xilinx-ams.c 38 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Xilinx AMS driver
  4. *
  5. * Copyright (C) 2021 Xilinx, Inc.
  6. *
  7. * Manish Narani <[email protected]>
  8. * Rajnikant Bhojani <[email protected]>
  9. */
  10. #include <linux/bits.h>
  11. #include <linux/bitfield.h>
  12. #include <linux/clk.h>
  13. #include <linux/delay.h>
  14. #include <linux/devm-helpers.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/io.h>
  17. #include <linux/iopoll.h>
  18. #include <linux/kernel.h>
  19. #include <linux/module.h>
  20. #include <linux/mod_devicetable.h>
  21. #include <linux/overflow.h>
  22. #include <linux/platform_device.h>
  23. #include <linux/property.h>
  24. #include <linux/slab.h>
  25. #include <linux/iio/events.h>
  26. #include <linux/iio/iio.h>
  27. /* AMS registers definitions */
  28. #define AMS_ISR_0 0x010
  29. #define AMS_ISR_1 0x014
  30. #define AMS_IER_0 0x020
  31. #define AMS_IER_1 0x024
  32. #define AMS_IDR_0 0x028
  33. #define AMS_IDR_1 0x02C
  34. #define AMS_PS_CSTS 0x040
  35. #define AMS_PL_CSTS 0x044
  36. #define AMS_VCC_PSPLL0 0x060
  37. #define AMS_VCC_PSPLL3 0x06C
  38. #define AMS_VCCINT 0x078
  39. #define AMS_VCCBRAM 0x07C
  40. #define AMS_VCCAUX 0x080
  41. #define AMS_PSDDRPLL 0x084
  42. #define AMS_PSINTFPDDR 0x09C
  43. #define AMS_VCC_PSPLL0_CH 48
  44. #define AMS_VCC_PSPLL3_CH 51
  45. #define AMS_VCCINT_CH 54
  46. #define AMS_VCCBRAM_CH 55
  47. #define AMS_VCCAUX_CH 56
  48. #define AMS_PSDDRPLL_CH 57
  49. #define AMS_PSINTFPDDR_CH 63
  50. #define AMS_REG_CONFIG0 0x100
  51. #define AMS_REG_CONFIG1 0x104
  52. #define AMS_REG_CONFIG3 0x10C
  53. #define AMS_REG_CONFIG4 0x110
  54. #define AMS_REG_SEQ_CH0 0x120
  55. #define AMS_REG_SEQ_CH1 0x124
  56. #define AMS_REG_SEQ_CH2 0x118
  57. #define AMS_VUSER0_MASK BIT(0)
  58. #define AMS_VUSER1_MASK BIT(1)
  59. #define AMS_VUSER2_MASK BIT(2)
  60. #define AMS_VUSER3_MASK BIT(3)
  61. #define AMS_TEMP 0x000
  62. #define AMS_SUPPLY1 0x004
  63. #define AMS_SUPPLY2 0x008
  64. #define AMS_VP_VN 0x00C
  65. #define AMS_VREFP 0x010
  66. #define AMS_VREFN 0x014
  67. #define AMS_SUPPLY3 0x018
  68. #define AMS_SUPPLY4 0x034
  69. #define AMS_SUPPLY5 0x038
  70. #define AMS_SUPPLY6 0x03C
  71. #define AMS_SUPPLY7 0x200
  72. #define AMS_SUPPLY8 0x204
  73. #define AMS_SUPPLY9 0x208
  74. #define AMS_SUPPLY10 0x20C
  75. #define AMS_VCCAMS 0x210
  76. #define AMS_TEMP_REMOTE 0x214
  77. #define AMS_REG_VAUX(x) (0x40 + 4 * (x))
  78. #define AMS_PS_RESET_VALUE 0xFFFF
  79. #define AMS_PL_RESET_VALUE 0xFFFF
  80. #define AMS_CONF0_CHANNEL_NUM_MASK GENMASK(6, 0)
  81. #define AMS_CONF1_SEQ_MASK GENMASK(15, 12)
  82. #define AMS_CONF1_SEQ_DEFAULT FIELD_PREP(AMS_CONF1_SEQ_MASK, 0)
  83. #define AMS_CONF1_SEQ_CONTINUOUS FIELD_PREP(AMS_CONF1_SEQ_MASK, 2)
  84. #define AMS_CONF1_SEQ_SINGLE_CHANNEL FIELD_PREP(AMS_CONF1_SEQ_MASK, 3)
  85. #define AMS_REG_SEQ0_MASK GENMASK(15, 0)
  86. #define AMS_REG_SEQ2_MASK GENMASK(21, 16)
  87. #define AMS_REG_SEQ1_MASK GENMASK_ULL(37, 22)
  88. #define AMS_PS_SEQ_MASK GENMASK(21, 0)
  89. #define AMS_PL_SEQ_MASK GENMASK_ULL(59, 22)
  90. #define AMS_ALARM_TEMP 0x140
  91. #define AMS_ALARM_SUPPLY1 0x144
  92. #define AMS_ALARM_SUPPLY2 0x148
  93. #define AMS_ALARM_SUPPLY3 0x160
  94. #define AMS_ALARM_SUPPLY4 0x164
  95. #define AMS_ALARM_SUPPLY5 0x168
  96. #define AMS_ALARM_SUPPLY6 0x16C
  97. #define AMS_ALARM_SUPPLY7 0x180
  98. #define AMS_ALARM_SUPPLY8 0x184
  99. #define AMS_ALARM_SUPPLY9 0x188
  100. #define AMS_ALARM_SUPPLY10 0x18C
  101. #define AMS_ALARM_VCCAMS 0x190
  102. #define AMS_ALARM_TEMP_REMOTE 0x194
  103. #define AMS_ALARM_THRESHOLD_OFF_10 0x10
  104. #define AMS_ALARM_THRESHOLD_OFF_20 0x20
  105. #define AMS_ALARM_THR_DIRECT_MASK BIT(1)
  106. #define AMS_ALARM_THR_MIN 0x0000
  107. #define AMS_ALARM_THR_MAX (BIT(16) - 1)
  108. #define AMS_ALARM_MASK GENMASK_ULL(63, 0)
  109. #define AMS_NO_OF_ALARMS 32
  110. #define AMS_PL_ALARM_START 16
  111. #define AMS_PL_ALARM_MASK GENMASK(31, 16)
  112. #define AMS_ISR0_ALARM_MASK GENMASK(31, 0)
  113. #define AMS_ISR1_ALARM_MASK (GENMASK(31, 29) | GENMASK(4, 0))
  114. #define AMS_ISR1_EOC_MASK BIT(3)
  115. #define AMS_ISR1_INTR_MASK GENMASK_ULL(63, 32)
  116. #define AMS_ISR0_ALARM_2_TO_0_MASK GENMASK(2, 0)
  117. #define AMS_ISR0_ALARM_6_TO_3_MASK GENMASK(6, 3)
  118. #define AMS_ISR0_ALARM_12_TO_7_MASK GENMASK(13, 8)
  119. #define AMS_CONF1_ALARM_2_TO_0_MASK GENMASK(3, 1)
  120. #define AMS_CONF1_ALARM_6_TO_3_MASK GENMASK(11, 8)
  121. #define AMS_CONF1_ALARM_12_TO_7_MASK GENMASK(5, 0)
  122. #define AMS_REGCFG1_ALARM_MASK \
  123. (AMS_CONF1_ALARM_2_TO_0_MASK | AMS_CONF1_ALARM_6_TO_3_MASK | BIT(0))
  124. #define AMS_REGCFG3_ALARM_MASK AMS_CONF1_ALARM_12_TO_7_MASK
  125. #define AMS_PS_CSTS_PS_READY (BIT(27) | BIT(16))
  126. #define AMS_PL_CSTS_ACCESS_MASK BIT(1)
  127. #define AMS_PL_MAX_FIXED_CHANNEL 10
  128. #define AMS_PL_MAX_EXT_CHANNEL 20
  129. #define AMS_INIT_POLL_TIME_US 200
  130. #define AMS_INIT_TIMEOUT_US 10000
  131. #define AMS_UNMASK_TIMEOUT_MS 500
  132. /*
  133. * Following scale and offset value is derived from
  134. * UG580 (v1.7) December 20, 2016
  135. */
