stm32-adc.c 68 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * This file is part of STM32 ADC driver
  4. *
  5. * Copyright (C) 2016, STMicroelectronics - All Rights Reserved
  6. * Author: Fabrice Gasnier <[email protected]>.
  7. */
  8. #include <linux/clk.h>
  9. #include <linux/delay.h>
  10. #include <linux/dma-mapping.h>
  11. #include <linux/dmaengine.h>
  12. #include <linux/iio/iio.h>
  13. #include <linux/iio/buffer.h>
  14. #include <linux/iio/timer/stm32-lptim-trigger.h>
  15. #include <linux/iio/timer/stm32-timer-trigger.h>
  16. #include <linux/iio/trigger.h>
  17. #include <linux/iio/trigger_consumer.h>
  18. #include <linux/iio/triggered_buffer.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/io.h>
  21. #include <linux/iopoll.h>
  22. #include <linux/module.h>
  23. #include <linux/mod_devicetable.h>
  24. #include <linux/nvmem-consumer.h>
  25. #include <linux/platform_device.h>
  26. #include <linux/pm_runtime.h>
  27. #include <linux/property.h>
  28. #include "stm32-adc-core.h"
  29. /* Number of linear calibration shadow registers / LINCALRDYW control bits */
  30. #define STM32H7_LINCALFACT_NUM 6
  31. /* BOOST bit must be set on STM32H7 when ADC clock is above 20MHz */
  32. #define STM32H7_BOOST_CLKRATE 20000000UL
  33. #define STM32_ADC_CH_MAX 20 /* max number of channels */
  34. #define STM32_ADC_CH_SZ 16 /* max channel name size */
  35. #define STM32_ADC_MAX_SQ 16 /* SQ1..SQ16 */
  36. #define STM32_ADC_MAX_SMP 7 /* SMPx range is [0..7] */
  37. #define STM32_ADC_TIMEOUT_US 100000
  38. #define STM32_ADC_TIMEOUT (msecs_to_jiffies(STM32_ADC_TIMEOUT_US / 1000))
  39. #define STM32_ADC_HW_STOP_DELAY_MS 100
  40. #define STM32_ADC_VREFINT_VOLTAGE 3300
  41. #define STM32_DMA_BUFFER_SIZE PAGE_SIZE
  42. /* External trigger enable */
  43. enum stm32_adc_exten {
  44. STM32_EXTEN_SWTRIG,
  45. STM32_EXTEN_HWTRIG_RISING_EDGE,
  46. STM32_EXTEN_HWTRIG_FALLING_EDGE,
  47. STM32_EXTEN_HWTRIG_BOTH_EDGES,
  48. };
  49. /* extsel - trigger mux selection value */
  50. enum stm32_adc_extsel {
  51. STM32_EXT0,
  52. STM32_EXT1,
  53. STM32_EXT2,
  54. STM32_EXT3,
  55. STM32_EXT4,
  56. STM32_EXT5,
  57. STM32_EXT6,
  58. STM32_EXT7,
  59. STM32_EXT8,
  60. STM32_EXT9,
  61. STM32_EXT10,
  62. STM32_EXT11,
  63. STM32_EXT12,
  64. STM32_EXT13,
  65. STM32_EXT14,
  66. STM32_EXT15,
  67. STM32_EXT16,
  68. STM32_EXT17,
  69. STM32_EXT18,
  70. STM32_EXT19,
  71. STM32_EXT20,
  72. };
  73. enum stm32_adc_int_ch {
  74. STM32_ADC_INT_CH_NONE = -1,
  75. STM32_ADC_INT_CH_VDDCORE,
  76. STM32_ADC_INT_CH_VREFINT,
  77. STM32_ADC_INT_CH_VBAT,
  78. STM32_ADC_INT_CH_NB,
  79. };
  80. /**
  81. * struct stm32_adc_ic - ADC internal channels
  82. * @name: name of the internal channel
  83. * @idx: internal channel enum index
  84. */
  85. struct stm32_adc_ic {
  86. const char *name;
  87. u32 idx;
  88. };
  89. static const struct stm32_adc_ic stm32_adc_ic[STM32_ADC_INT_CH_NB] = {
  90. { "vddcore", STM32_ADC_INT_CH_VDDCORE },
  91. { "vrefint", STM32_ADC_INT_CH_VREFINT },
  92. { "vbat", STM32_ADC_INT_CH_VBAT },
  93. };
  94. /**
  95. * struct stm32_adc_trig_info - ADC trigger info
  96. * @name: name of the trigger, corresponding to its source
  97. * @extsel: trigger selection
  98. */
  99. struct stm32_adc_trig_info {
  100. const char *name;
  101. enum stm32_adc_extsel extsel;
  102. };
  103. /**
  104. * struct stm32_adc_calib - optional adc calibration data
  105. * @calfact_s: Calibration offset for single ended channels
  106. * @calfact_d: Calibration offset in differential
  107. * @lincalfact: Linearity calibration factor
  108. * @calibrated: Indicates calibration status
  109. */
  110. struct stm32_adc_calib {
  111. u32 calfact_s;
  112. u32 calfact_d;
  113. u32 lincalfact[STM32H7_LINCALFACT_NUM];
  114. bool calibrated;
  115. };
  116. /**
  117. * struct stm32_adc_regs - stm32 ADC misc registers & bitfield desc
  118. * @reg: register offset
  119. * @mask: bitfield mask
  120. * @shift: left shift
  121. */
  122. struct stm32_adc_regs {
  123. int reg;
  124. int mask;
  125. int shift;
  126. };
  127. /**
  128. * struct stm32_adc_vrefint - stm32 ADC internal reference voltage data
  129. * @vrefint_cal: vrefint calibration value from nvmem
  130. * @vrefint_data: vrefint actual value
  131. */
  132. struct stm32_adc_vrefint {
  133. u32 vrefint_cal;
  134. u32 vrefint_data;
  135. };
  136. /**
  137. * struct stm32_adc_regspec - stm32 registers definition
  138. * @dr: data register offset
  139. * @ier_eoc: interrupt enable register & eocie bitfield
  140. * @ier_ovr: interrupt enable register & overrun bitfield
  141. * @isr_eoc: interrupt status register & eoc bitfield
  142. * @isr_ovr: interrupt status register & overrun bitfield
  143. * @sqr: reference to sequence registers array
  144. * @exten: trigger control register & bitfield
  145. * @extsel: trigger selection register & bitfield
  146. * @res: resolution selection register & bitfield
  147. * @smpr: smpr1 & smpr2 registers offset array
  148. * @smp_bits: smpr1 & smpr2 index and bitfields
  149. * @or_vdd: option register & vddcore bitfield
  150. * @ccr_vbat: common register & vbat bitfield
  151. * @ccr_vref: common register & vrefint bitfield
  152. */
  153. struct stm32_adc_regspec {
  154. const u32 dr;
  155. const struct stm32_adc_regs ier_eoc;
  156. const struct stm32_adc_regs ier_ovr;
  157. const struct stm32_adc_regs isr_eoc;
  158. const struct stm32_adc_regs isr_ovr;
  159. const struct stm32_adc_regs *sqr;
  160. const struct stm32_adc_regs exten;
  161. const struct stm32_adc_regs extsel;
  162. const struct stm32_adc_regs res;
  163. const u32 smpr[2];
  164. const struct stm32_adc_regs *smp_bits;
  165. const struct stm32_adc_regs or_vdd;
  166. const struct stm32_adc_regs ccr_vbat;
  167. const struct stm32_adc_regs ccr_vref;
  168. };
  169. struct stm32_adc;
  170. /**
  171. * struct stm32_adc_cfg - stm32 compatible configuration data
  172. * @regs: registers descriptions
  173. * @adc_info: per instance input channels definitions
  174. * @trigs: external trigger sources
  175. * @clk_required: clock is required
  176. * @has_vregready: vregready status flag presence
  177. * @prepare: optional prepare routine (power-up, enable)
  178. * @start_conv: routine to start conversions
  179. * @stop_conv: routine to stop conversions
  180. * @unprepare: optional unprepare routine (disable, power-down)
  181. * @irq_clear: routine to clear irqs
  182. * @smp_cycles: programmable sampling time (ADC clock cycles)
  183. * @ts_vrefint_ns: vrefint minimum sampling time in ns
  184. */
  185. struct stm32_adc_cfg {
  186. const struct stm32_adc_regspec *regs;
  187. const struct stm32_adc_info *adc_info;
  188. struct stm32_adc_trig_info *trigs;
  189. bool clk_required;
  190. bool has_vregready;
  191. int (*prepare)(struct iio_dev *);
  192. void (*start_conv)(struct iio_dev *, bool dma);
  193. void (*stop_conv)(struct iio_dev *);
  194. void (*unprepare)(struct iio_dev *);
  195. void (*irq_clear)(struct iio_dev *indio_dev, u32 msk);
  196. const unsigned int *smp_cycles;
  197. const unsigned int ts_vrefint_ns;
  198. };
  199. /**
  200. * struct stm32_adc - private data of each ADC IIO instance
  201. * @common: reference to ADC block common data
  202. * @offset: ADC instance register offset in ADC block
  203. * @cfg: compatible configuration data
  204. * @completion: end of single conversion completion
  205. * @buffer: data buffer + 8 bytes for timestamp if enabled
  206. * @clk: clock for this adc instance
  207. * @irq: interrupt for this adc instance
  208. * @lock: spinlock
  209. * @bufi: data buffer index
  210. * @num_conv: expected number of scan conversions
  211. * @res: data resolution (e.g. RES bitfield value)
  212. * @trigger_polarity: external trigger polarity (e.g. exten)
  213. * @dma_chan: dma channel
  214. * @rx_buf: dma rx buffer cpu address
  215. * @rx_dma_buf: dma rx buffer bus address
  216. * @rx_buf_sz: dma rx buffer size
  217. * @difsel: bitmask to set single-ended/differential channel
  218. * @pcsel: bitmask to preselect channels on some devices
  219. * @smpr_val: sampling time settings (e.g. smpr1 / smpr2)
  220. * @cal: optional calibration data on some devices
  221. * @vrefint: internal reference voltage data
  222. * @chan_name: channel name array
  223. * @num_diff: number of differential channels
  224. * @int_ch: internal channel indexes array
  225. * @nsmps: number of channels with optional sample time
  226. */
  227. struct stm32_adc {
  228. struct stm32_adc_common *common;
  229. u32 offset;
  230. const struct stm32_adc_cfg *cfg;
  231. struct completion completion;
  232. u16 buffer[STM32_ADC_MAX_SQ + 4] __aligned(8);
  233. struct clk *clk;
  234. int irq;
  235. spinlock_t lock; /* interrupt lock */
  236. unsigned int bufi;
  237. unsigned int num_conv;
  238. u32 res;
  239. u32 trigger_polarity;
  240. struct dma_chan *dma_chan;
  241. u8 *rx_buf;
  242. dma_addr_t rx_dma_buf;
  243. unsigned int rx_buf_sz;
  244. u32 difsel;
  245. u32 pcsel;
  246. u32 smpr_val[2];
  247. struct stm32_adc_calib cal;
  248. struct stm32_adc_vrefint vrefint;
  249. char chan_name[STM32_ADC_CH_MAX][STM32_ADC_CH_SZ];
  250. u32 num_diff;
  251. int int_ch[STM32_ADC_INT_CH_NB];
  252. int nsmps;
  253. };
  254. struct stm32_adc_diff_channel {
  255. u32 vinp;
  256. u32 vinn;
  257. };
  258. /**
  259. * struct stm32_adc_info - stm32 ADC, per instance config data
  260. * @max_channels: Number of channels
  261. * @resolutions: available resolutions
  262. * @num_res: number of available resolutions
  263. */
  264. struct stm32_adc_info {
  265. int max_channels;
  266. const unsigned int *resolutions;
  267. const unsigned int num_res;
  268. };
  269. static const unsigned int stm32f4_adc_resolutions[] = {
  270. /* sorted values so the index matches RES[1:0] in STM32F4_ADC_CR1 */
  271. 12, 10, 8, 6,
  272. };
  273. /* stm32f4 can have up to 16 channels */
  274. static const struct stm32_adc_info stm32f4_adc_info = {
  275. .max_channels = 16,
  276. .resolutions = stm32f4_adc_resolutions,
  277. .num_res = ARRAY_SIZE(stm32f4_adc_resolutions),
  278. };
  279. static const unsigned int stm32h7_adc_resolutions[] = {
  280. /* sorted values so the index matches RES[2:0] in STM32H7_ADC_CFGR */
  281. 16, 14, 12, 10, 8,
  282. };
  283. /* stm32h7 can have up to 20 channels */
  284. static const struct stm32_adc_info stm32h7_adc_info = {
  285. .max_channels = STM32_ADC_CH_MAX,
  286. .resolutions = stm32h7_adc_resolutions,
  287. .num_res = ARRAY_SIZE(stm32h7_adc_resolutions),
  288. };
  289. /*
  290. * stm32f4_sq - describe regular sequence registers
  291. * - L: sequence len (register & bit field)
  292. * - SQ1..SQ16: sequence entries (register & bit field)
  293. */
  294. static const struct stm32_adc_regs stm32f4_sq[STM32_ADC_MAX_SQ + 1] = {
  295. /* L: len bit field description to be kept as first element */
  296. { STM32F4_ADC_SQR1, GENMASK(23, 20), 20 },
  297. /* SQ1..SQ16 registers & bit fields (reg, mask, shift) */
  298. { STM32F4_ADC_SQR3, GENMASK(4, 0), 0 },
  299. { STM32F4_ADC_SQR3, GENMASK(9, 5), 5 },
  300. { STM32F4_ADC_SQR3, GENMASK(14, 10), 10 },
  301. { STM32F4_ADC_SQR3, GENMASK(19, 15), 15 },
  302. { STM32F4_ADC_SQR3, GENMASK(24, 20), 20 },
  303. { STM32F4_ADC_SQR3, GENMASK(29, 25), 25 },
  304. { STM32F4_ADC_SQR2, GENMASK(4, 0), 0 },
  305. { STM32F4_ADC_SQR2, GENMASK(9, 5), 5 },
  306. { STM32F4_ADC_SQR2, GENMASK(14, 10), 10 },
  307. { STM32F4_ADC_SQR2, GENMASK(19, 15), 15 },
  308. { STM32F4_ADC_SQR2, GENMASK(24, 20), 20 },
  309. { STM32F4_ADC_SQR2, GENMASK(29, 25), 25 },
  310. { STM32F4_ADC_SQR1, GENMASK(4, 0), 0 },
  311. { STM32F4_ADC_SQR1, GENMASK(9, 5), 5 },
  312. { STM32F4_ADC_SQR1, GENMASK(14, 10), 10 },
  313. { STM32F4_ADC_SQR1, GENMASK(19, 15), 15 },
  314. };
  315. /* STM32F4 external trigger sources for all instances */
  316. static struct stm32_adc_trig_info stm32f4_adc_trigs[] = {
  317. { TIM1_CH1, STM32_EXT0 },
  318. { TIM1_CH2, STM32_EXT1 },
  319. { TIM1_CH3, STM32_EXT2 },
  320. { TIM2_CH2, STM32_EXT3 },
  321. { TIM2_CH3, STM32_EXT4 },
  322. { TIM2_CH4, STM32_EXT5 },
  323. { TIM2_TRGO, STM32_EXT6 },
  324. { TIM3_CH1, STM32_EXT7 },
  325. { TIM3_TRGO, STM32_EXT8 },
  326. { TIM4_CH4, STM32_EXT9 },
  327. { TIM5_CH1, STM32_EXT10 },
  328. { TIM5_CH2, STM32_EXT11 },
  329. { TIM5_CH3, STM32_EXT12 },
  330. { TIM8_CH1, STM32_EXT13 },
  331. { TIM8_TRGO, STM32_EXT14 },
  332. {}, /* sentinel */
  333. };
  334. /*
  335. * stm32f4_smp_bits[] - describe sampling time register index & bit fields
  336. * Sorted so it can be indexed by channel number.
