ti-ads131e08.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Texas Instruments ADS131E0x 4-, 6- and 8-Channel ADCs
  4. *
  5. * Copyright (c) 2020 AVL DiTEST GmbH
  6. * Tomislav Denis <[email protected]>
  7. *
  8. * Datasheet: https://www.ti.com/lit/ds/symlink/ads131e08.pdf
  9. */
  10. #include <linux/bitfield.h>
  11. #include <linux/clk.h>
  12. #include <linux/delay.h>
  13. #include <linux/module.h>
  14. #include <linux/iio/buffer.h>
  15. #include <linux/iio/iio.h>
  16. #include <linux/iio/sysfs.h>
  17. #include <linux/iio/trigger.h>
  18. #include <linux/iio/trigger_consumer.h>
  19. #include <linux/iio/triggered_buffer.h>
  20. #include <linux/regulator/consumer.h>
  21. #include <linux/spi/spi.h>
  22. #include <asm/unaligned.h>
  23. /* Commands */
  24. #define ADS131E08_CMD_RESET 0x06
  25. #define ADS131E08_CMD_START 0x08
  26. #define ADS131E08_CMD_STOP 0x0A
  27. #define ADS131E08_CMD_OFFSETCAL 0x1A
  28. #define ADS131E08_CMD_SDATAC 0x11
  29. #define ADS131E08_CMD_RDATA 0x12
  30. #define ADS131E08_CMD_RREG(r) (BIT(5) | (r & GENMASK(4, 0)))
  31. #define ADS131E08_CMD_WREG(r) (BIT(6) | (r & GENMASK(4, 0)))
  32. /* Registers */
  33. #define ADS131E08_ADR_CFG1R 0x01
  34. #define ADS131E08_ADR_CFG3R 0x03
  35. #define ADS131E08_ADR_CH0R 0x05
  36. /* Configuration register 1 */
  37. #define ADS131E08_CFG1R_DR_MASK GENMASK(2, 0)
  38. /* Configuration register 3 */
  39. #define ADS131E08_CFG3R_PDB_REFBUF_MASK BIT(7)
  40. #define ADS131E08_CFG3R_VREF_4V_MASK BIT(5)
  41. /* Channel settings register */
  42. #define ADS131E08_CHR_GAIN_MASK GENMASK(6, 4)
  43. #define ADS131E08_CHR_MUX_MASK GENMASK(2, 0)
  44. #define ADS131E08_CHR_PWD_MASK BIT(7)
  45. /* ADC misc */
  46. #define ADS131E08_DEFAULT_DATA_RATE 1
  47. #define ADS131E08_DEFAULT_PGA_GAIN 1
  48. #define ADS131E08_DEFAULT_MUX 0
  49. #define ADS131E08_VREF_2V4_mV 2400
  50. #define ADS131E08_VREF_4V_mV 4000
  51. #define ADS131E08_WAIT_RESET_CYCLES 18
  52. #define ADS131E08_WAIT_SDECODE_CYCLES 4
  53. #define ADS131E08_WAIT_OFFSETCAL_MS 153
  54. #define ADS131E08_MAX_SETTLING_TIME_MS 6
  55. #define ADS131E08_NUM_STATUS_BYTES 3
  56. #define ADS131E08_NUM_DATA_BYTES_MAX 24
  57. #define ADS131E08_NUM_DATA_BYTES(dr) (((dr) >= 32) ? 2 : 3)
  58. #define ADS131E08_NUM_DATA_BITS(dr) (ADS131E08_NUM_DATA_BYTES(dr) * 8)
  59. #define ADS131E08_NUM_STORAGE_BYTES 4
  60. enum ads131e08_ids {
  61. ads131e04,
  62. ads131e06,
  63. ads131e08,
  64. };
  65. struct ads131e08_info {
  66. unsigned int max_channels;
  67. const char *name;
  68. };
  69. struct ads131e08_channel_config {
  70. unsigned int pga_gain;
  71. unsigned int mux;
  72. };
  73. struct ads131e08_state {
  74. const struct ads131e08_info *info;
  75. struct spi_device *spi;
  76. struct iio_trigger *trig;
  77. struct clk *adc_clk;
  78. struct regulator *vref_reg;
  79. struct ads131e08_channel_config *channel_config;
  80. unsigned int data_rate;
  81. unsigned int vref_mv;
  82. unsigned int sdecode_delay_us;
  83. unsigned int reset_delay_us;
  84. unsigned int readback_len;
  85. struct completion completion;
  86. struct {