  136. #define AMS_SUPPLY_SCALE_1VOLT_mV 1000
  137. #define AMS_SUPPLY_SCALE_3VOLT_mV 3000
  138. #define AMS_SUPPLY_SCALE_6VOLT_mV 6000
  139. #define AMS_SUPPLY_SCALE_DIV_BIT 16
  140. #define AMS_TEMP_SCALE 509314
  141. #define AMS_TEMP_SCALE_DIV_BIT 16
  142. #define AMS_TEMP_OFFSET -((280230LL << 16) / 509314)
  143. enum ams_alarm_bit {
  144. AMS_ALARM_BIT_TEMP = 0,
  145. AMS_ALARM_BIT_SUPPLY1 = 1,
  146. AMS_ALARM_BIT_SUPPLY2 = 2,
  147. AMS_ALARM_BIT_SUPPLY3 = 3,
  148. AMS_ALARM_BIT_SUPPLY4 = 4,
  149. AMS_ALARM_BIT_SUPPLY5 = 5,
  150. AMS_ALARM_BIT_SUPPLY6 = 6,
  151. AMS_ALARM_BIT_RESERVED = 7,
  152. AMS_ALARM_BIT_SUPPLY7 = 8,
  153. AMS_ALARM_BIT_SUPPLY8 = 9,
  154. AMS_ALARM_BIT_SUPPLY9 = 10,
  155. AMS_ALARM_BIT_SUPPLY10 = 11,
  156. AMS_ALARM_BIT_VCCAMS = 12,
  157. AMS_ALARM_BIT_TEMP_REMOTE = 13,
  158. };
  159. enum ams_seq {
  160. AMS_SEQ_VCC_PSPLL = 0,
  161. AMS_SEQ_VCC_PSBATT = 1,
  162. AMS_SEQ_VCCINT = 2,
  163. AMS_SEQ_VCCBRAM = 3,
  164. AMS_SEQ_VCCAUX = 4,
  165. AMS_SEQ_PSDDRPLL = 5,
  166. AMS_SEQ_INTDDR = 6,
  167. };
  168. enum ams_ps_pl_seq {
  169. AMS_SEQ_CALIB = 0,
  170. AMS_SEQ_RSVD_1 = 1,
  171. AMS_SEQ_RSVD_2 = 2,
  172. AMS_SEQ_TEST = 3,
  173. AMS_SEQ_RSVD_4 = 4,
  174. AMS_SEQ_SUPPLY4 = 5,
  175. AMS_SEQ_SUPPLY5 = 6,
  176. AMS_SEQ_SUPPLY6 = 7,
  177. AMS_SEQ_TEMP = 8,
  178. AMS_SEQ_SUPPLY2 = 9,
  179. AMS_SEQ_SUPPLY1 = 10,
  180. AMS_SEQ_VP_VN = 11,
  181. AMS_SEQ_VREFP = 12,
  182. AMS_SEQ_VREFN = 13,
  183. AMS_SEQ_SUPPLY3 = 14,
  184. AMS_SEQ_CURRENT_MON = 15,
  185. AMS_SEQ_SUPPLY7 = 16,
  186. AMS_SEQ_SUPPLY8 = 17,
  187. AMS_SEQ_SUPPLY9 = 18,
  188. AMS_SEQ_SUPPLY10 = 19,
  189. AMS_SEQ_VCCAMS = 20,
  190. AMS_SEQ_TEMP_REMOTE = 21,
  191. AMS_SEQ_MAX = 22
  192. };
  193. #define AMS_PS_SEQ_MAX AMS_SEQ_MAX
  194. #define AMS_SEQ(x) (AMS_SEQ_MAX + (x))
  195. #define PS_SEQ(x) (x)
  196. #define PL_SEQ(x) (AMS_PS_SEQ_MAX + (x))
  197. #define AMS_CTRL_SEQ_BASE (AMS_PS_SEQ_MAX * 3)
  198. #define AMS_CHAN_TEMP(_scan_index, _addr) { \
  199. .type = IIO_TEMP, \
  200. .indexed = 1, \
  201. .address = (_addr), \
  202. .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
  203. BIT(IIO_CHAN_INFO_SCALE) | \
  204. BIT(IIO_CHAN_INFO_OFFSET), \
  205. .event_spec = ams_temp_events, \
  206. .scan_index = _scan_index, \
  207. .num_event_specs = ARRAY_SIZE(ams_temp_events), \
  208. }
  209. #define AMS_CHAN_VOLTAGE(_scan_index, _addr, _alarm) { \
  210. .type = IIO_VOLTAGE, \
  211. .indexed = 1, \
  212. .address = (_addr), \
  213. .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
  214. BIT(IIO_CHAN_INFO_SCALE), \
  215. .event_spec = (_alarm) ? ams_voltage_events : NULL, \
  216. .scan_index = _scan_index, \
  217. .num_event_specs = (_alarm) ? ARRAY_SIZE(ams_voltage_events) : 0, \
  218. }
  219. #define AMS_PS_CHAN_TEMP(_scan_index, _addr) \
  220. AMS_CHAN_TEMP(PS_SEQ(_scan_index), _addr)
  221. #define AMS_PS_CHAN_VOLTAGE(_scan_index, _addr) \
  222. AMS_CHAN_VOLTAGE(PS_SEQ(_scan_index), _addr, true)
  223. #define AMS_PL_CHAN_TEMP(_scan_index, _addr) \
  224. AMS_CHAN_TEMP(PL_SEQ(_scan_index), _addr)
  225. #define AMS_PL_CHAN_VOLTAGE(_scan_index, _addr, _alarm) \
  226. AMS_CHAN_VOLTAGE(PL_SEQ(_scan_index), _addr, _alarm)
  227. #define AMS_PL_AUX_CHAN_VOLTAGE(_auxno) \
  228. AMS_CHAN_VOLTAGE(PL_SEQ(AMS_SEQ(_auxno)), AMS_REG_VAUX(_auxno), false)
  229. #define AMS_CTRL_CHAN_VOLTAGE(_scan_index, _addr) \
  230. AMS_CHAN_VOLTAGE(PL_SEQ(AMS_SEQ(AMS_SEQ(_scan_index))), _addr, false)
  231. /**
  232. * struct ams - This structure contains necessary state for xilinx-ams to operate
  233. * @base: physical base address of device
  234. * @ps_base: physical base address of PS device
  235. * @pl_base: physical base address of PL device
  236. * @clk: clocks associated with the device
  237. * @dev: pointer to device struct
  238. * @lock: to handle multiple user interaction
  239. * @intr_lock: to protect interrupt mask values
  240. * @alarm_mask: alarm configuration
  241. * @current_masked_alarm: currently masked due to alarm
  242. * @intr_mask: interrupt configuration
  243. * @ams_unmask_work: re-enables event once the event condition disappears
  244. *
  245. */
  246. struct ams {
  247. void __iomem *base;
  248. void __iomem *ps_base;
  249. void __iomem *pl_base;
  250. struct clk *clk;
  251. struct device *dev;
  252. struct mutex lock;
  253. spinlock_t intr_lock;
  254. unsigned int alarm_mask;
  255. unsigned int current_masked_alarm;
  256. u64 intr_mask;
  257. struct delayed_work ams_unmask_work;
  258. };
  259. static inline void ams_ps_update_reg(struct ams *ams, unsigned int offset,
  260. u32 mask, u32 data)
  261. {
  262. u32 val, regval;
  263. val = readl(ams->ps_base + offset);
  264. regval = (val & ~mask) | (data & mask);
  265. writel(regval, ams->ps_base + offset);
  266. }
  267. static inline void ams_pl_update_reg(struct ams *ams, unsigned int offset,
  268. u32 mask, u32 data)
  269. {
  270. u32 val, regval;
  271. val = readl(ams->pl_base + offset);
  272. regval = (val & ~mask) | (data & mask);
  273. writel(regval, ams->pl_base + offset);
  274. }
  275. static void ams_update_intrmask(struct ams *ams, u64 mask, u64 val)
  276. {