  337. */
  338. static const struct stm32_adc_regs stm32f4_smp_bits[] = {
  339. /* STM32F4_ADC_SMPR2: smpr[] index, mask, shift for SMP0 to SMP9 */
  340. { 1, GENMASK(2, 0), 0 },
  341. { 1, GENMASK(5, 3), 3 },
  342. { 1, GENMASK(8, 6), 6 },
  343. { 1, GENMASK(11, 9), 9 },
  344. { 1, GENMASK(14, 12), 12 },
  345. { 1, GENMASK(17, 15), 15 },
  346. { 1, GENMASK(20, 18), 18 },
  347. { 1, GENMASK(23, 21), 21 },
  348. { 1, GENMASK(26, 24), 24 },
  349. { 1, GENMASK(29, 27), 27 },
  350. /* STM32F4_ADC_SMPR1, smpr[] index, mask, shift for SMP10 to SMP18 */
  351. { 0, GENMASK(2, 0), 0 },
  352. { 0, GENMASK(5, 3), 3 },
  353. { 0, GENMASK(8, 6), 6 },
  354. { 0, GENMASK(11, 9), 9 },
  355. { 0, GENMASK(14, 12), 12 },
  356. { 0, GENMASK(17, 15), 15 },
  357. { 0, GENMASK(20, 18), 18 },
  358. { 0, GENMASK(23, 21), 21 },
  359. { 0, GENMASK(26, 24), 24 },
  360. };
  361. /* STM32F4 programmable sampling time (ADC clock cycles) */
  362. static const unsigned int stm32f4_adc_smp_cycles[STM32_ADC_MAX_SMP + 1] = {
  363. 3, 15, 28, 56, 84, 112, 144, 480,
  364. };
  365. static const struct stm32_adc_regspec stm32f4_adc_regspec = {
  366. .dr = STM32F4_ADC_DR,
  367. .ier_eoc = { STM32F4_ADC_CR1, STM32F4_EOCIE },
  368. .ier_ovr = { STM32F4_ADC_CR1, STM32F4_OVRIE },
  369. .isr_eoc = { STM32F4_ADC_SR, STM32F4_EOC },
  370. .isr_ovr = { STM32F4_ADC_SR, STM32F4_OVR },
  371. .sqr = stm32f4_sq,
  372. .exten = { STM32F4_ADC_CR2, STM32F4_EXTEN_MASK, STM32F4_EXTEN_SHIFT },
  373. .extsel = { STM32F4_ADC_CR2, STM32F4_EXTSEL_MASK,
  374. STM32F4_EXTSEL_SHIFT },
  375. .res = { STM32F4_ADC_CR1, STM32F4_RES_MASK, STM32F4_RES_SHIFT },
  376. .smpr = { STM32F4_ADC_SMPR1, STM32F4_ADC_SMPR2 },
  377. .smp_bits = stm32f4_smp_bits,
  378. };
  379. static const struct stm32_adc_regs stm32h7_sq[STM32_ADC_MAX_SQ + 1] = {
  380. /* L: len bit field description to be kept as first element */
  381. { STM32H7_ADC_SQR1, GENMASK(3, 0), 0 },
  382. /* SQ1..SQ16 registers & bit fields (reg, mask, shift) */
  383. { STM32H7_ADC_SQR1, GENMASK(10, 6), 6 },
  384. { STM32H7_ADC_SQR1, GENMASK(16, 12), 12 },
  385. { STM32H7_ADC_SQR1, GENMASK(22, 18), 18 },
  386. { STM32H7_ADC_SQR1, GENMASK(28, 24), 24 },
  387. { STM32H7_ADC_SQR2, GENMASK(4, 0), 0 },
  388. { STM32H7_ADC_SQR2, GENMASK(10, 6), 6 },
  389. { STM32H7_ADC_SQR2, GENMASK(16, 12), 12 },
  390. { STM32H7_ADC_SQR2, GENMASK(22, 18), 18 },
  391. { STM32H7_ADC_SQR2, GENMASK(28, 24), 24 },
  392. { STM32H7_ADC_SQR3, GENMASK(4, 0), 0 },
  393. { STM32H7_ADC_SQR3, GENMASK(10, 6), 6 },
  394. { STM32H7_ADC_SQR3, GENMASK(16, 12), 12 },
  395. { STM32H7_ADC_SQR3, GENMASK(22, 18), 18 },
  396. { STM32H7_ADC_SQR3, GENMASK(28, 24), 24 },
  397. { STM32H7_ADC_SQR4, GENMASK(4, 0), 0 },
  398. { STM32H7_ADC_SQR4, GENMASK(10, 6), 6 },
  399. };
  400. /* STM32H7 external trigger sources for all instances */
  401. static struct stm32_adc_trig_info stm32h7_adc_trigs[] = {
  402. { TIM1_CH1, STM32_EXT0 },
  403. { TIM1_CH2, STM32_EXT1 },
  404. { TIM1_CH3, STM32_EXT2 },
  405. { TIM2_CH2, STM32_EXT3 },
  406. { TIM3_TRGO, STM32_EXT4 },
  407. { TIM4_CH4, STM32_EXT5 },
  408. { TIM8_TRGO, STM32_EXT7 },
  409. { TIM8_TRGO2, STM32_EXT8 },
  410. { TIM1_TRGO, STM32_EXT9 },
  411. { TIM1_TRGO2, STM32_EXT10 },
  412. { TIM2_TRGO, STM32_EXT11 },
  413. { TIM4_TRGO, STM32_EXT12 },
  414. { TIM6_TRGO, STM32_EXT13 },
  415. { TIM15_TRGO, STM32_EXT14 },
  416. { TIM3_CH4, STM32_EXT15 },
  417. { LPTIM1_OUT, STM32_EXT18 },
  418. { LPTIM2_OUT, STM32_EXT19 },
  419. { LPTIM3_OUT, STM32_EXT20 },
  420. {},
  421. };
  422. /*
  423. * stm32h7_smp_bits - describe sampling time register index & bit fields
  424. * Sorted so it can be indexed by channel number.
  425. */
  426. static const struct stm32_adc_regs stm32h7_smp_bits[] = {
  427. /* STM32H7_ADC_SMPR1, smpr[] index, mask, shift for SMP0 to SMP9 */
  428. { 0, GENMASK(2, 0), 0 },
  429. { 0, GENMASK(5, 3), 3 },
  430. { 0, GENMASK(8, 6), 6 },
  431. { 0, GENMASK(11, 9), 9 },
  432. { 0, GENMASK(14, 12), 12 },
  433. { 0, GENMASK(17, 15), 15 },
  434. { 0, GENMASK(20, 18), 18 },
  435. { 0, GENMASK(23, 21), 21 },
  436. { 0, GENMASK(26, 24), 24 },
  437. { 0, GENMASK(29, 27), 27 },
  438. /* STM32H7_ADC_SMPR2, smpr[] index, mask, shift for SMP10 to SMP19 */
  439. { 1, GENMASK(2, 0), 0 },
  440. { 1, GENMASK(5, 3), 3 },
  441. { 1, GENMASK(8, 6), 6 },
  442. { 1, GENMASK(11, 9), 9 },
  443. { 1, GENMASK(14, 12), 12 },
  444. { 1, GENMASK(17, 15), 15 },
  445. { 1, GENMASK(20, 18), 18 },
  446. { 1, GENMASK(23, 21), 21 },
  447. { 1, GENMASK(26, 24), 24 },
  448. { 1, GENMASK(29, 27), 27 },
  449. };
  450. /* STM32H7 programmable sampling time (ADC clock cycles, rounded down) */
  451. static const unsigned int stm32h7_adc_smp_cycles[STM32_ADC_MAX_SMP + 1] = {
  452. 1, 2, 8, 16, 32, 64, 387, 810,
  453. };
  454. static const struct stm32_adc_regspec stm32h7_adc_regspec = {
  455. .dr = STM32H7_ADC_DR,
  456. .ier_eoc = { STM32H7_ADC_IER, STM32H7_EOCIE },
  457. .ier_ovr = { STM32H7_ADC_IER, STM32H7_OVRIE },
  458. .isr_eoc = { STM32H7_ADC_ISR, STM32H7_EOC },
  459. .isr_ovr = { STM32H7_ADC_ISR, STM32H7_OVR },
  460. .sqr = stm32h7_sq,
  461. .exten = { STM32H7_ADC_CFGR, STM32H7_EXTEN_MASK, STM32H7_EXTEN_SHIFT },
  462. .extsel = { STM32H7_ADC_CFGR, STM32H7_EXTSEL_MASK,
  463. STM32H7_EXTSEL_SHIFT },
  464. .res = { STM32H7_ADC_CFGR, STM32H7_RES_MASK, STM32H7_RES_SHIFT },
  465. .smpr = { STM32H7_ADC_SMPR1, STM32H7_ADC_SMPR2 },
  466. .smp_bits = stm32h7_smp_bits,
  467. };
  468. static const struct stm32_adc_regspec stm32mp1_adc_regspec = {
  469. .dr = STM32H7_ADC_DR,
  470. .ier_eoc = { STM32H7_ADC_IER, STM32H7_EOCIE },
  471. .ier_ovr = { STM32H7_ADC_IER, STM32H7_OVRIE },
  472. .isr_eoc = { STM32H7_ADC_ISR, STM32H7_EOC },
  473. .isr_ovr = { STM32H7_ADC_ISR, STM32H7_OVR },
  474. .sqr = stm32h7_sq,
  475. .exten = { STM32H7_ADC_CFGR, STM32H7_EXTEN_MASK, STM32H7_EXTEN_SHIFT },
  476. .extsel = { STM32H7_ADC_CFGR, STM32H7_EXTSEL_MASK,
  477. STM32H7_EXTSEL_SHIFT },
  478. .res = { STM32H7_ADC_CFGR, STM32H7_RES_MASK, STM32H7_RES_SHIFT },
  479. .smpr = { STM32H7_ADC_SMPR1, STM32H7_ADC_SMPR2 },
  480. .smp_bits = stm32h7_smp_bits,
  481. .or_vdd = { STM32MP1_ADC2_OR, STM32MP1_VDDCOREEN },
  482. .ccr_vbat = { STM32H7_ADC_CCR, STM32H7_VBATEN },
  483. .ccr_vref = { STM32H7_ADC_CCR, STM32H7_VREFEN },
  484. };
  485. /*
  486. * STM32 ADC registers access routines
  487. * @adc: stm32 adc instance
  488. * @reg: reg offset in adc instance
  489. *
  490. * Note: All instances share same base, with 0x0, 0x100 or 0x200 offset resp.