  87. u8 data[ADS131E08_NUM_DATA_BYTES_MAX];
  88. s64 ts __aligned(8);
  89. } tmp_buf;
  90. u8 tx_buf[3] __aligned(IIO_DMA_MINALIGN);
  91. /*
  92. * Add extra one padding byte to be able to access the last channel
  93. * value using u32 pointer
  94. */
  95. u8 rx_buf[ADS131E08_NUM_STATUS_BYTES +
  96. ADS131E08_NUM_DATA_BYTES_MAX + 1];
  97. };
  98. static const struct ads131e08_info ads131e08_info_tbl[] = {
  99. [ads131e04] = {
  100. .max_channels = 4,
  101. .name = "ads131e04",
  102. },
  103. [ads131e06] = {
  104. .max_channels = 6,
  105. .name = "ads131e06",
  106. },
  107. [ads131e08] = {
  108. .max_channels = 8,
  109. .name = "ads131e08",
  110. },
  111. };
  112. struct ads131e08_data_rate_desc {
  113. unsigned int rate; /* data rate in kSPS */
  114. u8 reg; /* reg value */
  115. };
  116. static const struct ads131e08_data_rate_desc ads131e08_data_rate_tbl[] = {
  117. { .rate = 64, .reg = 0x00 },
  118. { .rate = 32, .reg = 0x01 },
  119. { .rate = 16, .reg = 0x02 },
  120. { .rate = 8, .reg = 0x03 },
  121. { .rate = 4, .reg = 0x04 },
  122. { .rate = 2, .reg = 0x05 },
  123. { .rate = 1, .reg = 0x06 },
  124. };
  125. struct ads131e08_pga_gain_desc {
  126. unsigned int gain; /* PGA gain value */
  127. u8 reg; /* field value */
  128. };
  129. static const struct ads131e08_pga_gain_desc ads131e08_pga_gain_tbl[] = {
  130. { .gain = 1, .reg = 0x01 },
  131. { .gain = 2, .reg = 0x02 },
  132. { .gain = 4, .reg = 0x04 },
  133. { .gain = 8, .reg = 0x05 },
  134. { .gain = 12, .reg = 0x06 },
  135. };
  136. static const u8 ads131e08_valid_channel_mux_values[] = { 0, 1, 3, 4 };
  137. static int ads131e08_exec_cmd(struct ads131e08_state *st, u8 cmd)
  138. {
  139. int ret;
  140. ret = spi_write_then_read(st->spi, &cmd, 1, NULL, 0);
  141. if (ret)
  142. dev_err(&st->spi->dev, "Exec cmd(%02x) failed\n", cmd);
  143. return ret;
  144. }
  145. static int ads131e08_read_reg(struct ads131e08_state *st, u8 reg)
  146. {
  147. int ret;
  148. struct spi_transfer transfer[] = {
  149. {
  150. .tx_buf = &st->tx_buf,
  151. .len = 2,
  152. .delay = {
  153. .value = st->sdecode_delay_us,
  154. .unit = SPI_DELAY_UNIT_USECS,
  155. },
  156. }, {
  157. .rx_buf = &st->rx_buf,
  158. .len = 1,
  159. },
  160. };
  161. st->tx_buf[0] = ADS131E08_CMD_RREG(reg);
  162. st->tx_buf[1] = 0;
  163. ret = spi_sync_transfer(st->spi, transfer, ARRAY_SIZE(transfer));
  164. if (ret) {
  165. dev_err(&st->spi->dev, "Read register failed\n");
  166. return ret;
  167. }
  168. return st->rx_buf[0];
  169. }
  170. static int ads131e08_write_reg(struct ads131e08_state *st, u8 reg, u8 value)
  171. {
  172. int ret;
  173. struct spi_transfer transfer[] = {
  174. {
  175. .tx_buf = &st->tx_buf,
  176. .len = 3,
  177. .delay = {
  178. .value = st->sdecode_delay_us,
  179. .unit = SPI_DELAY_UNIT_USECS,
  180. },
  181. }
  182. };
  183. st->tx_buf[0] = ADS131E08_CMD_WREG(reg);
  184. st->tx_buf[1] = 0;
  185. st->tx_buf[2] = value;
  186. ret = spi_sync_transfer(st->spi, transfer, ARRAY_SIZE(transfer));
  187. if (ret)
  188. dev_err(&st->spi->dev, "Write register failed\n");