  277. u32 regval;
  278. ams->intr_mask = (ams->intr_mask & ~mask) | (val & mask);
  279. regval = ~(ams->intr_mask | ams->current_masked_alarm);
  280. writel(regval, ams->base + AMS_IER_0);
  281. regval = ~(FIELD_GET(AMS_ISR1_INTR_MASK, ams->intr_mask));
  282. writel(regval, ams->base + AMS_IER_1);
  283. regval = ams->intr_mask | ams->current_masked_alarm;
  284. writel(regval, ams->base + AMS_IDR_0);
  285. regval = FIELD_GET(AMS_ISR1_INTR_MASK, ams->intr_mask);
  286. writel(regval, ams->base + AMS_IDR_1);
  287. }
  288. static void ams_disable_all_alarms(struct ams *ams)
  289. {
  290. /* disable PS module alarm */
  291. if (ams->ps_base) {
  292. ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_REGCFG1_ALARM_MASK,
  293. AMS_REGCFG1_ALARM_MASK);
  294. ams_ps_update_reg(ams, AMS_REG_CONFIG3, AMS_REGCFG3_ALARM_MASK,
  295. AMS_REGCFG3_ALARM_MASK);
  296. }
  297. /* disable PL module alarm */
  298. if (ams->pl_base) {
  299. ams_pl_update_reg(ams, AMS_REG_CONFIG1, AMS_REGCFG1_ALARM_MASK,
  300. AMS_REGCFG1_ALARM_MASK);
  301. ams_pl_update_reg(ams, AMS_REG_CONFIG3, AMS_REGCFG3_ALARM_MASK,
  302. AMS_REGCFG3_ALARM_MASK);
  303. }
  304. }
  305. static void ams_update_ps_alarm(struct ams *ams, unsigned long alarm_mask)
  306. {
  307. u32 cfg;
  308. u32 val;
  309. val = FIELD_GET(AMS_ISR0_ALARM_2_TO_0_MASK, alarm_mask);
  310. cfg = ~(FIELD_PREP(AMS_CONF1_ALARM_2_TO_0_MASK, val));
  311. val = FIELD_GET(AMS_ISR0_ALARM_6_TO_3_MASK, alarm_mask);
  312. cfg &= ~(FIELD_PREP(AMS_CONF1_ALARM_6_TO_3_MASK, val));
  313. ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_REGCFG1_ALARM_MASK, cfg);
  314. val = FIELD_GET(AMS_ISR0_ALARM_12_TO_7_MASK, alarm_mask);
  315. cfg = ~(FIELD_PREP(AMS_CONF1_ALARM_12_TO_7_MASK, val));
  316. ams_ps_update_reg(ams, AMS_REG_CONFIG3, AMS_REGCFG3_ALARM_MASK, cfg);
  317. }
  318. static void ams_update_pl_alarm(struct ams *ams, unsigned long alarm_mask)
  319. {
  320. unsigned long pl_alarm_mask;
  321. u32 cfg;
  322. u32 val;
  323. pl_alarm_mask = FIELD_GET(AMS_PL_ALARM_MASK, alarm_mask);
  324. val = FIELD_GET(AMS_ISR0_ALARM_2_TO_0_MASK, pl_alarm_mask);
  325. cfg = ~(FIELD_PREP(AMS_CONF1_ALARM_2_TO_0_MASK, val));
  326. val = FIELD_GET(AMS_ISR0_ALARM_6_TO_3_MASK, pl_alarm_mask);
  327. cfg &= ~(FIELD_PREP(AMS_CONF1_ALARM_6_TO_3_MASK, val));
  328. ams_pl_update_reg(ams, AMS_REG_CONFIG1, AMS_REGCFG1_ALARM_MASK, cfg);
  329. val = FIELD_GET(AMS_ISR0_ALARM_12_TO_7_MASK, pl_alarm_mask);
  330. cfg = ~(FIELD_PREP(AMS_CONF1_ALARM_12_TO_7_MASK, val));
  331. ams_pl_update_reg(ams, AMS_REG_CONFIG3, AMS_REGCFG3_ALARM_MASK, cfg);
  332. }
  333. static void ams_update_alarm(struct ams *ams, unsigned long alarm_mask)
  334. {
  335. unsigned long flags;
  336. if (ams->ps_base)
  337. ams_update_ps_alarm(ams, alarm_mask);
  338. if (ams->pl_base)
  339. ams_update_pl_alarm(ams, alarm_mask);
  340. spin_lock_irqsave(&ams->intr_lock, flags);
  341. ams_update_intrmask(ams, AMS_ISR0_ALARM_MASK, ~alarm_mask);
  342. spin_unlock_irqrestore(&ams->intr_lock, flags);
  343. }
  344. static void ams_enable_channel_sequence(struct iio_dev *indio_dev)
  345. {
  346. struct ams *ams = iio_priv(indio_dev);
  347. unsigned long long scan_mask;
  348. int i;
  349. u32 regval;
  350. /*
  351. * Enable channel sequence. First 22 bits of scan_mask represent
  352. * PS channels, and next remaining bits represent PL channels.
  353. */
  354. /* Run calibration of PS & PL as part of the sequence */
  355. scan_mask = BIT(0) | BIT(AMS_PS_SEQ_MAX);
  356. for (i = 0; i < indio_dev->num_channels; i++)
  357. scan_mask |= BIT_ULL(indio_dev->channels[i].scan_index);
  358. if (ams->ps_base) {
  359. /* put sysmon in a soft reset to change the sequence */
  360. ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
  361. AMS_CONF1_SEQ_DEFAULT);
  362. /* configure basic channels */
  363. regval = FIELD_GET(AMS_REG_SEQ0_MASK, scan_mask);
  364. writel(regval, ams->ps_base + AMS_REG_SEQ_CH0);
  365. regval = FIELD_GET(AMS_REG_SEQ2_MASK, scan_mask);
  366. writel(regval, ams->ps_base + AMS_REG_SEQ_CH2);
  367. /* set continuous sequence mode */
  368. ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
  369. AMS_CONF1_SEQ_CONTINUOUS);
  370. }
  371. if (ams->pl_base) {
  372. /* put sysmon in a soft reset to change the sequence */
  373. ams_pl_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
  374. AMS_CONF1_SEQ_DEFAULT);
  375. /* configure basic channels */
  376. scan_mask = FIELD_GET(AMS_PL_SEQ_MASK, scan_mask);
  377. regval = FIELD_GET(AMS_REG_SEQ0_MASK, scan_mask);
  378. writel(regval, ams->pl_base + AMS_REG_SEQ_CH0);
  379. regval = FIELD_GET(AMS_REG_SEQ1_MASK, scan_mask);
  380. writel(regval, ams->pl_base + AMS_REG_SEQ_CH1);
  381. regval = FIELD_GET(AMS_REG_SEQ2_MASK, scan_mask);
  382. writel(regval, ams->pl_base + AMS_REG_SEQ_CH2);
  383. /* set continuous sequence mode */
  384. ams_pl_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
  385. AMS_CONF1_SEQ_CONTINUOUS);
  386. }
  387. }
  388. static int ams_init_device(struct ams *ams)
  389. {
  390. u32 expect = AMS_PS_CSTS_PS_READY;
  391. u32 reg, value;
  392. int ret;
  393. /* reset AMS */
  394. if (ams->ps_base) {