  491. * for adc1, adc2 and adc3.
  492. */
  493. static u32 stm32_adc_readl(struct stm32_adc *adc, u32 reg)
  494. {
  495. return readl_relaxed(adc->common->base + adc->offset + reg);
  496. }
  497. #define stm32_adc_readl_addr(addr) stm32_adc_readl(adc, addr)
  498. #define stm32_adc_readl_poll_timeout(reg, val, cond, sleep_us, timeout_us) \
  499. readx_poll_timeout(stm32_adc_readl_addr, reg, val, \
  500. cond, sleep_us, timeout_us)
  501. static u16 stm32_adc_readw(struct stm32_adc *adc, u32 reg)
  502. {
  503. return readw_relaxed(adc->common->base + adc->offset + reg);
  504. }
  505. static void stm32_adc_writel(struct stm32_adc *adc, u32 reg, u32 val)
  506. {
  507. writel_relaxed(val, adc->common->base + adc->offset + reg);
  508. }
  509. static void stm32_adc_set_bits(struct stm32_adc *adc, u32 reg, u32 bits)
  510. {
  511. unsigned long flags;
  512. spin_lock_irqsave(&adc->lock, flags);
  513. stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) | bits);
  514. spin_unlock_irqrestore(&adc->lock, flags);
  515. }
  516. static void stm32_adc_set_bits_common(struct stm32_adc *adc, u32 reg, u32 bits)
  517. {
  518. spin_lock(&adc->common->lock);
  519. writel_relaxed(readl_relaxed(adc->common->base + reg) | bits,
  520. adc->common->base + reg);
  521. spin_unlock(&adc->common->lock);
  522. }
  523. static void stm32_adc_clr_bits(struct stm32_adc *adc, u32 reg, u32 bits)
  524. {
  525. unsigned long flags;
  526. spin_lock_irqsave(&adc->lock, flags);
  527. stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) & ~bits);
  528. spin_unlock_irqrestore(&adc->lock, flags);
  529. }
  530. static void stm32_adc_clr_bits_common(struct stm32_adc *adc, u32 reg, u32 bits)
  531. {
  532. spin_lock(&adc->common->lock);
  533. writel_relaxed(readl_relaxed(adc->common->base + reg) & ~bits,
  534. adc->common->base + reg);
  535. spin_unlock(&adc->common->lock);
  536. }
  537. /**
  538. * stm32_adc_conv_irq_enable() - Enable end of conversion interrupt
  539. * @adc: stm32 adc instance
  540. */
  541. static void stm32_adc_conv_irq_enable(struct stm32_adc *adc)
  542. {
  543. stm32_adc_set_bits(adc, adc->cfg->regs->ier_eoc.reg,
  544. adc->cfg->regs->ier_eoc.mask);
  545. };
  546. /**
  547. * stm32_adc_conv_irq_disable() - Disable end of conversion interrupt
  548. * @adc: stm32 adc instance
  549. */
  550. static void stm32_adc_conv_irq_disable(struct stm32_adc *adc)
  551. {
  552. stm32_adc_clr_bits(adc, adc->cfg->regs->ier_eoc.reg,
  553. adc->cfg->regs->ier_eoc.mask);
  554. }
  555. static void stm32_adc_ovr_irq_enable(struct stm32_adc *adc)
  556. {
  557. stm32_adc_set_bits(adc, adc->cfg->regs->ier_ovr.reg,
  558. adc->cfg->regs->ier_ovr.mask);
  559. }
  560. static void stm32_adc_ovr_irq_disable(struct stm32_adc *adc)
  561. {
  562. stm32_adc_clr_bits(adc, adc->cfg->regs->ier_ovr.reg,
  563. adc->cfg->regs->ier_ovr.mask);
  564. }
  565. static void stm32_adc_set_res(struct stm32_adc *adc)
  566. {
  567. const struct stm32_adc_regs *res = &adc->cfg->regs->res;
  568. u32 val;
  569. val = stm32_adc_readl(adc, res->reg);
  570. val = (val & ~res->mask) | (adc->res << res->shift);
  571. stm32_adc_writel(adc, res->reg, val);
  572. }
  573. static int stm32_adc_hw_stop(struct device *dev)
  574. {
  575. struct iio_dev *indio_dev = dev_get_drvdata(dev);
  576. struct stm32_adc *adc = iio_priv(indio_dev);
  577. if (adc->cfg->unprepare)
  578. adc->cfg->unprepare(indio_dev);
  579. clk_disable_unprepare(adc->clk);
  580. return 0;
  581. }
  582. static int stm32_adc_hw_start(struct device *dev)
  583. {
  584. struct iio_dev *indio_dev = dev_get_drvdata(dev);
  585. struct stm32_adc *adc = iio_priv(indio_dev);
  586. int ret;
  587. ret = clk_prepare_enable(adc->clk);
  588. if (ret)
  589. return ret;
  590. stm32_adc_set_res(adc);
  591. if (adc->cfg->prepare) {
  592. ret = adc->cfg->prepare(indio_dev);
  593. if (ret)
  594. goto err_clk_dis;
  595. }
  596. return 0;
  597. err_clk_dis:
  598. clk_disable_unprepare(adc->clk);
  599. return ret;
  600. }
  601. static void stm32_adc_int_ch_enable(struct iio_dev *indio_dev)
  602. {
  603. struct stm32_adc *adc = iio_priv(indio_dev);
  604. u32 i;
  605. for (i = 0; i < STM32_ADC_INT_CH_NB; i++) {
  606. if (adc->int_ch[i] == STM32_ADC_INT_CH_NONE)
  607. continue;
  608. switch (i) {
  609. case STM32_ADC_INT_CH_VDDCORE:
  610. dev_dbg(&indio_dev->dev, "Enable VDDCore\n");
  611. stm32_adc_set_bits(adc, adc->cfg->regs->or_vdd.reg,
  612. adc->cfg->regs->or_vdd.mask);
  613. break;
  614. case STM32_ADC_INT_CH_VREFINT:
  615. dev_dbg(&indio_dev->dev, "Enable VREFInt\n");
  616. stm32_adc_set_bits_common(adc, adc->cfg->regs->ccr_vref.reg,
  617. adc->cfg->regs->ccr_vref.mask);
  618. break;
  619. case STM32_ADC_INT_CH_VBAT:
  620. dev_dbg(&indio_dev->dev, "Enable VBAT\n");
  621. stm32_adc_set_bits_common(adc, adc->cfg->regs->ccr_vbat.reg,
  622. adc->cfg->regs->ccr_vbat.mask);
  623. break;
  624. }
  625. }
  626. }
  627. static void stm32_adc_int_ch_disable(struct stm32_adc *adc)
  628. {
  629. u32 i;
  630. for (i = 0; i < STM32_ADC_INT_CH_NB; i++) {
  631. if (adc->int_ch[i] == STM32_ADC_INT_CH_NONE)
  632. continue;
  633. switch (i) {
  634. case STM32_ADC_INT_CH_VDDCORE:
  635. stm32_adc_clr_bits(adc, adc->cfg->regs->or_vdd.reg,
  636. adc->cfg->regs->or_vdd.mask);
  637. break;
  638. case STM32_ADC_INT_CH_VREFINT:
  639. stm32_adc_clr_bits_common(adc, adc->cfg->regs->ccr_vref.reg,
  640. adc->cfg->regs->ccr_vref.mask);
  641. break;
  642. case STM32_ADC_INT_CH_VBAT:
  643. stm32_adc_clr_bits_common(adc, adc->cfg->regs->ccr_vbat.reg,
  644. adc->cfg->regs->ccr_vbat.mask);
  645. break;
  646. }
  647. }
  648. }
  649. /**
  650. * stm32f4_adc_start_conv() - Start conversions for regular channels.
  651. * @indio_dev: IIO device instance
  652. * @dma: use dma to transfer conversion result
  653. *
  654. * Start conversions for regular channels.
  655. * Also take care of normal or DMA mode. Circular DMA may be used for regular
  656. * conversions, in IIO buffer modes. Otherwise, use ADC interrupt with direct
  657. * DR read instead (e.g. read_raw, or triggered buffer mode without DMA).
  658. */
  659. static void stm32f4_adc_start_conv(struct iio_dev *indio_dev, bool dma)
  660. {
  661. struct stm32_adc *adc = iio_priv(indio_dev);
  662. stm32_adc_set_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN);
  663. if (dma)
  664. stm32_adc_set_bits(adc, STM32F4_ADC_CR2,
  665. STM32F4_DMA | STM32F4_DDS);
  666. stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_EOCS | STM32F4_ADON);
  667. /* Wait for Power-up time (tSTAB from datasheet) */
  668. usleep_range(2, 3);
  669. /* Software start ? (e.g. trigger detection disabled ?) */
  670. if (!(stm32_adc_readl(adc, STM32F4_ADC_CR2) & STM32F4_EXTEN_MASK))
  671. stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_SWSTART);
  672. }
  673. static void stm32f4_adc_stop_conv(struct iio_dev *indio_dev)
  674. {
  675. struct stm32_adc *adc = iio_priv(indio_dev);
  676. stm32_adc_clr_bits(adc, STM32F4_ADC_CR2, STM32F4_EXTEN_MASK);
  677. stm32_adc_clr_bits(adc, STM32F4_ADC_SR, STM32F4_STRT);
  678. stm32_adc_clr_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN);
  679. stm32_adc_clr_bits(adc, STM32F4_ADC_CR2,
  680. STM32F4_ADON | STM32F4_DMA | STM32F4_DDS);
  681. }
  682. static void stm32f4_adc_irq_clear(struct iio_dev *indio_dev, u32 msk)
  683. {
  684. struct stm32_adc *adc = iio_priv(indio_dev);
  685. stm32_adc_clr_bits(adc, adc->cfg->regs->isr_eoc.reg, msk);
  686. }
  687. static void stm32h7_adc_start_conv(struct iio_dev *indio_dev, bool dma)
  688. {
  689. struct stm32_adc *adc = iio_priv(indio_dev);
  690. enum stm32h7_adc_dmngt dmngt;
  691. unsigned long flags;
  692. u32 val;
  693. if (dma)
  694. dmngt = STM32H7_DMNGT_DMA_CIRC;
  695. else
  696. dmngt = STM32H7_DMNGT_DR_ONLY;
  697. spin_lock_irqsave(&adc->lock, flags);
  698. val = stm32_adc_readl(adc, STM32H7_ADC_CFGR);
  699. val = (val & ~STM32H7_DMNGT_MASK) | (dmngt << STM32H7_DMNGT_SHIFT);
  700. stm32_adc_writel(adc, STM32H7_ADC_CFGR, val);
  701. spin_unlock_irqrestore(&adc->lock, flags);
  702. stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTART);
  703. }
  704. static void stm32h7_adc_stop_conv(struct iio_dev *indio_dev)
  705. {
  706. struct stm32_adc *adc = iio_priv(indio_dev);
  707. int ret;
  708. u32 val;
  709. stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTP);
  710. ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
  711. !(val & (STM32H7_ADSTART)),
  712. 100, STM32_ADC_TIMEOUT_US);
  713. if (ret)
  714. dev_warn(&indio_dev->dev, "stop failed\n");
  715. stm32_adc_clr_bits(adc, STM32H7_ADC_CFGR, STM32H7_DMNGT_MASK);
  716. }
  717. static void stm32h7_adc_irq_clear(struct iio_dev *indio_dev, u32 msk)
  718. {
  719. struct stm32_adc *adc = iio_priv(indio_dev);
  720. /* On STM32H7 IRQs are cleared by writing 1 into ISR register */
  721. stm32_adc_set_bits(adc, adc->cfg->regs->isr_eoc.reg, msk);
  722. }
  723. static int stm32h7_adc_exit_pwr_down(struct iio_dev *indio_dev)
  724. {
  725. struct stm32_adc *adc = iio_priv(indio_dev);
  726. int ret;
  727. u32 val;
  728. /* Exit deep power down, then enable ADC voltage regulator */
  729. stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
  730. stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADVREGEN);
  731. if (adc->common->rate > STM32H7_BOOST_CLKRATE)
  732. stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_BOOST);
  733. /* Wait for startup time */
  734. if (!adc->cfg->has_vregready) {
  735. usleep_range(10, 20);
  736. return 0;
  737. }
  738. ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_ISR, val,
  739. val & STM32MP1_VREGREADY, 100,
  740. STM32_ADC_TIMEOUT_US);
  741. if (ret) {
  742. stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
  743. dev_err(&indio_dev->dev, "Failed to exit power down\n");
  744. }
  745. return ret;
  746. }
  747. static void stm32h7_adc_enter_pwr_down(struct stm32_adc *adc)
  748. {
  749. stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_BOOST);
  750. /* Setting DEEPPWD disables ADC vreg and clears ADVREGEN */
  751. stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
  752. }
  753. static int stm32h7_adc_enable(struct iio_dev *indio_dev)
  754. {
  755. struct stm32_adc *adc = iio_priv(indio_dev);
  756. int ret;
  757. u32 val;
  758. stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADEN);
  759. /* Poll for ADRDY to be set (after adc startup time) */
  760. ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_ISR, val,
  761. val & STM32H7_ADRDY,
  762. 100, STM32_ADC_TIMEOUT_US);
  763. if (ret) {
  764. stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADDIS);
  765. dev_err(&indio_dev->dev, "Failed to enable ADC\n");
  766. } else {
  767. /* Clear ADRDY by writing one */
  768. stm32_adc_set_bits(adc, STM32H7_ADC_ISR, STM32H7_ADRDY);
  769. }
  770. return ret;
  771. }
  772. static void stm32h7_adc_disable(struct iio_dev *indio_dev)
  773. {
  774. struct stm32_adc *adc = iio_priv(indio_dev);
  775. int ret;
  776. u32 val;
  777. if (!(stm32_adc_readl(adc, STM32H7_ADC_CR) & STM32H7_ADEN))
  778. return;
  779. /* Disable ADC and wait until it's effectively disabled */
  780. stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADDIS);
  781. ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
  782. !(val & STM32H7_ADEN), 100,
  783. STM32_ADC_TIMEOUT_US);
  784. if (ret)
  785. dev_warn(&indio_dev->dev, "Failed to disable\n");
  786. }
  787. /**
  788. * stm32h7_adc_read_selfcalib() - read calibration shadow regs, save result
  789. * @indio_dev: IIO device instance
  790. * Note: Must be called once ADC is enabled, so LINCALRDYW[1..6] are writable
  791. */
  792. static int stm32h7_adc_read_selfcalib(struct iio_dev *indio_dev)
  793. {
  794. struct stm32_adc *adc = iio_priv(indio_dev);
  795. int i, ret;
  796. u32 lincalrdyw_mask, val;
  797. /* Read linearity calibration */
  798. lincalrdyw_mask = STM32H7_LINCALRDYW6;
  799. for (i = STM32H7_LINCALFACT_NUM - 1; i >= 0; i--) {
  800. /* Clear STM32H7_LINCALRDYW[6..1]: transfer calib to CALFACT2 */
  801. stm32_adc_clr_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
  802. /* Poll: wait calib data to be ready in CALFACT2 register */
  803. ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
  804. !(val & lincalrdyw_mask),
  805. 100, STM32_ADC_TIMEOUT_US);
  806. if (ret) {
  807. dev_err(&indio_dev->dev, "Failed to read calfact\n");
  808. return ret;
  809. }
  810. val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT2);
  811. adc->cal.lincalfact[i] = (val & STM32H7_LINCALFACT_MASK);
  812. adc->cal.lincalfact[i] >>= STM32H7_LINCALFACT_SHIFT;
  813. lincalrdyw_mask >>= 1;
  814. }
  815. /* Read offset calibration */
  816. val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT);
  817. adc->cal.calfact_s = (val & STM32H7_CALFACT_S_MASK);
  818. adc->cal.calfact_s >>= STM32H7_CALFACT_S_SHIFT;
  819. adc->cal.calfact_d = (val & STM32H7_CALFACT_D_MASK);
  820. adc->cal.calfact_d >>= STM32H7_CALFACT_D_SHIFT;
  821. adc->cal.calibrated = true;
  822. return 0;
  823. }
  824. /**
  825. * stm32h7_adc_restore_selfcalib() - Restore saved self-calibration result
  826. * @indio_dev: IIO device instance
  827. * Note: ADC must be enabled, with no on-going conversions.