  189. return ret;
  190. }
  191. static int ads131e08_read_data(struct ads131e08_state *st, int rx_len)
  192. {
  193. int ret;
  194. struct spi_transfer transfer[] = {
  195. {
  196. .tx_buf = &st->tx_buf,
  197. .len = 1,
  198. }, {
  199. .rx_buf = &st->rx_buf,
  200. .len = rx_len,
  201. },
  202. };
  203. st->tx_buf[0] = ADS131E08_CMD_RDATA;
  204. ret = spi_sync_transfer(st->spi, transfer, ARRAY_SIZE(transfer));
  205. if (ret)
  206. dev_err(&st->spi->dev, "Read data failed\n");
  207. return ret;
  208. }
  209. static int ads131e08_set_data_rate(struct ads131e08_state *st, int data_rate)
  210. {
  211. int i, reg, ret;
  212. for (i = 0; i < ARRAY_SIZE(ads131e08_data_rate_tbl); i++) {
  213. if (ads131e08_data_rate_tbl[i].rate == data_rate)
  214. break;
  215. }
  216. if (i == ARRAY_SIZE(ads131e08_data_rate_tbl)) {
  217. dev_err(&st->spi->dev, "invalid data rate value\n");
  218. return -EINVAL;
  219. }
  220. reg = ads131e08_read_reg(st, ADS131E08_ADR_CFG1R);
  221. if (reg < 0)
  222. return reg;
  223. reg &= ~ADS131E08_CFG1R_DR_MASK;
  224. reg |= FIELD_PREP(ADS131E08_CFG1R_DR_MASK,
  225. ads131e08_data_rate_tbl[i].reg);
  226. ret = ads131e08_write_reg(st, ADS131E08_ADR_CFG1R, reg);
  227. if (ret)
  228. return ret;
  229. st->data_rate = data_rate;
  230. st->readback_len = ADS131E08_NUM_STATUS_BYTES +
  231. ADS131E08_NUM_DATA_BYTES(st->data_rate) *
  232. st->info->max_channels;
  233. return 0;
  234. }
  235. static int ads131e08_pga_gain_to_field_value(struct ads131e08_state *st,
  236. unsigned int pga_gain)
  237. {
  238. int i;
  239. for (i = 0; i < ARRAY_SIZE(ads131e08_pga_gain_tbl); i++) {
  240. if (ads131e08_pga_gain_tbl[i].gain == pga_gain)
  241. break;
  242. }
  243. if (i == ARRAY_SIZE(ads131e08_pga_gain_tbl)) {
  244. dev_err(&st->spi->dev, "invalid PGA gain value\n");
  245. return -EINVAL;
  246. }
  247. return ads131e08_pga_gain_tbl[i].reg;
  248. }
  249. static int ads131e08_set_pga_gain(struct ads131e08_state *st,
  250. unsigned int channel, unsigned int pga_gain)
  251. {
  252. int field_value, reg;
  253. field_value = ads131e08_pga_gain_to_field_value(st, pga_gain);
  254. if (field_value < 0)
  255. return field_value;
  256. reg = ads131e08_read_reg(st, ADS131E08_ADR_CH0R + channel);
  257. if (reg < 0)
  258. return reg;
  259. reg &= ~ADS131E08_CHR_GAIN_MASK;
  260. reg |= FIELD_PREP(ADS131E08_CHR_GAIN_MASK, field_value);
  261. return ads131e08_write_reg(st, ADS131E08_ADR_CH0R + channel, reg);
  262. }
  263. static int ads131e08_validate_channel_mux(struct ads131e08_state *st,
  264. unsigned int mux)
  265. {
  266. int i;
  267. for (i = 0; i < ARRAY_SIZE(ads131e08_valid_channel_mux_values); i++) {
  268. if (ads131e08_valid_channel_mux_values[i] == mux)
  269. break;
  270. }
  271. if (i == ARRAY_SIZE(ads131e08_valid_channel_mux_values)) {
  272. dev_err(&st->spi->dev, "invalid channel mux value\n");
  273. return -EINVAL;
  274. }
  275. return 0;
  276. }
  277. static int ads131e08_set_channel_mux(struct ads131e08_state *st,
  278. unsigned int channel, unsigned int mux)
  279. {
  280. int reg;