  395. writel(AMS_PS_RESET_VALUE, ams->ps_base + AMS_VP_VN);
  396. ret = readl_poll_timeout(ams->base + AMS_PS_CSTS, reg, (reg & expect),
  397. AMS_INIT_POLL_TIME_US, AMS_INIT_TIMEOUT_US);
  398. if (ret)
  399. return ret;
  400. /* put sysmon in a default state */
  401. ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
  402. AMS_CONF1_SEQ_DEFAULT);
  403. }
  404. if (ams->pl_base) {
  405. value = readl(ams->base + AMS_PL_CSTS);
  406. if (value == 0)
  407. return 0;
  408. writel(AMS_PL_RESET_VALUE, ams->pl_base + AMS_VP_VN);
  409. /* put sysmon in a default state */
  410. ams_pl_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
  411. AMS_CONF1_SEQ_DEFAULT);
  412. }
  413. ams_disable_all_alarms(ams);
  414. /* Disable interrupt */
  415. ams_update_intrmask(ams, AMS_ALARM_MASK, AMS_ALARM_MASK);
  416. /* Clear any pending interrupt */
  417. writel(AMS_ISR0_ALARM_MASK, ams->base + AMS_ISR_0);
  418. writel(AMS_ISR1_ALARM_MASK, ams->base + AMS_ISR_1);
  419. return 0;
  420. }
  421. static int ams_enable_single_channel(struct ams *ams, unsigned int offset)
  422. {
  423. u8 channel_num;
  424. switch (offset) {
  425. case AMS_VCC_PSPLL0:
  426. channel_num = AMS_VCC_PSPLL0_CH;
  427. break;
  428. case AMS_VCC_PSPLL3:
  429. channel_num = AMS_VCC_PSPLL3_CH;
  430. break;
  431. case AMS_VCCINT:
  432. channel_num = AMS_VCCINT_CH;
  433. break;
  434. case AMS_VCCBRAM:
  435. channel_num = AMS_VCCBRAM_CH;
  436. break;
  437. case AMS_VCCAUX:
  438. channel_num = AMS_VCCAUX_CH;
  439. break;
  440. case AMS_PSDDRPLL:
  441. channel_num = AMS_PSDDRPLL_CH;
  442. break;
  443. case AMS_PSINTFPDDR:
  444. channel_num = AMS_PSINTFPDDR_CH;
  445. break;
  446. default:
  447. return -EINVAL;
  448. }
  449. /* put sysmon in a soft reset to change the sequence */
  450. ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
  451. AMS_CONF1_SEQ_DEFAULT);
  452. /* write the channel number */
  453. ams_ps_update_reg(ams, AMS_REG_CONFIG0, AMS_CONF0_CHANNEL_NUM_MASK,
  454. channel_num);
  455. /* set single channel, sequencer off mode */
  456. ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK,
  457. AMS_CONF1_SEQ_SINGLE_CHANNEL);
  458. return 0;
  459. }
  460. static int ams_read_vcc_reg(struct ams *ams, unsigned int offset, u32 *data)
  461. {
  462. u32 expect = AMS_ISR1_EOC_MASK;
  463. u32 reg;
  464. int ret;
  465. ret = ams_enable_single_channel(ams, offset);
  466. if (ret)
  467. return ret;
  468. /* clear end-of-conversion flag, wait for next conversion to complete */
  469. writel(expect, ams->base + AMS_ISR_1);
  470. ret = readl_poll_timeout(ams->base + AMS_ISR_1, reg, (reg & expect),
  471. AMS_INIT_POLL_TIME_US, AMS_INIT_TIMEOUT_US);
  472. if (ret)
  473. return ret;
  474. *data = readl(ams->base + offset);
  475. return 0;
  476. }
  477. static int ams_get_ps_scale(int address)
  478. {
  479. int val;
  480. switch (address) {
  481. case AMS_SUPPLY1:
  482. case AMS_SUPPLY2:
  483. case AMS_SUPPLY3:
  484. case AMS_SUPPLY4:
  485. case AMS_SUPPLY9:
  486. case AMS_SUPPLY10:
  487. case AMS_VCCAMS:
  488. val = AMS_SUPPLY_SCALE_3VOLT_mV;
  489. break;
  490. case AMS_SUPPLY5:
  491. case AMS_SUPPLY6:
  492. case AMS_SUPPLY7:
  493. case AMS_SUPPLY8:
  494. val = AMS_SUPPLY_SCALE_6VOLT_mV;
  495. break;
  496. default:
  497. val = AMS_SUPPLY_SCALE_1VOLT_mV;
  498. break;
  499. }
  500. return val;
  501. }
  502. static int ams_get_pl_scale(struct ams *ams, int address)
  503. {
  504. int val, regval;
  505. switch (address) {
  506. case AMS_SUPPLY1:
  507. case AMS_SUPPLY2:
  508. case AMS_SUPPLY3:
  509. case AMS_SUPPLY4:
  510. case AMS_SUPPLY5:
  511. case AMS_SUPPLY6:
  512. case AMS_VCCAMS:
  513. case AMS_VREFP:
  514. case AMS_VREFN:
  515. val = AMS_SUPPLY_SCALE_3VOLT_mV;
  516. break;
  517. case AMS_SUPPLY7:
  518. regval = readl(ams->pl_base + AMS_REG_CONFIG4);
  519. if (FIELD_GET(AMS_VUSER0_MASK, regval))
  520. val = AMS_SUPPLY_SCALE_6VOLT_mV;
  521. else
  522. val = AMS_SUPPLY_SCALE_3VOLT_mV;
  523. break;
  524. case AMS_SUPPLY8:
  525. regval = readl(ams->pl_base + AMS_REG_CONFIG4);
  526. if (FIELD_GET(AMS_VUSER1_MASK, regval))
  527. val = AMS_SUPPLY_SCALE_6VOLT_mV;
  528. else
  529. val = AMS_SUPPLY_SCALE_3VOLT_mV;
  530. break;
  531. case AMS_SUPPLY9:
  532. regval = readl(ams->pl_base + AMS_REG_CONFIG4);
  533. if (FIELD_GET(AMS_VUSER2_MASK, regval))
  534. val = AMS_SUPPLY_SCALE_6VOLT_mV;
  535. else
  536. val = AMS_SUPPLY_SCALE_3VOLT_mV;
  537. break;
  538. case AMS_SUPPLY10:
  539. regval = readl(ams->pl_base + AMS_REG_CONFIG4);
  540. if (FIELD_GET(AMS_VUSER3_MASK, regval))
  541. val = AMS_SUPPLY_SCALE_6VOLT_mV;
  542. else
  543. val = AMS_SUPPLY_SCALE_3VOLT_mV;
  544. break;
  545. case AMS_VP_VN:
  546. case AMS_REG_VAUX(0) ... AMS_REG_VAUX(15):
  547. val = AMS_SUPPLY_SCALE_1VOLT_mV;
  548. break;
  549. default:
  550. val = AMS_SUPPLY_SCALE_1VOLT_mV;
  551. break;
  552. }
  553. return val;
  554. }
  555. static int ams_get_ctrl_scale(int address)
  556. {
  557. int val;
  558. switch (address) {
  559. case AMS_VCC_PSPLL0:
  560. case AMS_VCC_PSPLL3:
  561. case AMS_VCCINT:
  562. case AMS_VCCBRAM:
  563. case AMS_VCCAUX:
  564. case AMS_PSDDRPLL:
