ad7280a.c 30 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * AD7280A Lithium Ion Battery Monitoring System
  4. *
  5. * Copyright 2011 Analog Devices Inc.
  6. */
  7. #include <linux/bitfield.h>
  8. #include <linux/bits.h>
  9. #include <linux/crc8.h>
  10. #include <linux/delay.h>
  11. #include <linux/device.h>
  12. #include <linux/err.h>
  13. #include <linux/interrupt.h>
  14. #include <linux/kernel.h>
  15. #include <linux/module.h>
  16. #include <linux/mod_devicetable.h>
  17. #include <linux/mutex.h>
  18. #include <linux/slab.h>
  19. #include <linux/sysfs.h>
  20. #include <linux/spi/spi.h>
  21. #include <linux/iio/events.h>
  22. #include <linux/iio/iio.h>
  23. /* Registers */
  24. #define AD7280A_CELL_VOLTAGE_1_REG 0x0 /* D11 to D0, Read only */
  25. #define AD7280A_CELL_VOLTAGE_2_REG 0x1 /* D11 to D0, Read only */
  26. #define AD7280A_CELL_VOLTAGE_3_REG 0x2 /* D11 to D0, Read only */
  27. #define AD7280A_CELL_VOLTAGE_4_REG 0x3 /* D11 to D0, Read only */
  28. #define AD7280A_CELL_VOLTAGE_5_REG 0x4 /* D11 to D0, Read only */
  29. #define AD7280A_CELL_VOLTAGE_6_REG 0x5 /* D11 to D0, Read only */
  30. #define AD7280A_AUX_ADC_1_REG 0x6 /* D11 to D0, Read only */
  31. #define AD7280A_AUX_ADC_2_REG 0x7 /* D11 to D0, Read only */
  32. #define AD7280A_AUX_ADC_3_REG 0x8 /* D11 to D0, Read only */
  33. #define AD7280A_AUX_ADC_4_REG 0x9 /* D11 to D0, Read only */
  34. #define AD7280A_AUX_ADC_5_REG 0xA /* D11 to D0, Read only */
  35. #define AD7280A_AUX_ADC_6_REG 0xB /* D11 to D0, Read only */
  36. #define AD7280A_SELF_TEST_REG 0xC /* D11 to D0, Read only */
  37. #define AD7280A_CTRL_HB_REG 0xD /* D15 to D8, Read/write */
  38. #define AD7280A_CTRL_HB_CONV_INPUT_MSK GENMASK(7, 6)
  39. #define AD7280A_CTRL_HB_CONV_INPUT_ALL 0
  40. #define AD7280A_CTRL_HB_CONV_INPUT_6CELL_AUX1_3_5 1
  41. #define AD7280A_CTRL_HB_CONV_INPUT_6CELL 2
  42. #define AD7280A_CTRL_HB_CONV_INPUT_SELF_TEST 3
  43. #define AD7280A_CTRL_HB_CONV_RREAD_MSK GENMASK(5, 4)
  44. #define AD7280A_CTRL_HB_CONV_RREAD_ALL 0
  45. #define AD7280A_CTRL_HB_CONV_RREAD_6CELL_AUX1_3_5 1
  46. #define AD7280A_CTRL_HB_CONV_RREAD_6CELL 2
  47. #define AD7280A_CTRL_HB_CONV_RREAD_NO 3
  48. #define AD7280A_CTRL_HB_CONV_START_MSK BIT(3)
  49. #define AD7280A_CTRL_HB_CONV_START_CNVST 0
  50. #define AD7280A_CTRL_HB_CONV_START_CS 1
  51. #define AD7280A_CTRL_HB_CONV_AVG_MSK GENMASK(2, 1)
  52. #define AD7280A_CTRL_HB_CONV_AVG_DIS 0
  53. #define AD7280A_CTRL_HB_CONV_AVG_2 1
  54. #define AD7280A_CTRL_HB_CONV_AVG_4 2
  55. #define AD7280A_CTRL_HB_CONV_AVG_8 3