  281. reg = ads131e08_read_reg(st, ADS131E08_ADR_CH0R + channel);
  282. if (reg < 0)
  283. return reg;
  284. reg &= ~ADS131E08_CHR_MUX_MASK;
  285. reg |= FIELD_PREP(ADS131E08_CHR_MUX_MASK, mux);
  286. return ads131e08_write_reg(st, ADS131E08_ADR_CH0R + channel, reg);
  287. }
  288. static int ads131e08_power_down_channel(struct ads131e08_state *st,
  289. unsigned int channel, bool value)
  290. {
  291. int reg;
  292. reg = ads131e08_read_reg(st, ADS131E08_ADR_CH0R + channel);
  293. if (reg < 0)
  294. return reg;
  295. reg &= ~ADS131E08_CHR_PWD_MASK;
  296. reg |= FIELD_PREP(ADS131E08_CHR_PWD_MASK, value);
  297. return ads131e08_write_reg(st, ADS131E08_ADR_CH0R + channel, reg);
  298. }
  299. static int ads131e08_config_reference_voltage(struct ads131e08_state *st)
  300. {
  301. int reg;
  302. reg = ads131e08_read_reg(st, ADS131E08_ADR_CFG3R);
  303. if (reg < 0)
  304. return reg;
  305. reg &= ~ADS131E08_CFG3R_PDB_REFBUF_MASK;
  306. if (!st->vref_reg) {
  307. reg |= FIELD_PREP(ADS131E08_CFG3R_PDB_REFBUF_MASK, 1);
  308. reg &= ~ADS131E08_CFG3R_VREF_4V_MASK;
  309. reg |= FIELD_PREP(ADS131E08_CFG3R_VREF_4V_MASK,
  310. st->vref_mv == ADS131E08_VREF_4V_mV);
  311. }
  312. return ads131e08_write_reg(st, ADS131E08_ADR_CFG3R, reg);
  313. }
  314. static int ads131e08_initial_config(struct iio_dev *indio_dev)
  315. {
  316. const struct iio_chan_spec *channel = indio_dev->channels;
  317. struct ads131e08_state *st = iio_priv(indio_dev);
  318. unsigned long active_channels = 0;
  319. int ret, i;
  320. ret = ads131e08_exec_cmd(st, ADS131E08_CMD_RESET);
  321. if (ret)
  322. return ret;
  323. udelay(st->reset_delay_us);
  324. /* Disable read data in continuous mode (enabled by default) */
  325. ret = ads131e08_exec_cmd(st, ADS131E08_CMD_SDATAC);
  326. if (ret)
  327. return ret;
  328. ret = ads131e08_set_data_rate(st, ADS131E08_DEFAULT_DATA_RATE);
  329. if (ret)
  330. return ret;
  331. ret = ads131e08_config_reference_voltage(st);
  332. if (ret)
  333. return ret;
  334. for (i = 0; i < indio_dev->num_channels; i++) {
  335. ret = ads131e08_set_pga_gain(st, channel->channel,
  336. st->channel_config[i].pga_gain);
  337. if (ret)
  338. return ret;
  339. ret = ads131e08_set_channel_mux(st, channel->channel,
  340. st->channel_config[i].mux);
  341. if (ret)
  342. return ret;
  343. active_channels |= BIT(channel->channel);
  344. channel++;
  345. }
  346. /* Power down unused channels */
  347. for_each_clear_bit(i, &active_channels, st->info->max_channels) {
  348. ret = ads131e08_power_down_channel(st, i, true);
  349. if (ret)
  350. return ret;
  351. }
  352. /* Request channel offset calibration */
  353. ret = ads131e08_exec_cmd(st, ADS131E08_CMD_OFFSETCAL);
  354. if (ret)
  355. return ret;
  356. /*
  357. * Channel offset calibration is triggered with the first START
  358. * command. Since calibration takes more time than settling operation,
  359. * this causes timeout error when command START is sent first
  360. * time (e.g. first call of the ads131e08_read_direct method).
  361. * To avoid this problem offset calibration is triggered here.
