
  11. #include <linux/iio/buffer.h>
  12. #include <linux/iio/iio.h>
  13. #include <linux/iio/kfifo_buf.h>
  14. #include <linux/iio/sysfs.h>
  15. #include <linux/init.h>
  16. #include <linux/interrupt.h>
  17. #include <linux/kernel.h>
  18. #include <linux/module.h>
  19. #include <linux/pm.h>
  20. #include <linux/workqueue.h>
  21. #include <linux/version.h>
  22. #include "stts22h.h"
  23. static const struct iio_chan_spec st_stts22h_channel[] = {
  24. {
  25. .type = IIO_TEMP,
  26. .address = ST_STTS22H_TEMP_L_OUT_ADDR,
  27. .modified = 1,
  28. .channel2 = IIO_MOD_TEMP_AMBIENT,
  29. .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
  30. BIT(IIO_CHAN_INFO_SCALE),
  31. .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
  32. .scan_index = 0,
  33. .scan_type = {
  34. .sign = 's',
  35. .realbits = 16,
  36. .storagebits = 16,
  37. .endianness = IIO_LE,
  38. },
  39. },
  40. IIO_CHAN_SOFT_TIMESTAMP(1),
  41. };
  42. static const unsigned long st_stts22h_available_scan_masks[] = { 0x1, 0x0 };
  43. static const struct st_stts22h_odr_table_entry {
  44. u8 size;
  45. struct st_stts22h_reg reg;
  46. struct st_stts22h_odr odr_avl[ST_STTS22H_ODR_LIST_SIZE];
  47. } st_stts22h_odr_table = {
  48. .size = ST_STTS22H_ODR_LIST_SIZE,
  49. .reg = {
  50. .addr = ST_STTS22H_CTRL_ADDR,
  51. .mask = ST_STTS22H_AVG_MASK,
  52. },
  53. .odr_avl[0] = { 25, 0x00 },
  54. .odr_avl[1] = { 50, 0x01 },
  55. .odr_avl[2] = { 100, 0x02 },
  56. .odr_avl[3] = { 200, 0x03 },
  57. };
  58. static int st_stts22h_read(struct device *dev, u8 addr, int len, u8 *data)
  59. {
  60. struct i2c_client *client = to_i2c_client(dev);
  61. struct i2c_msg msg[2];
  62. msg[0].addr = client->addr;
  63. msg[0].flags = client->flags;
  64. msg[0].len = 1;
  65. msg[0].buf = &addr;
  66. msg[1].addr = client->addr;
  67. msg[1].flags = client->flags | I2C_M_RD;
  68. msg[1].len = len;
  69. msg[1].buf = data;
  70. return i2c_transfer(client->adapter, msg, 2);
  71. }
  72. static int st_stts22h_write(struct device *dev, u8 addr, int len,
  73. const u8 *data)
  74. {
  75. struct i2c_client *client = to_i2c_client(dev);
  76. struct i2c_msg msg;
  77. u8 send[4];
  78. if (len > ARRAY_SIZE(send))
  79. return -ENOMEM;
  80. send[0] = addr;
  81. memcpy(&send[1], data, len * sizeof(u8));
  82. msg.addr = client->addr;
  83. msg.flags = client->flags;
  84. msg.len = len + 1;
  85. msg.buf = send;
  86. return i2c_transfer(client->adapter, &msg, 1);
  87. }
  88. static inline int st_stts22h_write_with_mask(struct st_stts22h_data *data,
  89. u8 addr, u8 mask, u8 val)
  90. {
  91. int err;
  92. u8 read;
  93. mutex_lock(&data->lock);
  94. err = st_stts22h_read(data->dev, addr, sizeof(read), &read);
  95. if (err < 0) {
  96. dev_err(data->dev, "failed to read %02x register\n", addr);
  97. goto out;
  98. }
  99. read = (read & ~mask) | ((val << __ffs(mask)) & mask);
  100. err = st_stts22h_write(data->dev, addr, sizeof(read), &read);
  101. if (err < 0)
  102. dev_err(data->dev, "failed to write %02x register\n", addr);
  103. out:
  104. mutex_unlock(&data->lock);
  105. return err;
  106. }
  107. static __maybe_unused int st_stts22h_reg_access(struct iio_dev *iio_dev,
  108. unsigned int reg,
  109. unsigned int writeval,
  110. unsigned int *readval)
  111. {
  112. struct st_stts22h_data *data = iio_priv(iio_dev);
  113. int err;
  114. err = iio_device_claim_direct_mode(iio_dev);
  115. if (err)
  116. return err;
  117. mutex_lock(&data->lock);