  565. case AMS_PSINTFPDDR:
  566. val = AMS_SUPPLY_SCALE_3VOLT_mV;
  567. break;
  568. default:
  569. val = AMS_SUPPLY_SCALE_1VOLT_mV;
  570. break;
  571. }
  572. return val;
  573. }
  574. static int ams_read_raw(struct iio_dev *indio_dev,
  575. struct iio_chan_spec const *chan,
  576. int *val, int *val2, long mask)
  577. {
  578. struct ams *ams = iio_priv(indio_dev);
  579. int ret;
  580. switch (mask) {
  581. case IIO_CHAN_INFO_RAW:
  582. mutex_lock(&ams->lock);
  583. if (chan->scan_index >= AMS_CTRL_SEQ_BASE) {
  584. ret = ams_read_vcc_reg(ams, chan->address, val);
  585. if (ret)
  586. goto unlock_mutex;
  587. ams_enable_channel_sequence(indio_dev);
  588. } else if (chan->scan_index >= AMS_PS_SEQ_MAX)
  589. *val = readl(ams->pl_base + chan->address);
  590. else
  591. *val = readl(ams->ps_base + chan->address);
  592. ret = IIO_VAL_INT;
  593. unlock_mutex:
  594. mutex_unlock(&ams->lock);
  595. return ret;
  596. case IIO_CHAN_INFO_SCALE:
  597. switch (chan->type) {
  598. case IIO_VOLTAGE:
  599. if (chan->scan_index < AMS_PS_SEQ_MAX)
  600. *val = ams_get_ps_scale(chan->address);
  601. else if (chan->scan_index >= AMS_PS_SEQ_MAX &&
  602. chan->scan_index < AMS_CTRL_SEQ_BASE)
  603. *val = ams_get_pl_scale(ams, chan->address);
  604. else
  605. *val = ams_get_ctrl_scale(chan->address);
  606. *val2 = AMS_SUPPLY_SCALE_DIV_BIT;
  607. return IIO_VAL_FRACTIONAL_LOG2;
  608. case IIO_TEMP:
  609. *val = AMS_TEMP_SCALE;
  610. *val2 = AMS_TEMP_SCALE_DIV_BIT;
  611. return IIO_VAL_FRACTIONAL_LOG2;
  612. default:
  613. return -EINVAL;
  614. }
  615. case IIO_CHAN_INFO_OFFSET:
  616. /* Only the temperature channel has an offset */
  617. *val = AMS_TEMP_OFFSET;
  618. return IIO_VAL_INT;
  619. default:
  620. return -EINVAL;
  621. }
  622. }
  623. static int ams_get_alarm_offset(int scan_index, enum iio_event_direction dir)
  624. {
  625. int offset;
  626. if (scan_index >= AMS_PS_SEQ_MAX)
  627. scan_index -= AMS_PS_SEQ_MAX;
  628. if (dir == IIO_EV_DIR_FALLING) {
  629. if (scan_index < AMS_SEQ_SUPPLY7)
  630. offset = AMS_ALARM_THRESHOLD_OFF_10;
  631. else
  632. offset = AMS_ALARM_THRESHOLD_OFF_20;
  633. } else {
  634. offset = 0;
  635. }
  636. switch (scan_index) {
  637. case AMS_SEQ_TEMP:
  638. return AMS_ALARM_TEMP + offset;
  639. case AMS_SEQ_SUPPLY1:
  640. return AMS_ALARM_SUPPLY1 + offset;
  641. case AMS_SEQ_SUPPLY2:
  642. return AMS_ALARM_SUPPLY2 + offset;
  643. case AMS_SEQ_SUPPLY3:
  644. return AMS_ALARM_SUPPLY3 + offset;
  645. case AMS_SEQ_SUPPLY4:
  646. return AMS_ALARM_SUPPLY4 + offset;
  647. case AMS_SEQ_SUPPLY5:
  648. return AMS_ALARM_SUPPLY5 + offset;
  649. case AMS_SEQ_SUPPLY6:
  650. return AMS_ALARM_SUPPLY6 + offset;
  651. case AMS_SEQ_SUPPLY7:
  652. return AMS_ALARM_SUPPLY7 + offset;
  653. case AMS_SEQ_SUPPLY8:
  654. return AMS_ALARM_SUPPLY8 + offset;
  655. case AMS_SEQ_SUPPLY9:
  656. return AMS_ALARM_SUPPLY9 + offset;
  657. case AMS_SEQ_SUPPLY10:
  658. return AMS_ALARM_SUPPLY10 + offset;
  659. case AMS_SEQ_VCCAMS:
  660. return AMS_ALARM_VCCAMS + offset;
  661. case AMS_SEQ_TEMP_REMOTE:
  662. return AMS_ALARM_TEMP_REMOTE + offset;
  663. default:
  664. return 0;
  665. }
  666. }
  667. static const struct iio_chan_spec *ams_event_to_channel(struct iio_dev *dev,
  668. u32 event)
  669. {
  670. int scan_index = 0, i;
  671. if (event >= AMS_PL_ALARM_START) {
  672. event -= AMS_PL_ALARM_START;
  673. scan_index = AMS_PS_SEQ_MAX;
  674. }
  675. switch (event) {
  676. case AMS_ALARM_BIT_TEMP:
  677. scan_index += AMS_SEQ_TEMP;
  678. break;
  679. case AMS_ALARM_BIT_SUPPLY1:
  680. scan_index += AMS_SEQ_SUPPLY1;
  681. break;
  682. case AMS_ALARM_BIT_SUPPLY2:
  683. scan_index += AMS_SEQ_SUPPLY2;
  684. break;
  685. case AMS_ALARM_BIT_SUPPLY3:
  686. scan_index += AMS_SEQ_SUPPLY3;
  687. break;
  688. case AMS_ALARM_BIT_SUPPLY4:
  689. scan_index += AMS_SEQ_SUPPLY4;
  690. break;
  691. case AMS_ALARM_BIT_SUPPLY5:
  692. scan_index += AMS_SEQ_SUPPLY5;
  693. break;
  694. case AMS_ALARM_BIT_SUPPLY6:
  695. scan_index += AMS_SEQ_SUPPLY6;
  696. break;
  697. case AMS_ALARM_BIT_SUPPLY7:
  698. scan_index += AMS_SEQ_SUPPLY7;
  699. break;
  700. case AMS_ALARM_BIT_SUPPLY8:
  701. scan_index += AMS_SEQ_SUPPLY8;
  702. break;
  703. case AMS_ALARM_BIT_SUPPLY9:
  704. scan_index += AMS_SEQ_SUPPLY9;
  705. break;
  706. case AMS_ALARM_BIT_SUPPLY10:
  707. scan_index += AMS_SEQ_SUPPLY10;
  708. break;
  709. case AMS_ALARM_BIT_VCCAMS:
  710. scan_index += AMS_SEQ_VCCAMS;
  711. break;
  712. case AMS_ALARM_BIT_TEMP_REMOTE:
  713. scan_index += AMS_SEQ_TEMP_REMOTE;
  714. break;
  715. default:
  716. break;
  717. }
  718. for (i = 0; i < dev->num_channels; i++)
  719. if (dev->channels[i].scan_index == scan_index)
  720. break;
  721. return &dev->channels[i];
  722. }
  723. static int ams_get_alarm_mask(int scan_index)
  724. {
  725. int bit = 0;
  726. if (scan_index >= AMS_PS_SEQ_MAX) {
  727. bit = AMS_PL_ALARM_START;
  728. scan_index -= AMS_PS_SEQ_MAX;
  729. }
  730. switch (scan_index) {
  731. case AMS_SEQ_TEMP:
  732. return BIT(AMS_ALARM_BIT_TEMP + bit);
  733. case AMS_SEQ_SUPPLY1:
  734. return BIT(AMS_ALARM_BIT_SUPPLY1 + bit);