  362. */
  363. ret = ads131e08_exec_cmd(st, ADS131E08_CMD_START);
  364. if (ret)
  365. return ret;
  366. msleep(ADS131E08_WAIT_OFFSETCAL_MS);
  367. return ads131e08_exec_cmd(st, ADS131E08_CMD_STOP);
  368. }
  369. static int ads131e08_pool_data(struct ads131e08_state *st)
  370. {
  371. unsigned long timeout;
  372. int ret;
  373. reinit_completion(&st->completion);
  374. ret = ads131e08_exec_cmd(st, ADS131E08_CMD_START);
  375. if (ret)
  376. return ret;
  377. timeout = msecs_to_jiffies(ADS131E08_MAX_SETTLING_TIME_MS);
  378. ret = wait_for_completion_timeout(&st->completion, timeout);
  379. if (!ret)
  380. return -ETIMEDOUT;
  381. ret = ads131e08_read_data(st, st->readback_len);
  382. if (ret)
  383. return ret;
  384. return ads131e08_exec_cmd(st, ADS131E08_CMD_STOP);
  385. }
  386. static int ads131e08_read_direct(struct iio_dev *indio_dev,
  387. struct iio_chan_spec const *channel, int *value)
  388. {
  389. struct ads131e08_state *st = iio_priv(indio_dev);
  390. u8 num_bits, *src;
  391. int ret;
  392. ret = ads131e08_pool_data(st);
  393. if (ret)
  394. return ret;
  395. src = st->rx_buf + ADS131E08_NUM_STATUS_BYTES +
  396. channel->channel * ADS131E08_NUM_DATA_BYTES(st->data_rate);
  397. num_bits = ADS131E08_NUM_DATA_BITS(st->data_rate);
  398. *value = sign_extend32(get_unaligned_be32(src) >> (32 - num_bits), num_bits - 1);
  399. return 0;
  400. }
  401. static int ads131e08_read_raw(struct iio_dev *indio_dev,
  402. struct iio_chan_spec const *channel, int *value,
  403. int *value2, long mask)
  404. {
  405. struct ads131e08_state *st = iio_priv(indio_dev);
  406. int ret;
  407. switch (mask) {
  408. case IIO_CHAN_INFO_RAW:
  409. ret = iio_device_claim_direct_mode(indio_dev);
  410. if (ret)
  411. return ret;
  412. ret = ads131e08_read_direct(indio_dev, channel, value);
  413. iio_device_release_direct_mode(indio_dev);
  414. if (ret)
  415. return ret;
  416. return IIO_VAL_INT;
  417. case IIO_CHAN_INFO_SCALE:
  418. if (st->vref_reg) {
  419. ret = regulator_get_voltage(st->vref_reg);
  420. if (ret < 0)
  421. return ret;
  422. *value = ret / 1000;
  423. } else {
  424. *value = st->vref_mv;
  425. }
  426. *value /= st->channel_config[channel->address].pga_gain;
  427. *value2 = ADS131E08_NUM_DATA_BITS(st->data_rate) - 1;
  428. return IIO_VAL_FRACTIONAL_LOG2;
  429. case IIO_CHAN_INFO_SAMP_FREQ:
  430. *value = st->data_rate;
  431. return IIO_VAL_INT;
  432. default:
  433. return -EINVAL;
  434. }
  435. }
  436. static int ads131e08_write_raw(struct iio_dev *indio_dev,
  437. struct iio_chan_spec const *channel, int value,
  438. int value2, long mask)
  439. {
  440. struct ads131e08_state *st = iio_priv(indio_dev);
  441. int ret;
  442. switch (mask) {
  443. case IIO_CHAN_INFO_SAMP_FREQ:
  444. ret = iio_device_claim_direct_mode(indio_dev);
  445. if (ret)
  446. return ret;
  447. ret = ads131e08_set_data_rate(st, value);
  448. iio_device_release_direct_mode(indio_dev);
  449. return ret;
  450. default:
  451. return -EINVAL;
  452. }
  453. }
  454. static IIO_CONST_ATTR_SAMP_FREQ_AVAIL("1 2 4 8 16 32 64");
  455. static struct attribute *ads131e08_attributes[] = {
  456. &iio_const_attr_sampling_frequency_available.dev_attr.attr,
  457. NULL
  458. };
  459. static const struct attribute_group ads131e08_attribute_group = {
  460. .attrs = ads131e08_attributes,
  461. };
  462. static int ads131e08_debugfs_reg_access(struct iio_dev *indio_dev,
  463. unsigned int reg, unsigned int writeval, unsigned int *readval)
  464. {
  465. struct ads131e08_state *st = iio_priv(indio_dev);
  466. if (readval) {
  467. int ret = ads131e08_read_reg(st, reg);
  468. *readval = ret;
  469. return ret;
  470. }
  471. return ads131e08_write_reg(st, reg, writeval);
  472. }
  473. static const struct iio_info ads131e08_iio_info = {
  474. .read_raw = ads131e08_read_raw,
  475. .write_raw = ads131e08_write_raw,
  476. .attrs = &ads131e08_attribute_group,
  477. .debugfs_reg_access = &ads131e08_debugfs_reg_access,
  478. };
  479. static int ads131e08_set_trigger_state(struct iio_trigger *trig, bool state)
  480. {
  481. struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
  482. struct ads131e08_state *st = iio_priv(indio_dev);
  483. u8 cmd = state ? ADS131E08_CMD_START : ADS131E08_CMD_STOP;
  484. return ads131e08_exec_cmd(st, cmd);
  485. }
  486. static const struct iio_trigger_ops ads131e08_trigger_ops = {
  487. .set_trigger_state = &ads131e08_set_trigger_state,
  488. .validate_device = &iio_trigger_validate_own_device,
  489. };
  490. static irqreturn_t ads131e08_trigger_handler(int irq, void *private)
  491. {
  492. struct iio_poll_func *pf = private;
  493. struct iio_dev *indio_dev = pf->indio_dev;
  494. struct ads131e08_state *st = iio_priv(indio_dev);
  495. unsigned int chn, i = 0;
  496. u8 *src, *dest;
  497. int ret;
  498. /*
  499. * The number of data bits per channel depends on the data rate.