  118. if (readval == NULL)
  119. err = st_stts22h_write(data->dev, reg, 1, (u8 *)&writeval);
  120. else
  121. err = st_stts22h_read(data->dev, reg, 1, (u8 *)readval);
  122. mutex_unlock(&data->lock);
  123. iio_device_release_direct_mode(iio_dev);
  124. return (err < 0) ? err : 0;
  125. }
  126. static inline void st_stts22h_flush_works(struct st_stts22h_data *data)
  127. {
  128. flush_workqueue(data->st_stts22h_workqueue);
  129. }
  130. static int st_stts22h_allocate_workqueue(struct st_stts22h_data *data)
  131. {
  132. if (!data->st_stts22h_workqueue)
  133. data->st_stts22h_workqueue =
  134. create_workqueue(data->iio_devs->name);
  135. if (!data->st_stts22h_workqueue)
  136. return -ENOMEM;
  137. return 0;
  138. }
  139. static inline s64 st_stts22h_get_time_ns(struct st_stts22h_data *data)
  140. {
  141. return iio_get_time_ns(data->iio_devs);
  142. }
  143. static ssize_t
  144. st_stts22h_sysfs_sampling_frequency_avail(struct device *dev,
  145. struct device_attribute *attr,
  146. char *buf)
  147. {
  148. int i, len = 0;
  149. for (i = 0; i < st_stts22h_odr_table.size; i++) {
  150. if (!st_stts22h_odr_table.odr_avl[i].hz)
  151. continue;
  152. len += scnprintf(buf + len, PAGE_SIZE - len, "%d ",
  153. st_stts22h_odr_table.odr_avl[i].hz);
  154. }
  155. buf[len - 1] = '\n';
  156. return len;
  157. }
  158. static int st_stts22h_get_odr_val(struct st_stts22h_data *data, int val,
  159. u8 *odr)
  160. {
  161. int i;
  162. for (i = 0; i < st_stts22h_odr_table.size; i++) {
  163. if (st_stts22h_odr_table.odr_avl[i].hz >= val)
  164. break;
  165. }
  166. if (i == st_stts22h_odr_table.size)
  167. return -EINVAL;
  168. *odr = st_stts22h_odr_table.odr_avl[i].hz;
  169. return i;
  170. }
  171. static int st_stts22h_set_odr(struct st_stts22h_data *data, u8 req_odr)
  172. {
  173. int err, i;
  174. for (i = 0; i < st_stts22h_odr_table.size; i++) {
  175. if (st_stts22h_odr_table.odr_avl[i].hz >= req_odr)
  176. break;
  177. }
  178. if (i == st_stts22h_odr_table.size)
  179. return -EINVAL;
  180. err = st_stts22h_write_with_mask(data, st_stts22h_odr_table.reg.addr,
  181. st_stts22h_odr_table.reg.mask,
  182. st_stts22h_odr_table.odr_avl[i].val);
  183. return err < 0 ? err : 0;
  184. }
  185. static int st_stts22h_sensor_set_enable(struct st_stts22h_data *data, bool en)
  186. {
  187. u8 odr = en ? data->odr : 0;
  188. int64_t newTime;
  189. int err;
  190. err = st_stts22h_set_odr(data, odr);
  191. if (err < 0)
  192. return err;
  193. err = st_stts22h_write_with_mask(data,
  194. ST_STTS22H_CTRL_ADDR,
  195. ST_STTS22H_FREERUN_MASK,
  196. en);
  197. if (err < 0)
  198. return err;
  199. if (en) {
  200. newTime = HZ_TO_PERIOD_NSEC(odr);
  201. data->sensorktime = ktime_set(0, newTime);
  202. hrtimer_start(&data->hr_timer, data->sensorktime,
  203. HRTIMER_MODE_REL);
  204. } else {
  205. cancel_work_sync(&data->iio_work);
  206. hrtimer_cancel(&data->hr_timer);
  207. }
  208. data->enable = en;
  209. return 0;
  210. }
  211. static int st_stts22h_read_oneshot(struct st_stts22h_data *data,
  212. u8 addr, int *val)
  213. {
  214. int err, delay;
  215. __le16 temp;
  216. err = st_stts22h_sensor_set_enable(data, true);
  217. if (err < 0)
  218. return err;
  219. delay = 2 * (1000000 / data->odr);
  220. usleep_range(delay, 2 * delay);
  221. err = st_stts22h_read(data->dev, addr, sizeof(temp), (u8 *)&temp);
  222. if (err < 0)
  223. return err;
  224. st_stts22h_sensor_set_enable(data, false);