  828. */
  829. static int stm32h7_adc_restore_selfcalib(struct iio_dev *indio_dev)
  830. {
  831. struct stm32_adc *adc = iio_priv(indio_dev);
  832. int i, ret;
  833. u32 lincalrdyw_mask, val;
  834. val = (adc->cal.calfact_s << STM32H7_CALFACT_S_SHIFT) |
  835. (adc->cal.calfact_d << STM32H7_CALFACT_D_SHIFT);
  836. stm32_adc_writel(adc, STM32H7_ADC_CALFACT, val);
  837. lincalrdyw_mask = STM32H7_LINCALRDYW6;
  838. for (i = STM32H7_LINCALFACT_NUM - 1; i >= 0; i--) {
  839. /*
  840. * Write saved calibration data to shadow registers:
  841. * Write CALFACT2, and set LINCALRDYW[6..1] bit to trigger
  842. * data write. Then poll to wait for complete transfer.
  843. */
  844. val = adc->cal.lincalfact[i] << STM32H7_LINCALFACT_SHIFT;
  845. stm32_adc_writel(adc, STM32H7_ADC_CALFACT2, val);
  846. stm32_adc_set_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
  847. ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
  848. val & lincalrdyw_mask,
  849. 100, STM32_ADC_TIMEOUT_US);
  850. if (ret) {
  851. dev_err(&indio_dev->dev, "Failed to write calfact\n");
  852. return ret;
  853. }
  854. /*
  855. * Read back calibration data, has two effects:
  856. * - It ensures bits LINCALRDYW[6..1] are kept cleared
  857. * for next time calibration needs to be restored.
  858. * - BTW, bit clear triggers a read, then check data has been
  859. * correctly written.
  860. */
  861. stm32_adc_clr_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
  862. ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
  863. !(val & lincalrdyw_mask),
  864. 100, STM32_ADC_TIMEOUT_US);
  865. if (ret) {
  866. dev_err(&indio_dev->dev, "Failed to read calfact\n");
  867. return ret;
  868. }
  869. val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT2);
  870. if (val != adc->cal.lincalfact[i] << STM32H7_LINCALFACT_SHIFT) {
  871. dev_err(&indio_dev->dev, "calfact not consistent\n");
  872. return -EIO;
  873. }
  874. lincalrdyw_mask >>= 1;
  875. }
  876. return 0;
  877. }
  878. /*
  879. * Fixed timeout value for ADC calibration.
  880. * worst cases:
  881. * - low clock frequency
  882. * - maximum prescalers
  883. * Calibration requires:
  884. * - 131,072 ADC clock cycle for the linear calibration
  885. * - 20 ADC clock cycle for the offset calibration
  886. *
  887. * Set to 100ms for now
  888. */
  889. #define STM32H7_ADC_CALIB_TIMEOUT_US 100000
  890. /**
  891. * stm32h7_adc_selfcalib() - Procedure to calibrate ADC
  892. * @indio_dev: IIO device instance
  893. * Note: Must be called once ADC is out of power down.
  894. */
  895. static int stm32h7_adc_selfcalib(struct iio_dev *indio_dev)
  896. {
  897. struct stm32_adc *adc = iio_priv(indio_dev);
  898. int ret;
  899. u32 val;
  900. if (adc->cal.calibrated)
  901. return true;
  902. /* ADC must be disabled for calibration */
  903. stm32h7_adc_disable(indio_dev);
  904. /*
  905. * Select calibration mode:
  906. * - Offset calibration for single ended inputs
  907. * - No linearity calibration (do it later, before reading it)
  908. */
  909. stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_ADCALDIF);
  910. stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_ADCALLIN);
  911. /* Start calibration, then wait for completion */
  912. stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADCAL);
  913. ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
  914. !(val & STM32H7_ADCAL), 100,
  915. STM32H7_ADC_CALIB_TIMEOUT_US);
  916. if (ret) {
  917. dev_err(&indio_dev->dev, "calibration failed\n");
  918. goto out;
  919. }
  920. /*
  921. * Select calibration mode, then start calibration:
  922. * - Offset calibration for differential input
  923. * - Linearity calibration (needs to be done only once for single/diff)
  924. * will run simultaneously with offset calibration.
  925. */
  926. stm32_adc_set_bits(adc, STM32H7_ADC_CR,
  927. STM32H7_ADCALDIF | STM32H7_ADCALLIN);
  928. stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADCAL);
  929. ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
  930. !(val & STM32H7_ADCAL), 100,
  931. STM32H7_ADC_CALIB_TIMEOUT_US);
  932. if (ret) {
  933. dev_err(&indio_dev->dev, "calibration failed\n");
  934. goto out;
  935. }
  936. out:
  937. stm32_adc_clr_bits(adc, STM32H7_ADC_CR,
  938. STM32H7_ADCALDIF | STM32H7_ADCALLIN);
  939. return ret;
  940. }
  941. /**
  942. * stm32h7_adc_prepare() - Leave power down mode to enable ADC.
  943. * @indio_dev: IIO device instance
  944. * Leave power down mode.
  945. * Configure channels as single ended or differential before enabling ADC.
  946. * Enable ADC.
  947. * Restore calibration data.
  948. * Pre-select channels that may be used in PCSEL (required by input MUX / IO):
  949. * - Only one input is selected for single ended (e.g. 'vinp')
  950. * - Two inputs are selected for differential channels (e.g. 'vinp' & 'vinn')
  951. */
  952. static int stm32h7_adc_prepare(struct iio_dev *indio_dev)
  953. {
  954. struct stm32_adc *adc = iio_priv(indio_dev);
  955. int calib, ret;
  956. ret = stm32h7_adc_exit_pwr_down(indio_dev);
  957. if (ret)
  958. return ret;
  959. ret = stm32h7_adc_selfcalib(indio_dev);
  960. if (ret < 0)
  961. goto pwr_dwn;
  962. calib = ret;
  963. stm32_adc_int_ch_enable(indio_dev);
  964. stm32_adc_writel(adc, STM32H7_ADC_DIFSEL, adc->difsel);
  965. ret = stm32h7_adc_enable(indio_dev);
  966. if (ret)
  967. goto ch_disable;
  968. /* Either restore or read calibration result for future reference */
  969. if (calib)
  970. ret = stm32h7_adc_restore_selfcalib(indio_dev);
  971. else
  972. ret = stm32h7_adc_read_selfcalib(indio_dev);
  973. if (ret)
  974. goto disable;
  975. stm32_adc_writel(adc, STM32H7_ADC_PCSEL, adc->pcsel);
  976. return 0;
  977. disable:
  978. stm32h7_adc_disable(indio_dev);
  979. ch_disable:
  980. stm32_adc_int_ch_disable(adc);
  981. pwr_dwn:
  982. stm32h7_adc_enter_pwr_down(adc);
  983. return ret;
  984. }
  985. static void stm32h7_adc_unprepare(struct iio_dev *indio_dev)
  986. {
  987. struct stm32_adc *adc = iio_priv(indio_dev);
  988. stm32_adc_writel(adc, STM32H7_ADC_PCSEL, 0);
  989. stm32h7_adc_disable(indio_dev);
  990. stm32_adc_int_ch_disable(adc);
  991. stm32h7_adc_enter_pwr_down(adc);
  992. }
  993. /**
  994. * stm32_adc_conf_scan_seq() - Build regular channels scan sequence
  995. * @indio_dev: IIO device
  996. * @scan_mask: channels to be converted
  997. *
  998. * Conversion sequence :
  999. * Apply sampling time settings for all channels.
  1000. * Configure ADC scan sequence based on selected channels in scan_mask.
  1001. * Add channels to SQR registers, from scan_mask LSB to MSB, then
  1002. * program sequence len.
  1003. */
  1004. static int stm32_adc_conf_scan_seq(struct iio_dev *indio_dev,
  1005. const unsigned long *scan_mask)
  1006. {
  1007. struct stm32_adc *adc = iio_priv(indio_dev);
  1008. const struct stm32_adc_regs *sqr = adc->cfg->regs->sqr;
  1009. const struct iio_chan_spec *chan;
  1010. u32 val, bit;
  1011. int i = 0;
  1012. /* Apply sampling time settings */
  1013. stm32_adc_writel(adc, adc->cfg->regs->smpr[0], adc->smpr_val[0]);
  1014. stm32_adc_writel(adc, adc->cfg->regs->smpr[1], adc->smpr_val[1]);
  1015. for_each_set_bit(bit, scan_mask, indio_dev->masklength) {
  1016. chan = indio_dev->channels + bit;
  1017. /*
  1018. * Assign one channel per SQ entry in regular
  1019. * sequence, starting with SQ1.
  1020. */
  1021. i++;
  1022. if (i > STM32_ADC_MAX_SQ)
  1023. return -EINVAL;
  1024. dev_dbg(&indio_dev->dev, "%s chan %d to SQ%d\n",
  1025. __func__, chan->channel, i);
  1026. val = stm32_adc_readl(adc, sqr[i].reg);
  1027. val &= ~sqr[i].mask;
  1028. val |= chan->channel << sqr[i].shift;
  1029. stm32_adc_writel(adc, sqr[i].reg, val);
  1030. }
  1031. if (!i)
  1032. return -EINVAL;
  1033. /* Sequence len */
  1034. val = stm32_adc_readl(adc, sqr[0].reg);
  1035. val &= ~sqr[0].mask;
  1036. val |= ((i - 1) << sqr[0].shift);
  1037. stm32_adc_writel(adc, sqr[0].reg, val);
  1038. return 0;
  1039. }
  1040. /**
  1041. * stm32_adc_get_trig_extsel() - Get external trigger selection
  1042. * @indio_dev: IIO device structure
  1043. * @trig: trigger
  1044. *
  1045. * Returns trigger extsel value, if trig matches, -EINVAL otherwise.