  735. case AMS_SEQ_SUPPLY2:
  736. return BIT(AMS_ALARM_BIT_SUPPLY2 + bit);
  737. case AMS_SEQ_SUPPLY3:
  738. return BIT(AMS_ALARM_BIT_SUPPLY3 + bit);
  739. case AMS_SEQ_SUPPLY4:
  740. return BIT(AMS_ALARM_BIT_SUPPLY4 + bit);
  741. case AMS_SEQ_SUPPLY5:
  742. return BIT(AMS_ALARM_BIT_SUPPLY5 + bit);
  743. case AMS_SEQ_SUPPLY6:
  744. return BIT(AMS_ALARM_BIT_SUPPLY6 + bit);
  745. case AMS_SEQ_SUPPLY7:
  746. return BIT(AMS_ALARM_BIT_SUPPLY7 + bit);
  747. case AMS_SEQ_SUPPLY8:
  748. return BIT(AMS_ALARM_BIT_SUPPLY8 + bit);
  749. case AMS_SEQ_SUPPLY9:
  750. return BIT(AMS_ALARM_BIT_SUPPLY9 + bit);
  751. case AMS_SEQ_SUPPLY10:
  752. return BIT(AMS_ALARM_BIT_SUPPLY10 + bit);
  753. case AMS_SEQ_VCCAMS:
  754. return BIT(AMS_ALARM_BIT_VCCAMS + bit);
  755. case AMS_SEQ_TEMP_REMOTE:
  756. return BIT(AMS_ALARM_BIT_TEMP_REMOTE + bit);
  757. default:
  758. return 0;
  759. }
  760. }
  761. static int ams_read_event_config(struct iio_dev *indio_dev,
  762. const struct iio_chan_spec *chan,
  763. enum iio_event_type type,
  764. enum iio_event_direction dir)
  765. {
  766. struct ams *ams = iio_priv(indio_dev);
  767. return !!(ams->alarm_mask & ams_get_alarm_mask(chan->scan_index));
  768. }
  769. static int ams_write_event_config(struct iio_dev *indio_dev,
  770. const struct iio_chan_spec *chan,
  771. enum iio_event_type type,
  772. enum iio_event_direction dir,
  773. int state)
  774. {
  775. struct ams *ams = iio_priv(indio_dev);
  776. unsigned int alarm;
  777. alarm = ams_get_alarm_mask(chan->scan_index);
  778. mutex_lock(&ams->lock);
  779. if (state)
  780. ams->alarm_mask |= alarm;
  781. else
  782. ams->alarm_mask &= ~alarm;
  783. ams_update_alarm(ams, ams->alarm_mask);
  784. mutex_unlock(&ams->lock);
  785. return 0;
  786. }
  787. static int ams_read_event_value(struct iio_dev *indio_dev,
  788. const struct iio_chan_spec *chan,
  789. enum iio_event_type type,
  790. enum iio_event_direction dir,
  791. enum iio_event_info info, int *val, int *val2)
  792. {
  793. struct ams *ams = iio_priv(indio_dev);
  794. unsigned int offset = ams_get_alarm_offset(chan->scan_index, dir);
  795. mutex_lock(&ams->lock);
  796. if (chan->scan_index >= AMS_PS_SEQ_MAX)
  797. *val = readl(ams->pl_base + offset);
  798. else
  799. *val = readl(ams->ps_base + offset);
  800. mutex_unlock(&ams->lock);
  801. return IIO_VAL_INT;
  802. }
  803. static int ams_write_event_value(struct iio_dev *indio_dev,
  804. const struct iio_chan_spec *chan,
  805. enum iio_event_type type,
  806. enum iio_event_direction dir,
  807. enum iio_event_info info, int val, int val2)
  808. {
  809. struct ams *ams = iio_priv(indio_dev);
  810. unsigned int offset;
  811. mutex_lock(&ams->lock);
  812. /* Set temperature channel threshold to direct threshold */
  813. if (chan->type == IIO_TEMP) {
  814. offset = ams_get_alarm_offset(chan->scan_index, IIO_EV_DIR_FALLING);
  815. if (chan->scan_index >= AMS_PS_SEQ_MAX)
  816. ams_pl_update_reg(ams, offset,
  817. AMS_ALARM_THR_DIRECT_MASK,
  818. AMS_ALARM_THR_DIRECT_MASK);
  819. else
  820. ams_ps_update_reg(ams, offset,
  821. AMS_ALARM_THR_DIRECT_MASK,
  822. AMS_ALARM_THR_DIRECT_MASK);
  823. }
  824. offset = ams_get_alarm_offset(chan->scan_index, dir);
  825. if (chan->scan_index >= AMS_PS_SEQ_MAX)
  826. writel(val, ams->pl_base + offset);
  827. else
  828. writel(val, ams->ps_base + offset);
  829. mutex_unlock(&ams->lock);
  830. return 0;
  831. }
  832. static void ams_handle_event(struct iio_dev *indio_dev, u32 event)
  833. {
  834. const struct iio_chan_spec *chan;
  835. chan = ams_event_to_channel(indio_dev, event);
  836. if (chan->type == IIO_TEMP) {
  837. /*
  838. * The temperature channel only supports over-temperature
  839. * events.
  840. */
  841. iio_push_event(indio_dev,
  842. IIO_UNMOD_EVENT_CODE(chan->type, chan->channel,
  843. IIO_EV_TYPE_THRESH,
  844. IIO_EV_DIR_RISING),
  845. iio_get_time_ns(indio_dev));
  846. } else {
  847. /*
  848. * For other channels we don't know whether it is a upper or
  849. * lower threshold event. Userspace will have to check the
  850. * channel value if it wants to know.
  851. */
  852. iio_push_event(indio_dev,
  853. IIO_UNMOD_EVENT_CODE(chan->type, chan->channel,
  854. IIO_EV_TYPE_THRESH,
  855. IIO_EV_DIR_EITHER),
  856. iio_get_time_ns(indio_dev));
  857. }
  858. }
  859. static void ams_handle_events(struct iio_dev *indio_dev, unsigned long events)
  860. {
  861. unsigned int bit;
  862. for_each_set_bit(bit, &events, AMS_NO_OF_ALARMS)
  863. ams_handle_event(indio_dev, bit);
  864. }
  865. /**
  866. * ams_unmask_worker - ams alarm interrupt unmask worker
  867. * @work: work to be done
  868. *
  869. * The ZynqMP threshold interrupts are level sensitive. Since we can't make the
  870. * threshold condition go way from within the interrupt handler, this means as
  871. * soon as a threshold condition is present we would enter the interrupt handler
  872. * again and again. To work around this we mask all active threshold interrupts
  873. * in the interrupt handler and start a timer. In this timer we poll the
  874. * interrupt status and only if the interrupt is inactive we unmask it again.