  225. *val = (s16)le16_to_cpu(temp);
  226. return IIO_VAL_INT;
  227. }
  228. static int st_stts22h_read_raw(struct iio_dev *iio_dev,
  229. struct iio_chan_spec const *ch,
  230. int *val, int *val2, long mask)
  231. {
  232. struct st_stts22h_data *data = iio_priv(iio_dev);
  233. int err;
  234. switch (mask) {
  235. case IIO_CHAN_INFO_RAW:
  236. err = iio_device_claim_direct_mode(iio_dev);
  237. if (err)
  238. return err;
  239. err = st_stts22h_read_oneshot(data, ch->address, val);
  240. iio_device_release_direct_mode(iio_dev);
  241. break;
  242. case IIO_CHAN_INFO_SAMP_FREQ:
  243. *val = (int)data->odr;
  244. err = IIO_VAL_INT;
  245. break;
  246. case IIO_CHAN_INFO_SCALE:
  247. *val = 1000;
  248. *val2 = ST_STTS22H_GAIN;
  249. err = IIO_VAL_FRACTIONAL;
  250. break;
  251. default:
  252. err = -EINVAL;
  253. break;
  254. }
  255. return err;
  256. }
  257. static int st_stts22h_write_raw(struct iio_dev *iio_dev,
  258. struct iio_chan_spec const *chan,
  259. int val, int val2, long mask)
  260. {
  261. int err = -EINVAL;
  262. if (mask == IIO_CHAN_INFO_SAMP_FREQ) {
  263. struct st_stts22h_data *data = iio_priv(iio_dev);
  264. u8 odr;
  265. err = st_stts22h_get_odr_val(data, val, &odr);
  266. if (err < 0)
  267. return err;
  268. err = iio_device_claim_direct_mode(iio_dev);
  269. if (err)
  270. return err;
  271. data->odr = odr;
  272. iio_device_release_direct_mode(iio_dev);
  273. }
  274. return err < 0 ? err : 0;
  275. }
  276. static IIO_DEV_ATTR_SAMP_FREQ_AVAIL(st_stts22h_sysfs_sampling_frequency_avail);
  277. static struct attribute *st_stts22h_attributes[] = {
  278. &iio_dev_attr_sampling_frequency_available.dev_attr.attr,
  279. NULL,
  280. };
  281. static const struct attribute_group st_stts22h_attribute_group = {
  282. .attrs = st_stts22h_attributes,
  283. };
  284. static const struct iio_info st_stts22h_info = {
  285. .attrs = &st_stts22h_attribute_group,
  286. .read_raw = st_stts22h_read_raw,
  287. .write_raw = st_stts22h_write_raw,
  288. #ifdef CONFIG_DEBUG_FS
  289. .debugfs_reg_access = &st_stts22h_reg_access,
  290. #endif /* CONFIG_DEBUG_FS */
  291. };
  292. static int st_stts22h_check_whoami(struct st_stts22h_data *data)
  293. {
  294. int err;
  295. u8 wai;
  296. err = st_stts22h_read(data->dev, ST_STTS22H_WHOAMI_ADDR, 1, &wai);
  297. if (err < 0)
  298. return err;
  299. if (wai != ST_STTS22H_WHOAMI_VAL) {
  300. dev_err(data->dev, "unsupported whoami [%02x]\n", wai);
  301. return -ENODEV;
  302. }
  303. return 0;
  304. }
  305. static int st_stts22h_init(struct st_stts22h_data *data)
  306. {
  307. int err;
  308. /* reset cycle */
  309. err = st_stts22h_write_with_mask(data, ST_STTS22H_CTRL_ADDR,
  310. ST_STTS22H_SW_RESET_MASK, 1);
  311. if (err < 0)
  312. return err;
  313. err = st_stts22h_write_with_mask(data, ST_STTS22H_CTRL_ADDR,
  314. ST_STTS22H_SW_RESET_MASK, 0);
  315. if (err < 0)
  316. return err;
  317. /* enable bdu */
  318. err = st_stts22h_write_with_mask(data, ST_STTS22H_CTRL_ADDR,
  319. ST_STTS22H_BDU_MASK, 1);
  320. if (err < 0)
  321. return err;
  322. /* enable register auto increments */
  323. err = st_stts22h_write_with_mask(data, ST_STTS22H_CTRL_ADDR,
  324. ST_STTS22H_IF_ADD_INC_MASK, 1);
  325. return err < 0 ? err : 0;
  326. }
  327. static
  328. enum hrtimer_restart st_stts22h_poll_function_read(struct hrtimer *timer)
  329. {
  330. struct st_stts22h_data *data;
  331. data = container_of((struct hrtimer *)timer,
  332. struct st_stts22h_data, hr_timer);