  1046. */
  1047. static int stm32_adc_get_trig_extsel(struct iio_dev *indio_dev,
  1048. struct iio_trigger *trig)
  1049. {
  1050. struct stm32_adc *adc = iio_priv(indio_dev);
  1051. int i;
  1052. /* lookup triggers registered by stm32 timer trigger driver */
  1053. for (i = 0; adc->cfg->trigs[i].name; i++) {
  1054. /**
  1055. * Checking both stm32 timer trigger type and trig name
  1056. * should be safe against arbitrary trigger names.
  1057. */
  1058. if ((is_stm32_timer_trigger(trig) ||
  1059. is_stm32_lptim_trigger(trig)) &&
  1060. !strcmp(adc->cfg->trigs[i].name, trig->name)) {
  1061. return adc->cfg->trigs[i].extsel;
  1062. }
  1063. }
  1064. return -EINVAL;
  1065. }
  1066. /**
  1067. * stm32_adc_set_trig() - Set a regular trigger
  1068. * @indio_dev: IIO device
  1069. * @trig: IIO trigger
  1070. *
  1071. * Set trigger source/polarity (e.g. SW, or HW with polarity) :
  1072. * - if HW trigger disabled (e.g. trig == NULL, conversion launched by sw)
  1073. * - if HW trigger enabled, set source & polarity
  1074. */
  1075. static int stm32_adc_set_trig(struct iio_dev *indio_dev,
  1076. struct iio_trigger *trig)
  1077. {
  1078. struct stm32_adc *adc = iio_priv(indio_dev);
  1079. u32 val, extsel = 0, exten = STM32_EXTEN_SWTRIG;
  1080. unsigned long flags;
  1081. int ret;
  1082. if (trig) {
  1083. ret = stm32_adc_get_trig_extsel(indio_dev, trig);
  1084. if (ret < 0)
  1085. return ret;
  1086. /* set trigger source and polarity (default to rising edge) */
  1087. extsel = ret;
  1088. exten = adc->trigger_polarity + STM32_EXTEN_HWTRIG_RISING_EDGE;
  1089. }
  1090. spin_lock_irqsave(&adc->lock, flags);
  1091. val = stm32_adc_readl(adc, adc->cfg->regs->exten.reg);
  1092. val &= ~(adc->cfg->regs->exten.mask | adc->cfg->regs->extsel.mask);
  1093. val |= exten << adc->cfg->regs->exten.shift;
  1094. val |= extsel << adc->cfg->regs->extsel.shift;
  1095. stm32_adc_writel(adc, adc->cfg->regs->exten.reg, val);
  1096. spin_unlock_irqrestore(&adc->lock, flags);
  1097. return 0;
  1098. }
  1099. static int stm32_adc_set_trig_pol(struct iio_dev *indio_dev,
  1100. const struct iio_chan_spec *chan,
  1101. unsigned int type)
  1102. {
  1103. struct stm32_adc *adc = iio_priv(indio_dev);
  1104. adc->trigger_polarity = type;
  1105. return 0;
  1106. }
  1107. static int stm32_adc_get_trig_pol(struct iio_dev *indio_dev,
  1108. const struct iio_chan_spec *chan)
  1109. {
  1110. struct stm32_adc *adc = iio_priv(indio_dev);
  1111. return adc->trigger_polarity;
  1112. }
  1113. static const char * const stm32_trig_pol_items[] = {
  1114. "rising-edge", "falling-edge", "both-edges",
  1115. };
  1116. static const struct iio_enum stm32_adc_trig_pol = {
  1117. .items = stm32_trig_pol_items,
  1118. .num_items = ARRAY_SIZE(stm32_trig_pol_items),
  1119. .get = stm32_adc_get_trig_pol,
  1120. .set = stm32_adc_set_trig_pol,
  1121. };
  1122. /**
  1123. * stm32_adc_single_conv() - Performs a single conversion
  1124. * @indio_dev: IIO device
  1125. * @chan: IIO channel
  1126. * @res: conversion result
  1127. *
  1128. * The function performs a single conversion on a given channel:
  1129. * - Apply sampling time settings
  1130. * - Program sequencer with one channel (e.g. in SQ1 with len = 1)
  1131. * - Use SW trigger
  1132. * - Start conversion, then wait for interrupt completion.
  1133. */
  1134. static int stm32_adc_single_conv(struct iio_dev *indio_dev,
  1135. const struct iio_chan_spec *chan,
  1136. int *res)
  1137. {
  1138. struct stm32_adc *adc = iio_priv(indio_dev);
  1139. struct device *dev = indio_dev->dev.parent;
  1140. const struct stm32_adc_regspec *regs = adc->cfg->regs;
  1141. long timeout;
  1142. u32 val;
  1143. int ret;
  1144. reinit_completion(&adc->completion);
  1145. adc->bufi = 0;
  1146. ret = pm_runtime_resume_and_get(dev);
  1147. if (ret < 0)
  1148. return ret;
  1149. /* Apply sampling time settings */
  1150. stm32_adc_writel(adc, regs->smpr[0], adc->smpr_val[0]);
  1151. stm32_adc_writel(adc, regs->smpr[1], adc->smpr_val[1]);
  1152. /* Program chan number in regular sequence (SQ1) */
  1153. val = stm32_adc_readl(adc, regs->sqr[1].reg);
  1154. val &= ~regs->sqr[1].mask;
  1155. val |= chan->channel << regs->sqr[1].shift;
  1156. stm32_adc_writel(adc, regs->sqr[1].reg, val);
  1157. /* Set regular sequence len (0 for 1 conversion) */
  1158. stm32_adc_clr_bits(adc, regs->sqr[0].reg, regs->sqr[0].mask);
  1159. /* Trigger detection disabled (conversion can be launched in SW) */
  1160. stm32_adc_clr_bits(adc, regs->exten.reg, regs->exten.mask);
  1161. stm32_adc_conv_irq_enable(adc);
  1162. adc->cfg->start_conv(indio_dev, false);
  1163. timeout = wait_for_completion_interruptible_timeout(
  1164. &adc->completion, STM32_ADC_TIMEOUT);
  1165. if (timeout == 0) {
  1166. ret = -ETIMEDOUT;
  1167. } else if (timeout < 0) {
  1168. ret = timeout;
  1169. } else {
  1170. *res = adc->buffer[0];
  1171. ret = IIO_VAL_INT;
  1172. }
  1173. adc->cfg->stop_conv(indio_dev);
  1174. stm32_adc_conv_irq_disable(adc);
  1175. pm_runtime_mark_last_busy(dev);
  1176. pm_runtime_put_autosuspend(dev);
  1177. return ret;
  1178. }
  1179. static int stm32_adc_read_raw(struct iio_dev *indio_dev,
  1180. struct iio_chan_spec const *chan,
  1181. int *val, int *val2, long mask)
  1182. {
  1183. struct stm32_adc *adc = iio_priv(indio_dev);
  1184. int ret;
  1185. switch (mask) {
  1186. case IIO_CHAN_INFO_RAW:
  1187. case IIO_CHAN_INFO_PROCESSED:
  1188. ret = iio_device_claim_direct_mode(indio_dev);
  1189. if (ret)
  1190. return ret;
  1191. if (chan->type == IIO_VOLTAGE)
  1192. ret = stm32_adc_single_conv(indio_dev, chan, val);
  1193. else
  1194. ret = -EINVAL;
  1195. if (mask == IIO_CHAN_INFO_PROCESSED)
  1196. *val = STM32_ADC_VREFINT_VOLTAGE * adc->vrefint.vrefint_cal / *val;
  1197. iio_device_release_direct_mode(indio_dev);
  1198. return ret;
  1199. case IIO_CHAN_INFO_SCALE:
  1200. if (chan->differential) {
  1201. *val = adc->common->vref_mv * 2;
  1202. *val2 = chan->scan_type.realbits;
  1203. } else {
  1204. *val = adc->common->vref_mv;
  1205. *val2 = chan->scan_type.realbits;
  1206. }
  1207. return IIO_VAL_FRACTIONAL_LOG2;
  1208. case IIO_CHAN_INFO_OFFSET:
  1209. if (chan->differential)
  1210. /* ADC_full_scale / 2 */
  1211. *val = -((1 << chan->scan_type.realbits) / 2);
  1212. else
  1213. *val = 0;
  1214. return IIO_VAL_INT;
  1215. default:
  1216. return -EINVAL;
  1217. }
  1218. }
  1219. static void stm32_adc_irq_clear(struct iio_dev *indio_dev, u32 msk)
  1220. {
  1221. struct stm32_adc *adc = iio_priv(indio_dev);
  1222. adc->cfg->irq_clear(indio_dev, msk);
  1223. }
  1224. static irqreturn_t stm32_adc_threaded_isr(int irq, void *data)
  1225. {
  1226. struct iio_dev *indio_dev = data;
  1227. struct stm32_adc *adc = iio_priv(indio_dev);
  1228. const struct stm32_adc_regspec *regs = adc->cfg->regs;
  1229. u32 status = stm32_adc_readl(adc, regs->isr_eoc.reg);
  1230. /* Check ovr status right now, as ovr mask should be already disabled */
  1231. if (status & regs->isr_ovr.mask) {
  1232. /*
  1233. * Clear ovr bit to avoid subsequent calls to IRQ handler.
  1234. * This requires to stop ADC first. OVR bit state in ISR,
  1235. * is propaged to CSR register by hardware.
  1236. */
  1237. adc->cfg->stop_conv(indio_dev);
  1238. stm32_adc_irq_clear(indio_dev, regs->isr_ovr.mask);
  1239. dev_err(&indio_dev->dev, "Overrun, stopping: restart needed\n");
  1240. return IRQ_HANDLED;
  1241. }
  1242. return IRQ_NONE;
  1243. }
  1244. static irqreturn_t stm32_adc_isr(int irq, void *data)
  1245. {
  1246. struct iio_dev *indio_dev = data;
  1247. struct stm32_adc *adc = iio_priv(indio_dev);
  1248. const struct stm32_adc_regspec *regs = adc->cfg->regs;
  1249. u32 status = stm32_adc_readl(adc, regs->isr_eoc.reg);
  1250. if (status & regs->isr_ovr.mask) {
  1251. /*
  1252. * Overrun occurred on regular conversions: data for wrong
  1253. * channel may be read. Unconditionally disable interrupts
  1254. * to stop processing data and print error message.
  1255. * Restarting the capture can be done by disabling, then
  1256. * re-enabling it (e.g. write 0, then 1 to buffer/enable).
  1257. */
  1258. stm32_adc_ovr_irq_disable(adc);
  1259. stm32_adc_conv_irq_disable(adc);
  1260. return IRQ_WAKE_THREAD;
  1261. }
  1262. if (status & regs->isr_eoc.mask) {
  1263. /* Reading DR also clears EOC status flag */
  1264. adc->buffer[adc->bufi] = stm32_adc_readw(adc, regs->dr);
  1265. if (iio_buffer_enabled(indio_dev)) {
  1266. adc->bufi++;
  1267. if (adc->bufi >= adc->num_conv) {
  1268. stm32_adc_conv_irq_disable(adc);
  1269. iio_trigger_poll(indio_dev->trig);
  1270. }
  1271. } else {
  1272. complete(&adc->completion);
  1273. }
  1274. return IRQ_HANDLED;
  1275. }
  1276. return IRQ_NONE;
  1277. }
  1278. /**
  1279. * stm32_adc_validate_trigger() - validate trigger for stm32 adc
  1280. * @indio_dev: IIO device
  1281. * @trig: new trigger
  1282. *
  1283. * Returns: 0 if trig matches one of the triggers registered by stm32 adc
  1284. * driver, -EINVAL otherwise.
  1285. */
  1286. static int stm32_adc_validate_trigger(struct iio_dev *indio_dev,
  1287. struct iio_trigger *trig)
  1288. {
  1289. return stm32_adc_get_trig_extsel(indio_dev, trig) < 0 ? -EINVAL : 0;
  1290. }
  1291. static int stm32_adc_set_watermark(struct iio_dev *indio_dev, unsigned int val)
  1292. {
  1293. struct stm32_adc *adc = iio_priv(indio_dev);
  1294. unsigned int watermark = STM32_DMA_BUFFER_SIZE / 2;
  1295. unsigned int rx_buf_sz = STM32_DMA_BUFFER_SIZE;
  1296. /*
  1297. * dma cyclic transfers are used, buffer is split into two periods.
  1298. * There should be :
  1299. * - always one buffer (period) dma is working on
  1300. * - one buffer (period) driver can push data.