  500. * For 32 and 64 ksps data rates, number of data bits per channel
  501. * is 16. This case is not compliant with used (fixed) scan element
  502. * type (be:s24/32>>8). So we use a little tweak to pack properly
  503. * 16 bits of data into the buffer.
  504. */
  505. unsigned int num_bytes = ADS131E08_NUM_DATA_BYTES(st->data_rate);
  506. u8 tweek_offset = num_bytes == 2 ? 1 : 0;
  507. if (iio_trigger_using_own(indio_dev))
  508. ret = ads131e08_read_data(st, st->readback_len);
  509. else
  510. ret = ads131e08_pool_data(st);
  511. if (ret)
  512. goto out;
  513. for_each_set_bit(chn, indio_dev->active_scan_mask, indio_dev->masklength) {
  514. src = st->rx_buf + ADS131E08_NUM_STATUS_BYTES + chn * num_bytes;
  515. dest = st->tmp_buf.data + i * ADS131E08_NUM_STORAGE_BYTES;
  516. /*
  517. * Tweek offset is 0:
  518. * +---+---+---+---+
  519. * |D0 |D1 |D2 | X | (3 data bytes)
  520. * +---+---+---+---+
  521. * a+0 a+1 a+2 a+3
  522. *
  523. * Tweek offset is 1:
  524. * +---+---+---+---+
  525. * |P0 |D0 |D1 | X | (one padding byte and 2 data bytes)
  526. * +---+---+---+---+
  527. * a+0 a+1 a+2 a+3
  528. */
  529. memcpy(dest + tweek_offset, src, num_bytes);
  530. /*
  531. * Data conversion from 16 bits of data to 24 bits of data
  532. * is done by sign extension (properly filling padding byte).
  533. */
  534. if (tweek_offset)
  535. *dest = *src & BIT(7) ? 0xff : 0x00;
  536. i++;
  537. }
  538. iio_push_to_buffers_with_timestamp(indio_dev, st->tmp_buf.data,
  539. iio_get_time_ns(indio_dev));
  540. out:
  541. iio_trigger_notify_done(indio_dev->trig);
  542. return IRQ_HANDLED;
  543. }
  544. static irqreturn_t ads131e08_interrupt(int irq, void *private)
  545. {
  546. struct iio_dev *indio_dev = private;
  547. struct ads131e08_state *st = iio_priv(indio_dev);
  548. if (iio_buffer_enabled(indio_dev) && iio_trigger_using_own(indio_dev))
  549. iio_trigger_poll(st->trig);
  550. else
  551. complete(&st->completion);
  552. return IRQ_HANDLED;
  553. }
  554. static int ads131e08_alloc_channels(struct iio_dev *indio_dev)
  555. {
  556. struct ads131e08_state *st = iio_priv(indio_dev);
  557. struct ads131e08_channel_config *channel_config;
  558. struct device *dev = &st->spi->dev;
  559. struct iio_chan_spec *channels;
  560. struct fwnode_handle *node;
  561. unsigned int channel, tmp;
  562. int num_channels, i, ret;
  563. ret = device_property_read_u32(dev, "ti,vref-internal", &tmp);
  564. if (ret)
  565. tmp = 0;
  566. switch (tmp) {
  567. case 0:
  568. st->vref_mv = ADS131E08_VREF_2V4_mV;
  569. break;
  570. case 1:
  571. st->vref_mv = ADS131E08_VREF_4V_mV;
  572. break;
  573. default:
  574. dev_err(&st->spi->dev, "invalid internal voltage reference\n");
  575. return -EINVAL;
  576. }
  577. num_channels = device_get_child_node_count(dev);
  578. if (num_channels == 0) {
  579. dev_err(&st->spi->dev, "no channel children\n");
  580. return -ENODEV;
  581. }
  582. if (num_channels > st->info->max_channels) {
  583. dev_err(&st->spi->dev, "num of channel children out of range\n");
  584. return -EINVAL;
  585. }
  586. channels = devm_kcalloc(&st->spi->dev, num_channels,