  333. data->timestamp = st_stts22h_get_time_ns(data);
  334. queue_work(data->st_stts22h_workqueue, &data->iio_work);
  335. return HRTIMER_NORESTART;
  336. }
  337. static void st_stts22h_report_event(struct st_stts22h_data *data, u8 *tmp)
  338. {
  339. struct iio_dev *iio_dev = data->iio_devs;
  340. u8 iio_buf[ALIGN(ST_STTS22H_SAMPLE_SIZE, sizeof(s64)) + sizeof(s64)];
  341. memcpy(iio_buf, tmp, ST_STTS22H_SAMPLE_SIZE);
  342. iio_push_to_buffers_with_timestamp(iio_dev, iio_buf, data->timestamp);
  343. }
  344. static void st_stts22h_poll_function_work(struct work_struct *iio_work)
  345. {
  346. struct st_stts22h_data *data;
  347. ktime_t tmpkt, ktdelta;
  348. __le16 temp;
  349. data = container_of((struct work_struct *)iio_work,
  350. struct st_stts22h_data, iio_work);
  351. /* adjust new timeout */
  352. ktdelta = ktime_set(0, (st_stts22h_get_time_ns(data) -
  353. data->timestamp));
  354. /* avoid negative value in case of high ODRs */
  355. if (ktime_after(data->sensorktime, ktdelta))
  356. tmpkt = ktime_sub(data->sensorktime, ktdelta);
  357. else
  358. tmpkt = data->sensorktime;
  359. hrtimer_start(&data->hr_timer, tmpkt, HRTIMER_MODE_REL);
  360. st_stts22h_read(data->dev, ST_STTS22H_TEMP_L_OUT_ADDR,
  361. sizeof(temp), (u8 *)&temp);
  362. st_stts22h_report_event(data, (u8 *)&temp);
  363. }
  364. static int st_stts22h_preenable(struct iio_dev *iio_dev)
  365. {
  366. struct st_stts22h_data *data = iio_priv(iio_dev);
  367. return st_stts22h_sensor_set_enable(data, true);
  368. }
  369. static int st_stts22h_postdisable(struct iio_dev *iio_dev)
  370. {
  371. struct st_stts22h_data *data = iio_priv(iio_dev);
  372. return st_stts22h_sensor_set_enable(data, false);
  373. }
  374. static const struct iio_buffer_setup_ops st_stts22h_buffer_ops = {
  375. .preenable = st_stts22h_preenable,
  376. .postdisable = st_stts22h_postdisable,
  377. };
  378. static int st_stts22h_probe(struct i2c_client *client,
  379. const struct i2c_device_id *id)
  380. {
  381. struct st_stts22h_data *data;
  382. #if LINUX_VERSION_CODE < KERNEL_VERSION(5,13,0)
  383. struct iio_buffer *buffer;
  384. #endif /* LINUX_VERSION_CODE */
  385. struct iio_dev *iio_dev;
  386. struct device *dev;
  387. int err;
  388. iio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data));
  389. if (!iio_dev)
  390. return -ENOMEM;
  391. data = iio_priv(iio_dev);
  392. i2c_set_clientdata(client, iio_dev);
  393. dev = &client->dev;
  394. data->dev = dev;
  395. dev_set_drvdata(dev, (void *)data);
  396. mutex_init(&data->lock);
  397. err = st_stts22h_check_whoami(data);
  398. if (err < 0)
  399. return err;
  400. err = st_stts22h_init(data);
  401. if (err < 0)
  402. return err;
  403. iio_dev->name = client->name;
  404. iio_dev->dev.parent = &client->dev;
  405. iio_dev->modes = INDIO_DIRECT_MODE;
  406. iio_dev->info = &st_stts22h_info;
  407. iio_dev->channels = st_stts22h_channel;
  408. iio_dev->num_channels = ARRAY_SIZE(st_stts22h_channel);
  409. iio_dev->available_scan_masks = st_stts22h_available_scan_masks;
  410. data->iio_devs = iio_dev;
  411. /* configure hrtimer */
  412. data->odr = st_stts22h_odr_table.odr_avl[0].hz;
  413. data->enable = false;
  414. hrtimer_init(&data->hr_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  415. data->hr_timer.function = &st_stts22h_poll_function_read;
  416. data->sensorktime = ktime_set(0, HZ_TO_PERIOD_NSEC(data->odr));
  417. INIT_WORK(&data->iio_work, st_stts22h_poll_function_work);