  1301. */
  1302. watermark = min(watermark, val * (unsigned)(sizeof(u16)));
  1303. adc->rx_buf_sz = min(rx_buf_sz, watermark * 2 * adc->num_conv);
  1304. return 0;
  1305. }
  1306. static int stm32_adc_update_scan_mode(struct iio_dev *indio_dev,
  1307. const unsigned long *scan_mask)
  1308. {
  1309. struct stm32_adc *adc = iio_priv(indio_dev);
  1310. struct device *dev = indio_dev->dev.parent;
  1311. int ret;
  1312. ret = pm_runtime_resume_and_get(dev);
  1313. if (ret < 0)
  1314. return ret;
  1315. adc->num_conv = bitmap_weight(scan_mask, indio_dev->masklength);
  1316. ret = stm32_adc_conf_scan_seq(indio_dev, scan_mask);
  1317. pm_runtime_mark_last_busy(dev);
  1318. pm_runtime_put_autosuspend(dev);
  1319. return ret;
  1320. }
  1321. static int stm32_adc_fwnode_xlate(struct iio_dev *indio_dev,
  1322. const struct fwnode_reference_args *iiospec)
  1323. {
  1324. int i;
  1325. for (i = 0; i < indio_dev->num_channels; i++)
  1326. if (indio_dev->channels[i].channel == iiospec->args[0])
  1327. return i;
  1328. return -EINVAL;
  1329. }
  1330. /**
  1331. * stm32_adc_debugfs_reg_access - read or write register value
  1332. * @indio_dev: IIO device structure
  1333. * @reg: register offset
  1334. * @writeval: value to write
  1335. * @readval: value to read
  1336. *
  1337. * To read a value from an ADC register:
  1338. * echo [ADC reg offset] > direct_reg_access
  1339. * cat direct_reg_access
  1340. *
  1341. * To write a value in a ADC register:
  1342. * echo [ADC_reg_offset] [value] > direct_reg_access
  1343. */
  1344. static int stm32_adc_debugfs_reg_access(struct iio_dev *indio_dev,
  1345. unsigned reg, unsigned writeval,
  1346. unsigned *readval)
  1347. {
  1348. struct stm32_adc *adc = iio_priv(indio_dev);
  1349. struct device *dev = indio_dev->dev.parent;
  1350. int ret;
  1351. ret = pm_runtime_resume_and_get(dev);
  1352. if (ret < 0)
  1353. return ret;
  1354. if (!readval)
  1355. stm32_adc_writel(adc, reg, writeval);
  1356. else
  1357. *readval = stm32_adc_readl(adc, reg);
  1358. pm_runtime_mark_last_busy(dev);
  1359. pm_runtime_put_autosuspend(dev);
  1360. return 0;
  1361. }
  1362. static const struct iio_info stm32_adc_iio_info = {
  1363. .read_raw = stm32_adc_read_raw,
  1364. .validate_trigger = stm32_adc_validate_trigger,
  1365. .hwfifo_set_watermark = stm32_adc_set_watermark,
  1366. .update_scan_mode = stm32_adc_update_scan_mode,
  1367. .debugfs_reg_access = stm32_adc_debugfs_reg_access,
  1368. .fwnode_xlate = stm32_adc_fwnode_xlate,
  1369. };
  1370. static unsigned int stm32_adc_dma_residue(struct stm32_adc *adc)
  1371. {
  1372. struct dma_tx_state state;
  1373. enum dma_status status;
  1374. status = dmaengine_tx_status(adc->dma_chan,
  1375. adc->dma_chan->cookie,
  1376. &state);
  1377. if (status == DMA_IN_PROGRESS) {
  1378. /* Residue is size in bytes from end of buffer */
  1379. unsigned int i = adc->rx_buf_sz - state.residue;
  1380. unsigned int size;
  1381. /* Return available bytes */
  1382. if (i >= adc->bufi)
  1383. size = i - adc->bufi;
  1384. else
  1385. size = adc->rx_buf_sz + i - adc->bufi;
  1386. return size;
  1387. }
  1388. return 0;
  1389. }
  1390. static void stm32_adc_dma_buffer_done(void *data)
  1391. {
  1392. struct iio_dev *indio_dev = data;
  1393. struct stm32_adc *adc = iio_priv(indio_dev);
  1394. int residue = stm32_adc_dma_residue(adc);
  1395. /*
  1396. * In DMA mode the trigger services of IIO are not used
  1397. * (e.g. no call to iio_trigger_poll).
  1398. * Calling irq handler associated to the hardware trigger is not
  1399. * relevant as the conversions have already been done. Data
  1400. * transfers are performed directly in DMA callback instead.
  1401. * This implementation avoids to call trigger irq handler that
  1402. * may sleep, in an atomic context (DMA irq handler context).
  1403. */
  1404. dev_dbg(&indio_dev->dev, "%s bufi=%d\n", __func__, adc->bufi);
  1405. while (residue >= indio_dev->scan_bytes) {
  1406. u16 *buffer = (u16 *)&adc->rx_buf[adc->bufi];
  1407. iio_push_to_buffers(indio_dev, buffer);
  1408. residue -= indio_dev->scan_bytes;
  1409. adc->bufi += indio_dev->scan_bytes;
  1410. if (adc->bufi >= adc->rx_buf_sz)
  1411. adc->bufi = 0;
  1412. }
  1413. }
  1414. static int stm32_adc_dma_start(struct iio_dev *indio_dev)
  1415. {
  1416. struct stm32_adc *adc = iio_priv(indio_dev);
  1417. struct dma_async_tx_descriptor *desc;
  1418. dma_cookie_t cookie;
  1419. int ret;
  1420. if (!adc->dma_chan)
  1421. return 0;
  1422. dev_dbg(&indio_dev->dev, "%s size=%d watermark=%d\n", __func__,
  1423. adc->rx_buf_sz, adc->rx_buf_sz / 2);
  1424. /* Prepare a DMA cyclic transaction */
  1425. desc = dmaengine_prep_dma_cyclic(adc->dma_chan,
  1426. adc->rx_dma_buf,
  1427. adc->rx_buf_sz, adc->rx_buf_sz / 2,
  1428. DMA_DEV_TO_MEM,
  1429. DMA_PREP_INTERRUPT);
  1430. if (!desc)
  1431. return -EBUSY;
  1432. desc->callback = stm32_adc_dma_buffer_done;
  1433. desc->callback_param = indio_dev;
  1434. cookie = dmaengine_submit(desc);
  1435. ret = dma_submit_error(cookie);
  1436. if (ret) {
  1437. dmaengine_terminate_sync(adc->dma_chan);
  1438. return ret;
  1439. }
  1440. /* Issue pending DMA requests */
  1441. dma_async_issue_pending(adc->dma_chan);
  1442. return 0;
  1443. }
  1444. static int stm32_adc_buffer_postenable(struct iio_dev *indio_dev)
  1445. {
  1446. struct stm32_adc *adc = iio_priv(indio_dev);
  1447. struct device *dev = indio_dev->dev.parent;
  1448. int ret;
  1449. ret = pm_runtime_resume_and_get(dev);
  1450. if (ret < 0)
  1451. return ret;
  1452. ret = stm32_adc_set_trig(indio_dev, indio_dev->trig);
  1453. if (ret) {
  1454. dev_err(&indio_dev->dev, "Can't set trigger\n");
  1455. goto err_pm_put;
  1456. }
  1457. ret = stm32_adc_dma_start(indio_dev);
  1458. if (ret) {
  1459. dev_err(&indio_dev->dev, "Can't start dma\n");
  1460. goto err_clr_trig;
  1461. }
  1462. /* Reset adc buffer index */
  1463. adc->bufi = 0;
  1464. stm32_adc_ovr_irq_enable(adc);
  1465. if (!adc->dma_chan)
  1466. stm32_adc_conv_irq_enable(adc);
  1467. adc->cfg->start_conv(indio_dev, !!adc->dma_chan);
  1468. return 0;
  1469. err_clr_trig:
  1470. stm32_adc_set_trig(indio_dev, NULL);
  1471. err_pm_put:
  1472. pm_runtime_mark_last_busy(dev);
  1473. pm_runtime_put_autosuspend(dev);
  1474. return ret;
  1475. }
  1476. static int stm32_adc_buffer_predisable(struct iio_dev *indio_dev)
  1477. {
  1478. struct stm32_adc *adc = iio_priv(indio_dev);
  1479. struct device *dev = indio_dev->dev.parent;
  1480. adc->cfg->stop_conv(indio_dev);
  1481. if (!adc->dma_chan)
  1482. stm32_adc_conv_irq_disable(adc);
  1483. stm32_adc_ovr_irq_disable(adc);
  1484. if (adc->dma_chan)
  1485. dmaengine_terminate_sync(adc->dma_chan);
  1486. if (stm32_adc_set_trig(indio_dev, NULL))
  1487. dev_err(&indio_dev->dev, "Can't clear trigger\n");
  1488. pm_runtime_mark_last_busy(dev);
  1489. pm_runtime_put_autosuspend(dev);
  1490. return 0;
  1491. }
  1492. static const struct iio_buffer_setup_ops stm32_adc_buffer_setup_ops = {
  1493. .postenable = &stm32_adc_buffer_postenable,
  1494. .predisable = &stm32_adc_buffer_predisable,
  1495. };
  1496. static irqreturn_t stm32_adc_trigger_handler(int irq, void *p)
  1497. {
  1498. struct iio_poll_func *pf = p;
  1499. struct iio_dev *indio_dev = pf->indio_dev;
  1500. struct stm32_adc *adc = iio_priv(indio_dev);
  1501. dev_dbg(&indio_dev->dev, "%s bufi=%d\n", __func__, adc->bufi);
  1502. /* reset buffer index */
  1503. adc->bufi = 0;
  1504. iio_push_to_buffers_with_timestamp(indio_dev, adc->buffer,
  1505. pf->timestamp);
  1506. iio_trigger_notify_done(indio_dev->trig);
  1507. /* re-enable eoc irq */
  1508. stm32_adc_conv_irq_enable(adc);
  1509. return IRQ_HANDLED;
  1510. }
  1511. static const struct iio_chan_spec_ext_info stm32_adc_ext_info[] = {
  1512. IIO_ENUM("trigger_polarity", IIO_SHARED_BY_ALL, &stm32_adc_trig_pol),
  1513. {
  1514. .name = "trigger_polarity_available",
  1515. .shared = IIO_SHARED_BY_ALL,
  1516. .read = iio_enum_available_read,
  1517. .private = (uintptr_t)&stm32_adc_trig_pol,
  1518. },
  1519. {},
  1520. };
  1521. static int stm32_adc_fw_get_resolution(struct iio_dev *indio_dev)
  1522. {
  1523. struct device *dev = &indio_dev->dev;
  1524. struct stm32_adc *adc = iio_priv(indio_dev);
  1525. unsigned int i;
  1526. u32 res;
  1527. if (device_property_read_u32(dev, "assigned-resolution-bits", &res))
  1528. res = adc->cfg->adc_info->resolutions[0];
  1529. for (i = 0; i < adc->cfg->adc_info->num_res; i++)
  1530. if (res == adc->cfg->adc_info->resolutions[i])
  1531. break;
  1532. if (i >= adc->cfg->adc_info->num_res) {
  1533. dev_err(&indio_dev->dev, "Bad resolution: %u bits\n", res);
  1534. return -EINVAL;
  1535. }
  1536. dev_dbg(&indio_dev->dev, "Using %u bits resolution\n", res);
  1537. adc->res = i;
  1538. return 0;
  1539. }
  1540. static void stm32_adc_smpr_init(struct stm32_adc *adc, int channel, u32 smp_ns)
  1541. {
  1542. const struct stm32_adc_regs *smpr = &adc->cfg->regs->smp_bits[channel];
  1543. u32 period_ns, shift = smpr->shift, mask = smpr->mask;
  1544. unsigned int smp, r = smpr->reg;
  1545. /*
  1546. * For vrefint channel, ensure that the sampling time cannot
  1547. * be lower than the one specified in the datasheet
  1548. */
  1549. if (channel == adc->int_ch[STM32_ADC_INT_CH_VREFINT])
  1550. smp_ns = max(smp_ns, adc->cfg->ts_vrefint_ns);
  1551. /* Determine sampling time (ADC clock cycles) */
  1552. period_ns = NSEC_PER_SEC / adc->common->rate;
  1553. for (smp = 0; smp <= STM32_ADC_MAX_SMP; smp++)
  1554. if ((period_ns * adc->cfg->smp_cycles[smp]) >= smp_ns)
  1555. break;
  1556. if (smp > STM32_ADC_MAX_SMP)
  1557. smp = STM32_ADC_MAX_SMP;
  1558. /* pre-build sampling time registers (e.g. smpr1, smpr2) */
  1559. adc->smpr_val[r] = (adc->smpr_val[r] & ~mask) | (smp << shift);
  1560. }
  1561. static void stm32_adc_chan_init_one(struct iio_dev *indio_dev,
  1562. struct iio_chan_spec *chan, u32 vinp,
  1563. u32 vinn, int scan_index, bool differential)
  1564. {
  1565. struct stm32_adc *adc = iio_priv(indio_dev);
  1566. char *name = adc->chan_name[vinp];
  1567. chan->type = IIO_VOLTAGE;
  1568. chan->channel = vinp;
  1569. if (differential) {
  1570. chan->differential = 1;
  1571. chan->channel2 = vinn;
  1572. snprintf(name, STM32_ADC_CH_SZ, "in%d-in%d", vinp, vinn);
  1573. } else {
  1574. snprintf(name, STM32_ADC_CH_SZ, "in%d", vinp);
  1575. }
  1576. chan->datasheet_name = name;
  1577. chan->scan_index = scan_index;
  1578. chan->indexed = 1;
  1579. if (chan->channel == adc->int_ch[STM32_ADC_INT_CH_VREFINT])
  1580. chan->info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED);
  1581. else
  1582. chan->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
  1583. chan->info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |
  1584. BIT(IIO_CHAN_INFO_OFFSET);
  1585. chan->scan_type.sign = 'u';
  1586. chan->scan_type.realbits = adc->cfg->adc_info->resolutions[adc->res];
  1587. chan->scan_type.storagebits = 16;
  1588. chan->ext_info = stm32_adc_ext_info;
  1589. /* pre-build selected channels mask */
  1590. adc->pcsel |= BIT(chan->channel);
  1591. if (differential) {
  1592. /* pre-build diff channels mask */
  1593. adc->difsel |= BIT(chan->channel);
  1594. /* Also add negative input to pre-selected channels */
  1595. adc->pcsel |= BIT(chan->channel2);
  1596. }
  1597. }
  1598. static int stm32_adc_get_legacy_chan_count(struct iio_dev *indio_dev, struct stm32_adc *adc)
  1599. {
  1600. struct device *dev = &indio_dev->dev;
  1601. const struct stm32_adc_info *adc_info = adc->cfg->adc_info;
  1602. int num_channels = 0, ret;
  1603. ret = device_property_count_u32(dev, "st,adc-channels");
  1604. if (ret > adc_info->max_channels) {
  1605. dev_err(&indio_dev->dev, "Bad st,adc-channels?\n");
  1606. return -EINVAL;
  1607. } else if (ret > 0) {
  1608. num_channels += ret;
  1609. }
  1610. /*
  1611. * each st,adc-diff-channels is a group of 2 u32 so we divide @ret
  1612. * to get the *real* number of channels.