  56. #define AD7280A_CTRL_HB_PWRDN_SW BIT(0)
  57. #define AD7280A_CTRL_LB_REG 0xE /* D7 to D0, Read/write */
  58. #define AD7280A_CTRL_LB_SWRST_MSK BIT(7)
  59. #define AD7280A_CTRL_LB_ACQ_TIME_MSK GENMASK(6, 5)
  60. #define AD7280A_CTRL_LB_ACQ_TIME_400ns 0
  61. #define AD7280A_CTRL_LB_ACQ_TIME_800ns 1
  62. #define AD7280A_CTRL_LB_ACQ_TIME_1200ns 2
  63. #define AD7280A_CTRL_LB_ACQ_TIME_1600ns 3
  64. #define AD7280A_CTRL_LB_MUST_SET BIT(4)
  65. #define AD7280A_CTRL_LB_THERMISTOR_MSK BIT(3)
  66. #define AD7280A_CTRL_LB_LOCK_DEV_ADDR_MSK BIT(2)
  67. #define AD7280A_CTRL_LB_INC_DEV_ADDR_MSK BIT(1)
  68. #define AD7280A_CTRL_LB_DAISY_CHAIN_RB_MSK BIT(0)
  69. #define AD7280A_CELL_OVERVOLTAGE_REG 0xF /* D7 to D0, Read/write */
  70. #define AD7280A_CELL_UNDERVOLTAGE_REG 0x10 /* D7 to D0, Read/write */
  71. #define AD7280A_AUX_ADC_OVERVOLTAGE_REG 0x11 /* D7 to D0, Read/write */
  72. #define AD7280A_AUX_ADC_UNDERVOLTAGE_REG 0x12 /* D7 to D0, Read/write */
  73. #define AD7280A_ALERT_REG 0x13 /* D7 to D0, Read/write */
  74. #define AD7280A_ALERT_REMOVE_MSK GENMASK(3, 0)
  75. #define AD7280A_ALERT_REMOVE_AUX5 BIT(0)
  76. #define AD7280A_ALERT_REMOVE_AUX3_AUX5 BIT(1)
  77. #define AD7280A_ALERT_REMOVE_VIN5 BIT(2)
  78. #define AD7280A_ALERT_REMOVE_VIN4_VIN5 BIT(3)
  79. #define AD7280A_ALERT_GEN_STATIC_HIGH BIT(6)
  80. #define AD7280A_ALERT_RELAY_SIG_CHAIN_DOWN (BIT(7) | BIT(6))
  81. #define AD7280A_CELL_BALANCE_REG 0x14 /* D7 to D0, Read/write */
  82. #define AD7280A_CELL_BALANCE_CHAN_BITMAP_MSK GENMASK(7, 2)
  83. #define AD7280A_CB1_TIMER_REG 0x15 /* D7 to D0, Read/write */
  84. #define AD7280A_CB_TIMER_VAL_MSK GENMASK(7, 3)
  85. #define AD7280A_CB2_TIMER_REG 0x16 /* D7 to D0, Read/write */
  86. #define AD7280A_CB3_TIMER_REG 0x17 /* D7 to D0, Read/write */
  87. #define AD7280A_CB4_TIMER_REG 0x18 /* D7 to D0, Read/write */
  88. #define AD7280A_CB5_TIMER_REG 0x19 /* D7 to D0, Read/write */
  89. #define AD7280A_CB6_TIMER_REG 0x1A /* D7 to D0, Read/write */
  90. #define AD7280A_PD_TIMER_REG 0x1B /* D7 to D0, Read/write */
  91. #define AD7280A_READ_REG 0x1C /* D7 to D0, Read/write */
  92. #define AD7280A_READ_ADDR_MSK GENMASK(7, 2)
  93. #define AD7280A_CNVST_CTRL_REG 0x1D /* D7 to D0, Read/write */
  94. /* Transfer fields */
  95. #define AD7280A_TRANS_WRITE_DEVADDR_MSK GENMASK(31, 27)
  96. #define AD7280A_TRANS_WRITE_ADDR_MSK GENMASK(26, 21)
  97. #define AD7280A_TRANS_WRITE_VAL_MSK GENMASK(20, 13)
  98. #define AD7280A_TRANS_WRITE_ALL_MSK BIT(12)
  99. #define AD7280A_TRANS_WRITE_CRC_MSK GENMASK(10, 3)