  418. err = st_stts22h_allocate_workqueue(data);
  419. if (err < 0)
  420. return err;
  421. #if KERNEL_VERSION(5, 19, 0) <= LINUX_VERSION_CODE
  422. err = devm_iio_kfifo_buffer_setup(data->dev, data->iio_devs,
  423. &st_stts22h_buffer_ops);
  424. if (err)
  425. return err;
  426. #elif KERNEL_VERSION(5, 13, 0) <= LINUX_VERSION_CODE
  427. err = devm_iio_kfifo_buffer_setup(data->dev, data->iio_devs,
  428. INDIO_BUFFER_SOFTWARE,
  429. &st_stts22h_buffer_ops);
  430. if (err)
  431. return err;
  432. #else /* LINUX_VERSION_CODE */
  433. buffer = devm_iio_kfifo_allocate(data->dev);
  434. if (!buffer)
  435. return -ENOMEM;
  436. iio_device_attach_buffer(data->iio_devs, buffer);
  437. data->iio_devs->modes |= INDIO_BUFFER_SOFTWARE;
  438. data->iio_devs->setup_ops = &st_stts22h_buffer_ops;
  439. #endif /* LINUX_VERSION_CODE */
  440. return devm_iio_device_register(data->dev, data->iio_devs);
  441. }
  442. #if KERNEL_VERSION(5, 18, 0) <= LINUX_VERSION_CODE
  443. static void st_stts22h_remove(struct i2c_client *client)
  444. {
  445. struct st_stts22h_data *data = dev_get_drvdata(&client->dev);
  446. if (data->enable)
  447. st_stts22h_sensor_set_enable(data, false);
  448. st_stts22h_flush_works(data);
  449. destroy_workqueue(data->st_stts22h_workqueue);
  450. data->st_stts22h_workqueue = NULL;
  451. }
  452. #else /* LINUX_VERSION_CODE */
  453. static int st_stts22h_remove(struct i2c_client *client)
  454. {
  455. struct st_stts22h_data *data = dev_get_drvdata(&client->dev);
  456. int err = 0;
  457. if (data->enable)
  458. err = st_stts22h_sensor_set_enable(data, false);
  459. st_stts22h_flush_works(data);
  460. destroy_workqueue(data->st_stts22h_workqueue);
  461. data->st_stts22h_workqueue = NULL;
  462. return err;
  463. }
  464. #endif /* LINUX_VERSION_CODE */
  465. static int __maybe_unused st_stts22h_suspend(struct device *dev)
  466. {
  467. struct st_stts22h_data *data = dev_get_drvdata(dev);
  468. int err = 0;
  469. if (data->enable)
  470. err = st_stts22h_sensor_set_enable(data, false);
  471. return err;
  472. }
  473. static int __maybe_unused st_stts22h_resume(struct device *dev)
  474. {
  475. struct st_stts22h_data *data = dev_get_drvdata(dev);
  476. int err = 0;
  477. if (data->enable)
  478. err = st_stts22h_sensor_set_enable(data, true);
  479. return err;
  480. }
  481. #ifdef CONFIG_PM
  482. const struct dev_pm_ops st_stts22h_pm_ops = {
  483. SET_SYSTEM_SLEEP_PM_OPS(st_stts22h_suspend, st_stts22h_resume)
  484. };
  485. #endif /* CONFIG_PM */
  486. static const struct of_device_id st_stts22h_of_match[] = {
  487. {
  488. .compatible = "st,stts22h",
  489. },
  490. {},
  491. };
  492. MODULE_DEVICE_TABLE(of, st_stts22h_of_match);
  493. static const struct i2c_device_id st_stts22h_id_table[] = {
  494. { ST_STTS22H_DEV_NAME },
  495. {},
  496. };
  497. MODULE_DEVICE_TABLE(i2c, st_stts22h_id_table);
  498. static struct i2c_driver st_stts22h_driver = {
  499. .driver = {
  500. .name = "st_stts22h_i2c",
  501. #ifdef CONFIG_PM
  502. .pm = &st_stts22h_pm_ops,
  503. #endif /* CONFIG_PM */
  504. .of_match_table = of_match_ptr(st_stts22h_of_match),
  505. },
  506. .probe = st_stts22h_probe,
  507. .remove = st_stts22h_remove,
  508. .id_table = st_stts22h_id_table,
  509. };
  510. module_i2c_driver(st_stts22h_driver);
  511. MODULE_AUTHOR("MEMS Software Solutions Team");
  512. MODULE_DESCRIPTION("stts22h ST MEMS temperature sensor driver");
  513. MODULE_LICENSE("GPL");