  1613. */
  1614. ret = device_property_count_u32(dev, "st,adc-diff-channels");
  1615. if (ret > 0) {
  1616. ret /= (int)(sizeof(struct stm32_adc_diff_channel) / sizeof(u32));
  1617. if (ret > adc_info->max_channels) {
  1618. dev_err(&indio_dev->dev, "Bad st,adc-diff-channels?\n");
  1619. return -EINVAL;
  1620. } else if (ret > 0) {
  1621. adc->num_diff = ret;
  1622. num_channels += ret;
  1623. }
  1624. }
  1625. /* Optional sample time is provided either for each, or all channels */
  1626. adc->nsmps = device_property_count_u32(dev, "st,min-sample-time-nsecs");
  1627. if (adc->nsmps > 1 && adc->nsmps != num_channels) {
  1628. dev_err(&indio_dev->dev, "Invalid st,min-sample-time-nsecs\n");
  1629. return -EINVAL;
  1630. }
  1631. return num_channels;
  1632. }
  1633. static int stm32_adc_legacy_chan_init(struct iio_dev *indio_dev,
  1634. struct stm32_adc *adc,
  1635. struct iio_chan_spec *channels,
  1636. int nchans)
  1637. {
  1638. const struct stm32_adc_info *adc_info = adc->cfg->adc_info;
  1639. struct stm32_adc_diff_channel diff[STM32_ADC_CH_MAX];
  1640. struct device *dev = &indio_dev->dev;
  1641. u32 num_diff = adc->num_diff;
  1642. int num_se = nchans - num_diff;
  1643. int size = num_diff * sizeof(*diff) / sizeof(u32);
  1644. int scan_index = 0, ret, i, c;
  1645. u32 smp = 0, smps[STM32_ADC_CH_MAX], chans[STM32_ADC_CH_MAX];
  1646. if (num_diff) {
  1647. ret = device_property_read_u32_array(dev, "st,adc-diff-channels",
  1648. (u32 *)diff, size);
  1649. if (ret) {
  1650. dev_err(&indio_dev->dev, "Failed to get diff channels %d\n", ret);
  1651. return ret;
  1652. }
  1653. for (i = 0; i < num_diff; i++) {
  1654. if (diff[i].vinp >= adc_info->max_channels ||
  1655. diff[i].vinn >= adc_info->max_channels) {
  1656. dev_err(&indio_dev->dev, "Invalid channel in%d-in%d\n",
  1657. diff[i].vinp, diff[i].vinn);
  1658. return -EINVAL;
  1659. }
  1660. stm32_adc_chan_init_one(indio_dev, &channels[scan_index],
  1661. diff[i].vinp, diff[i].vinn,
  1662. scan_index, true);
  1663. scan_index++;
  1664. }
  1665. }
  1666. if (num_se > 0) {
  1667. ret = device_property_read_u32_array(dev, "st,adc-channels", chans, num_se);
  1668. if (ret) {
  1669. dev_err(&indio_dev->dev, "Failed to get st,adc-channels %d\n", ret);
  1670. return ret;
  1671. }
  1672. for (c = 0; c < num_se; c++) {
  1673. if (chans[c] >= adc_info->max_channels) {
  1674. dev_err(&indio_dev->dev, "Invalid channel %d\n",
  1675. chans[c]);
  1676. return -EINVAL;
  1677. }
  1678. /* Channel can't be configured both as single-ended & diff */
  1679. for (i = 0; i < num_diff; i++) {
  1680. if (chans[c] == diff[i].vinp) {
  1681. dev_err(&indio_dev->dev, "channel %d misconfigured\n",
  1682. chans[c]);
  1683. return -EINVAL;
  1684. }
  1685. }
  1686. stm32_adc_chan_init_one(indio_dev, &channels[scan_index],
  1687. chans[c], 0, scan_index, false);
  1688. scan_index++;
  1689. }
  1690. }
  1691. if (adc->nsmps > 0) {
  1692. ret = device_property_read_u32_array(dev, "st,min-sample-time-nsecs",
  1693. smps, adc->nsmps);
  1694. if (ret)
  1695. return ret;
  1696. }
  1697. for (i = 0; i < scan_index; i++) {
  1698. /*
  1699. * This check is used with the above logic so that smp value
  1700. * will only be modified if valid u32 value can be decoded. This
  1701. * allows to get either no value, 1 shared value for all indexes,
  1702. * or one value per channel. The point is to have the same
  1703. * behavior as 'of_property_read_u32_index()'.
  1704. */
  1705. if (i < adc->nsmps)
  1706. smp = smps[i];
  1707. /* Prepare sampling time settings */
  1708. stm32_adc_smpr_init(adc, channels[i].channel, smp);
  1709. }
  1710. return scan_index;
  1711. }
  1712. static int stm32_adc_populate_int_ch(struct iio_dev *indio_dev, const char *ch_name,
  1713. int chan)
  1714. {
  1715. struct stm32_adc *adc = iio_priv(indio_dev);
  1716. u16 vrefint;
  1717. int i, ret;
  1718. for (i = 0; i < STM32_ADC_INT_CH_NB; i++) {
  1719. if (!strncmp(stm32_adc_ic[i].name, ch_name, STM32_ADC_CH_SZ)) {
  1720. if (stm32_adc_ic[i].idx != STM32_ADC_INT_CH_VREFINT) {
  1721. adc->int_ch[i] = chan;
  1722. break;
  1723. }
  1724. /* Get calibration data for vrefint channel */
  1725. ret = nvmem_cell_read_u16(&indio_dev->dev, "vrefint", &vrefint);
  1726. if (ret && ret != -ENOENT) {
  1727. return dev_err_probe(indio_dev->dev.parent, ret,
  1728. "nvmem access error\n");
  1729. }
  1730. if (ret == -ENOENT) {
  1731. dev_dbg(&indio_dev->dev, "vrefint calibration not found. Skip vrefint channel\n");
  1732. return ret;
  1733. } else if (!vrefint) {
  1734. dev_dbg(&indio_dev->dev, "Null vrefint calibration value. Skip vrefint channel\n");
  1735. return -ENOENT;
  1736. }
  1737. adc->int_ch[i] = chan;
  1738. adc->vrefint.vrefint_cal = vrefint;
  1739. }
  1740. }
  1741. return 0;
  1742. }
  1743. static int stm32_adc_generic_chan_init(struct iio_dev *indio_dev,
  1744. struct stm32_adc *adc,
  1745. struct iio_chan_spec *channels)
  1746. {
  1747. const struct stm32_adc_info *adc_info = adc->cfg->adc_info;
  1748. struct fwnode_handle *child;
  1749. const char *name;
  1750. int val, scan_index = 0, ret;
  1751. bool differential;
  1752. u32 vin[2];
  1753. device_for_each_child_node(&indio_dev->dev, child) {
  1754. ret = fwnode_property_read_u32(child, "reg", &val);
  1755. if (ret) {
  1756. dev_err(&indio_dev->dev, "Missing channel index %d\n", ret);
  1757. goto err;
  1758. }
  1759. ret = fwnode_property_read_string(child, "label", &name);
  1760. /* label is optional */
  1761. if (!ret) {
  1762. if (strlen(name) >= STM32_ADC_CH_SZ) {
  1763. dev_err(&indio_dev->dev, "Label %s exceeds %d characters\n",
  1764. name, STM32_ADC_CH_SZ);
  1765. ret = -EINVAL;
  1766. goto err;
  1767. }
  1768. strncpy(adc->chan_name[val], name, STM32_ADC_CH_SZ);
  1769. ret = stm32_adc_populate_int_ch(indio_dev, name, val);
  1770. if (ret == -ENOENT)
  1771. continue;
  1772. else if (ret)
  1773. goto err;
  1774. } else if (ret != -EINVAL) {
  1775. dev_err(&indio_dev->dev, "Invalid label %d\n", ret);
  1776. goto err;
  1777. }
  1778. if (val >= adc_info->max_channels) {
  1779. dev_err(&indio_dev->dev, "Invalid channel %d\n", val);
  1780. ret = -EINVAL;
  1781. goto err;
  1782. }
  1783. differential = false;
  1784. ret = fwnode_property_read_u32_array(child, "diff-channels", vin, 2);
  1785. /* diff-channels is optional */
  1786. if (!ret) {
  1787. differential = true;
  1788. if (vin[0] != val || vin[1] >= adc_info->max_channels) {
  1789. dev_err(&indio_dev->dev, "Invalid channel in%d-in%d\n",
  1790. vin[0], vin[1]);
  1791. goto err;
  1792. }
  1793. } else if (ret != -EINVAL) {
  1794. dev_err(&indio_dev->dev, "Invalid diff-channels property %d\n", ret);
  1795. goto err;
  1796. }
  1797. stm32_adc_chan_init_one(indio_dev, &channels[scan_index], val,
  1798. vin[1], scan_index, differential);
  1799. val = 0;
  1800. ret = fwnode_property_read_u32(child, "st,min-sample-time-ns", &val);
  1801. /* st,min-sample-time-ns is optional */
  1802. if (ret && ret != -EINVAL) {
  1803. dev_err(&indio_dev->dev, "Invalid st,min-sample-time-ns property %d\n",
  1804. ret);
  1805. goto err;
  1806. }
  1807. stm32_adc_smpr_init(adc, channels[scan_index].channel, val);
  1808. if (differential)
  1809. stm32_adc_smpr_init(adc, vin[1], val);
  1810. scan_index++;
  1811. }
  1812. return scan_index;
  1813. err:
  1814. fwnode_handle_put(child);
  1815. return ret;
  1816. }
  1817. static int stm32_adc_chan_fw_init(struct iio_dev *indio_dev, bool timestamping)
  1818. {
  1819. struct stm32_adc *adc = iio_priv(indio_dev);
  1820. const struct stm32_adc_info *adc_info = adc->cfg->adc_info;
  1821. struct iio_chan_spec *channels;
  1822. int scan_index = 0, num_channels = 0, ret, i;
  1823. bool legacy = false;
  1824. for (i = 0; i < STM32_ADC_INT_CH_NB; i++)
  1825. adc->int_ch[i] = STM32_ADC_INT_CH_NONE;
  1826. num_channels = device_get_child_node_count(&indio_dev->dev);
  1827. /* If no channels have been found, fallback to channels legacy properties. */
  1828. if (!num_channels) {
  1829. legacy = true;
  1830. ret = stm32_adc_get_legacy_chan_count(indio_dev, adc);
  1831. if (!ret) {
  1832. dev_err(indio_dev->dev.parent, "No channel found\n");
  1833. return -ENODATA;
  1834. } else if (ret < 0) {
  1835. return ret;
  1836. }
  1837. num_channels = ret;
  1838. }
  1839. if (num_channels > adc_info->max_channels) {
  1840. dev_err(&indio_dev->dev, "Channel number [%d] exceeds %d\n",
  1841. num_channels, adc_info->max_channels);
  1842. return -EINVAL;
  1843. }
  1844. if (timestamping)
  1845. num_channels++;
  1846. channels = devm_kcalloc(&indio_dev->dev, num_channels,
  1847. sizeof(struct iio_chan_spec), GFP_KERNEL);
  1848. if (!channels)
  1849. return -ENOMEM;
  1850. if (legacy)
  1851. ret = stm32_adc_legacy_chan_init(indio_dev, adc, channels,
  1852. timestamping ? num_channels - 1 : num_channels);
  1853. else
  1854. ret = stm32_adc_generic_chan_init(indio_dev, adc, channels);
  1855. if (ret < 0)
  1856. return ret;
  1857. scan_index = ret;
  1858. if (timestamping) {
  1859. struct iio_chan_spec *timestamp = &channels[scan_index];
  1860. timestamp->type = IIO_TIMESTAMP;
  1861. timestamp->channel = -1;
  1862. timestamp->scan_index = scan_index;
  1863. timestamp->scan_type.sign = 's';
  1864. timestamp->scan_type.realbits = 64;
  1865. timestamp->scan_type.storagebits = 64;
  1866. scan_index++;
  1867. }