  587. sizeof(*channels), GFP_KERNEL);
  588. if (!channels)
  589. return -ENOMEM;
  590. channel_config = devm_kcalloc(&st->spi->dev, num_channels,
  591. sizeof(*channel_config), GFP_KERNEL);
  592. if (!channel_config)
  593. return -ENOMEM;
  594. i = 0;
  595. device_for_each_child_node(dev, node) {
  596. ret = fwnode_property_read_u32(node, "reg", &channel);
  597. if (ret)
  598. goto err_child_out;
  599. ret = fwnode_property_read_u32(node, "ti,gain", &tmp);
  600. if (ret) {
  601. channel_config[i].pga_gain = ADS131E08_DEFAULT_PGA_GAIN;
  602. } else {
  603. ret = ads131e08_pga_gain_to_field_value(st, tmp);
  604. if (ret < 0)
  605. goto err_child_out;
  606. channel_config[i].pga_gain = tmp;
  607. }
  608. ret = fwnode_property_read_u32(node, "ti,mux", &tmp);
  609. if (ret) {
  610. channel_config[i].mux = ADS131E08_DEFAULT_MUX;
  611. } else {
  612. ret = ads131e08_validate_channel_mux(st, tmp);
  613. if (ret)
  614. goto err_child_out;
  615. channel_config[i].mux = tmp;
  616. }
  617. channels[i].type = IIO_VOLTAGE;
  618. channels[i].indexed = 1;
  619. channels[i].channel = channel;
  620. channels[i].address = i;
  621. channels[i].info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
  622. BIT(IIO_CHAN_INFO_SCALE);
  623. channels[i].info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SAMP_FREQ);
  624. channels[i].scan_index = channel;
  625. channels[i].scan_type.sign = 's';
  626. channels[i].scan_type.realbits = 24;
  627. channels[i].scan_type.storagebits = 32;
  628. channels[i].scan_type.shift = 8;
  629. channels[i].scan_type.endianness = IIO_BE;
  630. i++;
  631. }
  632. indio_dev->channels = channels;
  633. indio_dev->num_channels = num_channels;
  634. st->channel_config = channel_config;
  635. return 0;
  636. err_child_out:
  637. fwnode_handle_put(node);
  638. return ret;
  639. }
  640. static void ads131e08_regulator_disable(void *data)
  641. {
  642. struct ads131e08_state *st = data;
  643. regulator_disable(st->vref_reg);
  644. }
  645. static int ads131e08_probe(struct spi_device *spi)
  646. {
  647. const struct ads131e08_info *info;
  648. struct ads131e08_state *st;
  649. struct iio_dev *indio_dev;
  650. unsigned long adc_clk_hz;
  651. unsigned long adc_clk_ns;
  652. int ret;
  653. info = device_get_match_data(&spi->dev);
  654. if (!info) {
  655. dev_err(&spi->dev, "failed to get match data\n");
  656. return -ENODEV;
  657. }
  658. indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st));
  659. if (!indio_dev) {
  660. dev_err(&spi->dev, "failed to allocate IIO device\n");
  661. return -ENOMEM;
  662. }
  663. st = iio_priv(indio_dev);
  664. st->info = info;
  665. st->spi = spi;
  666. ret = ads131e08_alloc_channels(indio_dev);
  667. if (ret)
  668. return ret;
  669. indio_dev->name = st->info->name;
  670. indio_dev->info = &ads131e08_iio_info;
  671. indio_dev->modes = INDIO_DIRECT_MODE;
  672. init_completion(&st->completion);
  673. if (spi->irq) {
  674. ret = devm_request_irq(&spi->dev, spi->irq,
  675. ads131e08_interrupt,
  676. IRQF_TRIGGER_FALLING | IRQF_ONESHOT,
  677. spi->dev.driver->name, indio_dev);
  678. if (ret)