  875. */
  876. static void ams_unmask_worker(struct work_struct *work)
  877. {
  878. struct ams *ams = container_of(work, struct ams, ams_unmask_work.work);
  879. unsigned int status, unmask;
  880. spin_lock_irq(&ams->intr_lock);
  881. status = readl(ams->base + AMS_ISR_0);
  882. /* Clear those bits which are not active anymore */
  883. unmask = (ams->current_masked_alarm ^ status) & ams->current_masked_alarm;
  884. /* Clear status of disabled alarm */
  885. unmask |= ams->intr_mask;
  886. ams->current_masked_alarm &= status;
  887. /* Also clear those which are masked out anyway */
  888. ams->current_masked_alarm &= ~ams->intr_mask;
  889. /* Clear the interrupts before we unmask them */
  890. writel(unmask, ams->base + AMS_ISR_0);
  891. ams_update_intrmask(ams, ~AMS_ALARM_MASK, ~AMS_ALARM_MASK);
  892. spin_unlock_irq(&ams->intr_lock);
  893. /* If still pending some alarm re-trigger the timer */
  894. if (ams->current_masked_alarm)
  895. schedule_delayed_work(&ams->ams_unmask_work,
  896. msecs_to_jiffies(AMS_UNMASK_TIMEOUT_MS));
  897. }
  898. static irqreturn_t ams_irq(int irq, void *data)
  899. {
  900. struct iio_dev *indio_dev = data;
  901. struct ams *ams = iio_priv(indio_dev);
  902. u32 isr0;
  903. spin_lock(&ams->intr_lock);
  904. isr0 = readl(ams->base + AMS_ISR_0);
  905. /* Only process alarms that are not masked */
  906. isr0 &= ~((ams->intr_mask & AMS_ISR0_ALARM_MASK) | ams->current_masked_alarm);
  907. if (!isr0) {
  908. spin_unlock(&ams->intr_lock);
  909. return IRQ_NONE;
  910. }
  911. /* Clear interrupt */
  912. writel(isr0, ams->base + AMS_ISR_0);
  913. /* Mask the alarm interrupts until cleared */
  914. ams->current_masked_alarm |= isr0;
  915. ams_update_intrmask(ams, ~AMS_ALARM_MASK, ~AMS_ALARM_MASK);
  916. ams_handle_events(indio_dev, isr0);
  917. schedule_delayed_work(&ams->ams_unmask_work,
  918. msecs_to_jiffies(AMS_UNMASK_TIMEOUT_MS));
  919. spin_unlock(&ams->intr_lock);
  920. return IRQ_HANDLED;
  921. }
  922. static const struct iio_event_spec ams_temp_events[] = {
  923. {
  924. .type = IIO_EV_TYPE_THRESH,
  925. .dir = IIO_EV_DIR_RISING,
  926. .mask_separate = BIT(IIO_EV_INFO_ENABLE) | BIT(IIO_EV_INFO_VALUE),
  927. },
  928. };
  929. static const struct iio_event_spec ams_voltage_events[] = {
  930. {
  931. .type = IIO_EV_TYPE_THRESH,
  932. .dir = IIO_EV_DIR_RISING,
  933. .mask_separate = BIT(IIO_EV_INFO_VALUE),
  934. },
  935. {
  936. .type = IIO_EV_TYPE_THRESH,
  937. .dir = IIO_EV_DIR_FALLING,
  938. .mask_separate = BIT(IIO_EV_INFO_VALUE),
  939. },
  940. {
  941. .type = IIO_EV_TYPE_THRESH,
  942. .dir = IIO_EV_DIR_EITHER,
  943. .mask_separate = BIT(IIO_EV_INFO_ENABLE),
  944. },
  945. };
  946. static const struct iio_chan_spec ams_ps_channels[] = {
  947. AMS_PS_CHAN_TEMP(AMS_SEQ_TEMP, AMS_TEMP),
  948. AMS_PS_CHAN_TEMP(AMS_SEQ_TEMP_REMOTE, AMS_TEMP_REMOTE),
  949. AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY1, AMS_SUPPLY1),
  950. AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY2, AMS_SUPPLY2),
  951. AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY3, AMS_SUPPLY3),
  952. AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY4, AMS_SUPPLY4),
  953. AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY5, AMS_SUPPLY5),
  954. AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY6, AMS_SUPPLY6),
  955. AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY7, AMS_SUPPLY7),
  956. AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY8, AMS_SUPPLY8),
  957. AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY9, AMS_SUPPLY9),
  958. AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY10, AMS_SUPPLY10),
  959. AMS_PS_CHAN_VOLTAGE(AMS_SEQ_VCCAMS, AMS_VCCAMS),
  960. };
  961. static const struct iio_chan_spec ams_pl_channels[] = {
  962. AMS_PL_CHAN_TEMP(AMS_SEQ_TEMP, AMS_TEMP),
  963. AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY1, AMS_SUPPLY1, true),
  964. AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY2, AMS_SUPPLY2, true),
  965. AMS_PL_CHAN_VOLTAGE(AMS_SEQ_VREFP, AMS_VREFP, false),
  966. AMS_PL_CHAN_VOLTAGE(AMS_SEQ_VREFN, AMS_VREFN, false),
  967. AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY3, AMS_SUPPLY3, true),
  968. AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY4, AMS_SUPPLY4, true),
  969. AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY5, AMS_SUPPLY5, true),
  970. AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY6, AMS_SUPPLY6, true),
  971. AMS_PL_CHAN_VOLTAGE(AMS_SEQ_VCCAMS, AMS_VCCAMS, true),
  972. AMS_PL_CHAN_VOLTAGE(AMS_SEQ_VP_VN, AMS_VP_VN, false),
  973. AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY7, AMS_SUPPLY7, true),
  974. AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY8, AMS_SUPPLY8, true),
  975. AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY9, AMS_SUPPLY9, true),
  976. AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY10, AMS_SUPPLY10, true),
  977. AMS_PL_AUX_CHAN_VOLTAGE(0),
  978. AMS_PL_AUX_CHAN_VOLTAGE(1),
  979. AMS_PL_AUX_CHAN_VOLTAGE(2),
  980. AMS_PL_AUX_CHAN_VOLTAGE(3),
  981. AMS_PL_AUX_CHAN_VOLTAGE(4),
  982. AMS_PL_AUX_CHAN_VOLTAGE(5),
  983. AMS_PL_AUX_CHAN_VOLTAGE(6),
  984. AMS_PL_AUX_CHAN_VOLTAGE(7),
  985. AMS_PL_AUX_CHAN_VOLTAGE(8),
  986. AMS_PL_AUX_CHAN_VOLTAGE(9),
  987. AMS_PL_AUX_CHAN_VOLTAGE(10),
  988. AMS_PL_AUX_CHAN_VOLTAGE(11),
  989. AMS_PL_AUX_CHAN_VOLTAGE(12),
  990. AMS_PL_AUX_CHAN_VOLTAGE(13),
  991. AMS_PL_AUX_CHAN_VOLTAGE(14),
  992. AMS_PL_AUX_CHAN_VOLTAGE(15),
  993. };
  994. static const struct iio_chan_spec ams_ctrl_channels[] = {
  995. AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_VCC_PSPLL, AMS_VCC_PSPLL0),
  996. AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_VCC_PSBATT, AMS_VCC_PSPLL3),
  997. AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_VCCINT, AMS_VCCINT),
  998. AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_VCCBRAM, AMS_VCCBRAM),
  999. AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_VCCAUX, AMS_VCCAUX),
  1000. AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_PSDDRPLL, AMS_PSDDRPLL),
  1001. AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_INTDDR, AMS_PSINTFPDDR),
  1002. };
  1003. static int ams_get_ext_chan(struct fwnode_handle *chan_node,
  1004. struct iio_chan_spec *channels, int num_channels)
  1005. {
  1006. struct iio_chan_spec *chan;
  1007. struct fwnode_handle *child;
  1008. unsigned int reg, ext_chan;
  1009. int ret;
  1010. fwnode_for_each_child_node(chan_node, child) {
  1011. ret = fwnode_property_read_u32(child, "reg", &reg);
  1012. if (ret || reg > AMS_PL_MAX_EXT_CHANNEL + 30)
  1013. continue;
  1014. chan = &channels[num_channels];
  1015. ext_chan = reg + AMS_PL_MAX_FIXED_CHANNEL - 30;
  1016. memcpy(chan, &ams_pl_channels[ext_chan], sizeof(*channels));
  1017. if (fwnode_property_read_bool(child, "xlnx,bipolar"))
  1018. chan->scan_type.sign = 's';
  1019. num_channels++;
  1020. }
  1021. return num_channels;
  1022. }
  1023. static void ams_iounmap_ps(void *data)
  1024. {
  1025. struct ams *ams = data;
  1026. iounmap(ams->ps_base);
  1027. }
  1028. static void ams_iounmap_pl(void *data)
  1029. {