  1868. indio_dev->num_channels = scan_index;
  1869. indio_dev->channels = channels;
  1870. return 0;
  1871. }
  1872. static int stm32_adc_dma_request(struct device *dev, struct iio_dev *indio_dev)
  1873. {
  1874. struct stm32_adc *adc = iio_priv(indio_dev);
  1875. struct dma_slave_config config;
  1876. int ret;
  1877. adc->dma_chan = dma_request_chan(dev, "rx");
  1878. if (IS_ERR(adc->dma_chan)) {
  1879. ret = PTR_ERR(adc->dma_chan);
  1880. if (ret != -ENODEV)
  1881. return dev_err_probe(dev, ret,
  1882. "DMA channel request failed with\n");
  1883. /* DMA is optional: fall back to IRQ mode */
  1884. adc->dma_chan = NULL;
  1885. return 0;
  1886. }
  1887. adc->rx_buf = dma_alloc_coherent(adc->dma_chan->device->dev,
  1888. STM32_DMA_BUFFER_SIZE,
  1889. &adc->rx_dma_buf, GFP_KERNEL);
  1890. if (!adc->rx_buf) {
  1891. ret = -ENOMEM;
  1892. goto err_release;
  1893. }
  1894. /* Configure DMA channel to read data register */
  1895. memset(&config, 0, sizeof(config));
  1896. config.src_addr = (dma_addr_t)adc->common->phys_base;
  1897. config.src_addr += adc->offset + adc->cfg->regs->dr;
  1898. config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
  1899. ret = dmaengine_slave_config(adc->dma_chan, &config);
  1900. if (ret)
  1901. goto err_free;
  1902. return 0;
  1903. err_free:
  1904. dma_free_coherent(adc->dma_chan->device->dev, STM32_DMA_BUFFER_SIZE,
  1905. adc->rx_buf, adc->rx_dma_buf);
  1906. err_release:
  1907. dma_release_channel(adc->dma_chan);
  1908. return ret;
  1909. }
  1910. static int stm32_adc_probe(struct platform_device *pdev)
  1911. {
  1912. struct iio_dev *indio_dev;
  1913. struct device *dev = &pdev->dev;
  1914. irqreturn_t (*handler)(int irq, void *p) = NULL;
  1915. struct stm32_adc *adc;
  1916. bool timestamping = false;
  1917. int ret;
  1918. indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*adc));
  1919. if (!indio_dev)
  1920. return -ENOMEM;
  1921. adc = iio_priv(indio_dev);
  1922. adc->common = dev_get_drvdata(pdev->dev.parent);
  1923. spin_lock_init(&adc->lock);
  1924. init_completion(&adc->completion);
  1925. adc->cfg = device_get_match_data(dev);
  1926. indio_dev->name = dev_name(&pdev->dev);
  1927. device_set_node(&indio_dev->dev, dev_fwnode(&pdev->dev));
  1928. indio_dev->info = &stm32_adc_iio_info;
  1929. indio_dev->modes = INDIO_DIRECT_MODE | INDIO_HARDWARE_TRIGGERED;
  1930. platform_set_drvdata(pdev, indio_dev);
  1931. ret = device_property_read_u32(dev, "reg", &adc->offset);
  1932. if (ret != 0) {
  1933. dev_err(&pdev->dev, "missing reg property\n");
  1934. return -EINVAL;
  1935. }
  1936. adc->irq = platform_get_irq(pdev, 0);
  1937. if (adc->irq < 0)
  1938. return adc->irq;
  1939. ret = devm_request_threaded_irq(&pdev->dev, adc->irq, stm32_adc_isr,
  1940. stm32_adc_threaded_isr,
  1941. 0, pdev->name, indio_dev);
  1942. if (ret) {
  1943. dev_err(&pdev->dev, "failed to request IRQ\n");
  1944. return ret;
  1945. }
  1946. adc->clk = devm_clk_get(&pdev->dev, NULL);
  1947. if (IS_ERR(adc->clk)) {
  1948. ret = PTR_ERR(adc->clk);
  1949. if (ret == -ENOENT && !adc->cfg->clk_required) {
  1950. adc->clk = NULL;
  1951. } else {
  1952. dev_err(&pdev->dev, "Can't get clock\n");
  1953. return ret;
  1954. }
  1955. }
  1956. ret = stm32_adc_fw_get_resolution(indio_dev);
  1957. if (ret < 0)
  1958. return ret;
  1959. ret = stm32_adc_dma_request(dev, indio_dev);
  1960. if (ret < 0)
  1961. return ret;
  1962. if (!adc->dma_chan) {
  1963. /* For PIO mode only, iio_pollfunc_store_time stores a timestamp
  1964. * in the primary trigger IRQ handler and stm32_adc_trigger_handler
  1965. * runs in the IRQ thread to push out buffer along with timestamp.
  1966. */
  1967. handler = &stm32_adc_trigger_handler;
  1968. timestamping = true;
  1969. }
  1970. ret = stm32_adc_chan_fw_init(indio_dev, timestamping);
  1971. if (ret < 0)
  1972. goto err_dma_disable;
  1973. ret = iio_triggered_buffer_setup(indio_dev,
  1974. &iio_pollfunc_store_time, handler,
  1975. &stm32_adc_buffer_setup_ops);
  1976. if (ret) {
  1977. dev_err(&pdev->dev, "buffer setup failed\n");
  1978. goto err_dma_disable;
  1979. }
  1980. /* Get stm32-adc-core PM online */
  1981. pm_runtime_get_noresume(dev);
  1982. pm_runtime_set_active(dev);
  1983. pm_runtime_set_autosuspend_delay(dev, STM32_ADC_HW_STOP_DELAY_MS);
  1984. pm_runtime_use_autosuspend(dev);
  1985. pm_runtime_enable(dev);
  1986. ret = stm32_adc_hw_start(dev);
  1987. if (ret)
  1988. goto err_buffer_cleanup;
  1989. ret = iio_device_register(indio_dev);
  1990. if (ret) {
  1991. dev_err(&pdev->dev, "iio dev register failed\n");
  1992. goto err_hw_stop;
  1993. }
  1994. pm_runtime_mark_last_busy(dev);
  1995. pm_runtime_put_autosuspend(dev);
  1996. return 0;
  1997. err_hw_stop:
  1998. stm32_adc_hw_stop(dev);
  1999. err_buffer_cleanup:
  2000. pm_runtime_disable(dev);
  2001. pm_runtime_set_suspended(dev);
  2002. pm_runtime_put_noidle(dev);
  2003. iio_triggered_buffer_cleanup(indio_dev);
  2004. err_dma_disable:
  2005. if (adc->dma_chan) {
  2006. dma_free_coherent(adc->dma_chan->device->dev,
  2007. STM32_DMA_BUFFER_SIZE,
  2008. adc->rx_buf, adc->rx_dma_buf);
  2009. dma_release_channel(adc->dma_chan);
  2010. }
  2011. return ret;
  2012. }
  2013. static int stm32_adc_remove(struct platform_device *pdev)
  2014. {
  2015. struct iio_dev *indio_dev = platform_get_drvdata(pdev);
  2016. struct stm32_adc *adc = iio_priv(indio_dev);
  2017. pm_runtime_get_sync(&pdev->dev);
  2018. iio_device_unregister(indio_dev);
  2019. stm32_adc_hw_stop(&pdev->dev);
  2020. pm_runtime_disable(&pdev->dev);
  2021. pm_runtime_set_suspended(&pdev->dev);
  2022. pm_runtime_put_noidle(&pdev->dev);
  2023. iio_triggered_buffer_cleanup(indio_dev);
  2024. if (adc->dma_chan) {
  2025. dma_free_coherent(adc->dma_chan->device->dev,
  2026. STM32_DMA_BUFFER_SIZE,
  2027. adc->rx_buf, adc->rx_dma_buf);
  2028. dma_release_channel(adc->dma_chan);
  2029. }
  2030. return 0;
  2031. }
  2032. static int stm32_adc_suspend(struct device *dev)
  2033. {
  2034. struct iio_dev *indio_dev = dev_get_drvdata(dev);
  2035. if (iio_buffer_enabled(indio_dev))
  2036. stm32_adc_buffer_predisable(indio_dev);
  2037. return pm_runtime_force_suspend(dev);
  2038. }
  2039. static int stm32_adc_resume(struct device *dev)
  2040. {
  2041. struct iio_dev *indio_dev = dev_get_drvdata(dev);
  2042. int ret;
  2043. ret = pm_runtime_force_resume(dev);
  2044. if (ret < 0)
  2045. return ret;
  2046. if (!iio_buffer_enabled(indio_dev))
  2047. return 0;
  2048. ret = stm32_adc_update_scan_mode(indio_dev,
  2049. indio_dev->active_scan_mask);
  2050. if (ret < 0)
  2051. return ret;
  2052. return stm32_adc_buffer_postenable(indio_dev);
  2053. }
  2054. static int stm32_adc_runtime_suspend(struct device *dev)
  2055. {
  2056. return stm32_adc_hw_stop(dev);
  2057. }
  2058. static int stm32_adc_runtime_resume(struct device *dev)
  2059. {
  2060. return stm32_adc_hw_start(dev);
  2061. }
  2062. static const struct dev_pm_ops stm32_adc_pm_ops = {
  2063. SYSTEM_SLEEP_PM_OPS(stm32_adc_suspend, stm32_adc_resume)
  2064. RUNTIME_PM_OPS(stm32_adc_runtime_suspend, stm32_adc_runtime_resume,
  2065. NULL)
  2066. };
  2067. static const struct stm32_adc_cfg stm32f4_adc_cfg = {
  2068. .regs = &stm32f4_adc_regspec,
  2069. .adc_info = &stm32f4_adc_info,
  2070. .trigs = stm32f4_adc_trigs,
  2071. .clk_required = true,
  2072. .start_conv = stm32f4_adc_start_conv,
  2073. .stop_conv = stm32f4_adc_stop_conv,
  2074. .smp_cycles = stm32f4_adc_smp_cycles,
  2075. .irq_clear = stm32f4_adc_irq_clear,
  2076. };
  2077. static const struct stm32_adc_cfg stm32h7_adc_cfg = {
  2078. .regs = &stm32h7_adc_regspec,
  2079. .adc_info = &stm32h7_adc_info,
  2080. .trigs = stm32h7_adc_trigs,
  2081. .start_conv = stm32h7_adc_start_conv,
  2082. .stop_conv = stm32h7_adc_stop_conv,
  2083. .prepare = stm32h7_adc_prepare,
  2084. .unprepare = stm32h7_adc_unprepare,
  2085. .smp_cycles = stm32h7_adc_smp_cycles,
  2086. .irq_clear = stm32h7_adc_irq_clear,
  2087. };
  2088. static const struct stm32_adc_cfg stm32mp1_adc_cfg = {
  2089. .regs = &stm32mp1_adc_regspec,
  2090. .adc_info = &stm32h7_adc_info,
  2091. .trigs = stm32h7_adc_trigs,
  2092. .has_vregready = true,
  2093. .start_conv = stm32h7_adc_start_conv,
  2094. .stop_conv = stm32h7_adc_stop_conv,
  2095. .prepare = stm32h7_adc_prepare,
  2096. .unprepare = stm32h7_adc_unprepare,
  2097. .smp_cycles = stm32h7_adc_smp_cycles,
  2098. .irq_clear = stm32h7_adc_irq_clear,
  2099. .ts_vrefint_ns = 4300,
  2100. };
  2101. static const struct of_device_id stm32_adc_of_match[] = {
  2102. { .compatible = "st,stm32f4-adc", .data = (void *)&stm32f4_adc_cfg },
  2103. { .compatible = "st,stm32h7-adc", .data = (void *)&stm32h7_adc_cfg },
  2104. { .compatible = "st,stm32mp1-adc", .data = (void *)&stm32mp1_adc_cfg },
  2105. {},
  2106. };
  2107. MODULE_DEVICE_TABLE(of, stm32_adc_of_match);
  2108. static struct platform_driver stm32_adc_driver = {
  2109. .probe = stm32_adc_probe,
  2110. .remove = stm32_adc_remove,
  2111. .driver = {
  2112. .name = "stm32-adc",
  2113. .of_match_table = stm32_adc_of_match,
  2114. .pm = pm_ptr(&stm32_adc_pm_ops),
  2115. },
  2116. };
  2117. module_platform_driver(stm32_adc_driver);
  2118. MODULE_AUTHOR("Fabrice Gasnier <[email protected]>");
  2119. MODULE_DESCRIPTION("STMicroelectronics STM32 ADC IIO driver");
  2120. MODULE_LICENSE("GPL v2");
  2121. MODULE_ALIAS("platform:stm32-adc");