  679. return dev_err_probe(&spi->dev, ret,
  680. "request irq failed\n");
  681. } else {
  682. dev_err(&spi->dev, "data ready IRQ missing\n");
  683. return -ENODEV;
  684. }
  685. st->trig = devm_iio_trigger_alloc(&spi->dev, "%s-dev%d",
  686. indio_dev->name, iio_device_id(indio_dev));
  687. if (!st->trig) {
  688. dev_err(&spi->dev, "failed to allocate IIO trigger\n");
  689. return -ENOMEM;
  690. }
  691. st->trig->ops = &ads131e08_trigger_ops;
  692. st->trig->dev.parent = &spi->dev;
  693. iio_trigger_set_drvdata(st->trig, indio_dev);
  694. ret = devm_iio_trigger_register(&spi->dev, st->trig);
  695. if (ret) {
  696. dev_err(&spi->dev, "failed to register IIO trigger\n");
  697. return -ENOMEM;
  698. }
  699. indio_dev->trig = iio_trigger_get(st->trig);
  700. ret = devm_iio_triggered_buffer_setup(&spi->dev, indio_dev,
  701. NULL, &ads131e08_trigger_handler, NULL);
  702. if (ret) {
  703. dev_err(&spi->dev, "failed to setup IIO buffer\n");
  704. return ret;
  705. }
  706. st->vref_reg = devm_regulator_get_optional(&spi->dev, "vref");
  707. if (!IS_ERR(st->vref_reg)) {
  708. ret = regulator_enable(st->vref_reg);
  709. if (ret) {
  710. dev_err(&spi->dev,
  711. "failed to enable external vref supply\n");
  712. return ret;
  713. }
  714. ret = devm_add_action_or_reset(&spi->dev, ads131e08_regulator_disable, st);
  715. if (ret)
  716. return ret;
  717. } else {
  718. if (PTR_ERR(st->vref_reg) != -ENODEV)
  719. return PTR_ERR(st->vref_reg);
  720. st->vref_reg = NULL;
  721. }
  722. st->adc_clk = devm_clk_get_enabled(&spi->dev, "adc-clk");
  723. if (IS_ERR(st->adc_clk))
  724. return dev_err_probe(&spi->dev, PTR_ERR(st->adc_clk),
  725. "failed to get the ADC clock\n");
  726. adc_clk_hz = clk_get_rate(st->adc_clk);
  727. if (!adc_clk_hz) {
  728. dev_err(&spi->dev, "failed to get the ADC clock rate\n");
  729. return -EINVAL;
  730. }
  731. adc_clk_ns = NSEC_PER_SEC / adc_clk_hz;
  732. st->sdecode_delay_us = DIV_ROUND_UP(
  733. ADS131E08_WAIT_SDECODE_CYCLES * adc_clk_ns, NSEC_PER_USEC);
  734. st->reset_delay_us = DIV_ROUND_UP(
  735. ADS131E08_WAIT_RESET_CYCLES * adc_clk_ns, NSEC_PER_USEC);
  736. ret = ads131e08_initial_config(indio_dev);
  737. if (ret) {
  738. dev_err(&spi->dev, "initial configuration failed\n");
  739. return ret;
  740. }
  741. return devm_iio_device_register(&spi->dev, indio_dev);
  742. }
  743. static const struct of_device_id ads131e08_of_match[] = {
  744. { .compatible = "ti,ads131e04",
  745. .data = &ads131e08_info_tbl[ads131e04], },
  746. { .compatible = "ti,ads131e06",
  747. .data = &ads131e08_info_tbl[ads131e06], },
  748. { .compatible = "ti,ads131e08",
  749. .data = &ads131e08_info_tbl[ads131e08], },
  750. {}
  751. };
  752. MODULE_DEVICE_TABLE(of, ads131e08_of_match);
  753. static struct spi_driver ads131e08_driver = {
  754. .driver = {
  755. .name = "ads131e08",
  756. .of_match_table = ads131e08_of_match,
  757. },
  758. .probe = ads131e08_probe,
  759. };
  760. module_spi_driver(ads131e08_driver);
  761. MODULE_AUTHOR("Tomislav Denis <[email protected]>");
  762. MODULE_DESCRIPTION("Driver for ADS131E0x ADC family");
  763. MODULE_LICENSE("GPL v2");