  1030. struct ams *ams = data;
  1031. iounmap(ams->pl_base);
  1032. }
  1033. static int ams_init_module(struct iio_dev *indio_dev,
  1034. struct fwnode_handle *fwnode,
  1035. struct iio_chan_spec *channels)
  1036. {
  1037. struct device *dev = indio_dev->dev.parent;
  1038. struct ams *ams = iio_priv(indio_dev);
  1039. int num_channels = 0;
  1040. int ret;
  1041. if (fwnode_property_match_string(fwnode, "compatible",
  1042. "xlnx,zynqmp-ams-ps") == 0) {
  1043. ams->ps_base = fwnode_iomap(fwnode, 0);
  1044. if (!ams->ps_base)
  1045. return -ENXIO;
  1046. ret = devm_add_action_or_reset(dev, ams_iounmap_ps, ams);
  1047. if (ret < 0)
  1048. return ret;
  1049. /* add PS channels to iio device channels */
  1050. memcpy(channels, ams_ps_channels, sizeof(ams_ps_channels));
  1051. num_channels = ARRAY_SIZE(ams_ps_channels);
  1052. } else if (fwnode_property_match_string(fwnode, "compatible",
  1053. "xlnx,zynqmp-ams-pl") == 0) {
  1054. ams->pl_base = fwnode_iomap(fwnode, 0);
  1055. if (!ams->pl_base)
  1056. return -ENXIO;
  1057. ret = devm_add_action_or_reset(dev, ams_iounmap_pl, ams);
  1058. if (ret < 0)
  1059. return ret;
  1060. /* Copy only first 10 fix channels */
  1061. memcpy(channels, ams_pl_channels, AMS_PL_MAX_FIXED_CHANNEL * sizeof(*channels));
  1062. num_channels += AMS_PL_MAX_FIXED_CHANNEL;
  1063. num_channels = ams_get_ext_chan(fwnode, channels,
  1064. num_channels);
  1065. } else if (fwnode_property_match_string(fwnode, "compatible",
  1066. "xlnx,zynqmp-ams") == 0) {
  1067. /* add AMS channels to iio device channels */
  1068. memcpy(channels, ams_ctrl_channels, sizeof(ams_ctrl_channels));
  1069. num_channels += ARRAY_SIZE(ams_ctrl_channels);
  1070. } else {
  1071. return -EINVAL;
  1072. }
  1073. return num_channels;
  1074. }
  1075. static int ams_parse_firmware(struct iio_dev *indio_dev)
  1076. {
  1077. struct ams *ams = iio_priv(indio_dev);
  1078. struct iio_chan_spec *ams_channels, *dev_channels;
  1079. struct device *dev = indio_dev->dev.parent;
  1080. struct fwnode_handle *child = NULL;
  1081. struct fwnode_handle *fwnode = dev_fwnode(dev);
  1082. size_t ams_size, dev_size;
  1083. int ret, ch_cnt = 0, i, rising_off, falling_off;
  1084. unsigned int num_channels = 0;
  1085. ams_size = ARRAY_SIZE(ams_ps_channels) + ARRAY_SIZE(ams_pl_channels) +
  1086. ARRAY_SIZE(ams_ctrl_channels);
  1087. /* Initialize buffer for channel specification */
  1088. ams_channels = devm_kcalloc(dev, ams_size, sizeof(*ams_channels), GFP_KERNEL);
  1089. if (!ams_channels)
  1090. return -ENOMEM;
  1091. if (fwnode_device_is_available(fwnode)) {
  1092. ret = ams_init_module(indio_dev, fwnode, ams_channels);
  1093. if (ret < 0)
  1094. return ret;
  1095. num_channels += ret;
  1096. }
  1097. fwnode_for_each_child_node(fwnode, child) {
  1098. if (fwnode_device_is_available(child)) {
  1099. ret = ams_init_module(indio_dev, child, ams_channels + num_channels);
  1100. if (ret < 0) {
  1101. fwnode_handle_put(child);
  1102. return ret;
  1103. }
  1104. num_channels += ret;
  1105. }
  1106. }
  1107. for (i = 0; i < num_channels; i++) {
  1108. ams_channels[i].channel = ch_cnt++;
  1109. if (ams_channels[i].scan_index < AMS_CTRL_SEQ_BASE) {
  1110. /* set threshold to max and min for each channel */
  1111. falling_off =
  1112. ams_get_alarm_offset(ams_channels[i].scan_index,
  1113. IIO_EV_DIR_FALLING);
  1114. rising_off =
  1115. ams_get_alarm_offset(ams_channels[i].scan_index,
  1116. IIO_EV_DIR_RISING);
  1117. if (ams_channels[i].scan_index >= AMS_PS_SEQ_MAX) {
  1118. writel(AMS_ALARM_THR_MIN,
  1119. ams->pl_base + falling_off);
  1120. writel(AMS_ALARM_THR_MAX,
  1121. ams->pl_base + rising_off);
  1122. } else {
  1123. writel(AMS_ALARM_THR_MIN,
  1124. ams->ps_base + falling_off);
  1125. writel(AMS_ALARM_THR_MAX,
  1126. ams->ps_base + rising_off);
  1127. }
  1128. }
  1129. }
  1130. dev_size = array_size(sizeof(*dev_channels), num_channels);
  1131. if (dev_size == SIZE_MAX)
  1132. return -ENOMEM;
  1133. dev_channels = devm_krealloc(dev, ams_channels, dev_size, GFP_KERNEL);
  1134. if (!dev_channels)
  1135. return -ENOMEM;
  1136. indio_dev->channels = dev_channels;
  1137. indio_dev->num_channels = num_channels;
  1138. return 0;
  1139. }
  1140. static const struct iio_info iio_ams_info = {
  1141. .read_raw = &ams_read_raw,
  1142. .read_event_config = &ams_read_event_config,
  1143. .write_event_config = &ams_write_event_config,
  1144. .read_event_value = &ams_read_event_value,
  1145. .write_event_value = &ams_write_event_value,
  1146. };
  1147. static const struct of_device_id ams_of_match_table[] = {
  1148. { .compatible = "xlnx,zynqmp-ams" },
  1149. { }
  1150. };
  1151. MODULE_DEVICE_TABLE(of, ams_of_match_table);
  1152. static int ams_probe(struct platform_device *pdev)
  1153. {
  1154. struct iio_dev *indio_dev;
  1155. struct ams *ams;
  1156. int ret;
  1157. int irq;
  1158. indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*ams));
  1159. if (!indio_dev)
  1160. return -ENOMEM;
  1161. ams = iio_priv(indio_dev);
  1162. mutex_init(&ams->lock);
  1163. spin_lock_init(&ams->intr_lock);
  1164. indio_dev->name = "xilinx-ams";
  1165. indio_dev->info = &iio_ams_info;
  1166. indio_dev->modes = INDIO_DIRECT_MODE;
  1167. ams->base = devm_platform_ioremap_resource(pdev, 0);
  1168. if (IS_ERR(ams->base))
  1169. return PTR_ERR(ams->base);
  1170. ams->clk = devm_clk_get_enabled(&pdev->dev, NULL);
  1171. if (IS_ERR(ams->clk))
  1172. return PTR_ERR(ams->clk);
  1173. ret = devm_delayed_work_autocancel(&pdev->dev, &ams->ams_unmask_work,
  1174. ams_unmask_worker);
  1175. if (ret < 0)
  1176. return ret;
  1177. ret = ams_parse_firmware(indio_dev);
  1178. if (ret)
  1179. return dev_err_probe(&pdev->dev, ret, "failure in parsing DT\n");
  1180. ret = ams_init_device(ams);
  1181. if (ret)
  1182. return dev_err_probe(&pdev->dev, ret, "failed to initialize AMS\n");
  1183. ams_enable_channel_sequence(indio_dev);
  1184. irq = platform_get_irq(pdev, 0);
  1185. if (irq < 0)
  1186. return irq;
  1187. ret = devm_request_irq(&pdev->dev, irq, &ams_irq, 0, "ams-irq",
  1188. indio_dev);
  1189. if (ret < 0)
  1190. return dev_err_probe(&pdev->dev, ret, "failed to register interrupt\n");
  1191. platform_set_drvdata(pdev, indio_dev);
  1192. return devm_iio_device_register(&pdev->dev, indio_dev);
  1193. }
  1194. static int ams_suspend(struct device *dev)
  1195. {
  1196. struct ams *ams = iio_priv(dev_get_drvdata(dev));
  1197. clk_disable_unprepare(ams->clk);
  1198. return 0;
  1199. }
  1200. static int ams_resume(struct device *dev)
  1201. {
  1202. struct ams *ams = iio_priv(dev_get_drvdata(dev));
  1203. return clk_prepare_enable(ams->clk);
  1204. }
  1205. static DEFINE_SIMPLE_DEV_PM_OPS(ams_pm_ops, ams_suspend, ams_resume);
  1206. static struct platform_driver ams_driver = {
  1207. .probe = ams_probe,
  1208. .driver = {
  1209. .name = "xilinx-ams",
  1210. .pm = pm_sleep_ptr(&ams_pm_ops),
  1211. .of_match_table = ams_of_match_table,
  1212. },
  1213. };
  1214. module_platform_driver(ams_driver);
  1215. MODULE_LICENSE("GPL v2");
  1216. MODULE_AUTHOR("Xilinx, Inc.");