  100. #define AD7280A_TRANS_WRITE_RES_PATTERN 0x2
  101. /* Layouts differ for channel vs other registers */
  102. #define AD7280A_TRANS_READ_DEVADDR_MSK GENMASK(31, 27)
  103. #define AD7280A_TRANS_READ_CONV_CHANADDR_MSK GENMASK(26, 23)
  104. #define AD7280A_TRANS_READ_CONV_DATA_MSK GENMASK(22, 11)
  105. #define AD7280A_TRANS_READ_REG_REGADDR_MSK GENMASK(26, 21)
  106. #define AD7280A_TRANS_READ_REG_DATA_MSK GENMASK(20, 13)
  107. #define AD7280A_TRANS_READ_WRITE_ACK_MSK BIT(10)
  108. #define AD7280A_TRANS_READ_CRC_MSK GENMASK(9, 2)
  109. /* Magic value used to indicate this special case */
  110. #define AD7280A_ALL_CELLS (0xAD << 16)
  111. #define AD7280A_MAX_SPI_CLK_HZ 700000 /* < 1MHz */
  112. #define AD7280A_MAX_CHAIN 8
  113. #define AD7280A_CELLS_PER_DEV 6
  114. #define AD7280A_BITS 12
  115. #define AD7280A_NUM_CH (AD7280A_AUX_ADC_6_REG - \
  116. AD7280A_CELL_VOLTAGE_1_REG + 1)
  117. #define AD7280A_CALC_VOLTAGE_CHAN_NUM(d, c) (((d) * AD7280A_CELLS_PER_DEV) + \
  118. (c))
  119. #define AD7280A_CALC_TEMP_CHAN_NUM(d, c) (((d) * AD7280A_CELLS_PER_DEV) + \
  120. (c) - AD7280A_CELLS_PER_DEV)
  121. #define AD7280A_DEVADDR_MASTER 0
  122. #define AD7280A_DEVADDR_ALL 0x1F
  123. static const unsigned short ad7280a_n_avg[4] = {1, 2, 4, 8};
  124. static const unsigned short ad7280a_t_acq_ns[4] = {470, 1030, 1510, 1945};
  125. /* 5-bit device address is sent LSB first */
  126. static unsigned int ad7280a_devaddr(unsigned int addr)
  127. {
  128. return ((addr & 0x1) << 4) |
  129. ((addr & 0x2) << 2) |
  130. (addr & 0x4) |
  131. ((addr & 0x8) >> 2) |
  132. ((addr & 0x10) >> 4);
  133. }
  134. /*
  135. * During a read a valid write is mandatory.
  136. * So writing to the highest available address (Address 0x1F) and setting the
  137. * address all parts bit to 0 is recommended.
  138. * So the TXVAL is AD7280A_DEVADDR_ALL + CRC
  139. */
  140. #define AD7280A_READ_TXVAL 0xF800030A
  141. /*
  142. * AD7280 CRC
  143. *
  144. * P(x) = x^8 + x^5 + x^3 + x^2 + x^1 + x^0 = 0b100101111 => 0x2F
  145. */
  146. #define POLYNOM 0x2F
  147. struct ad7280_state {
  148. struct spi_device *spi;
  149. struct iio_chan_spec *channels;
  150. unsigned int chain_last_alert_ignore;
  151. bool thermistor_term_en;
  152. int slave_num;
  153. int scan_cnt;
  154. int readback_delay_us;
  155. unsigned char crc_tab[CRC8_TABLE_SIZE];
  156. u8 oversampling_ratio;
  157. u8 acquisition_time;
  158. unsigned char ctrl_lb;
  159. unsigned char cell_threshhigh;
  160. unsigned char cell_threshlow;
  161. unsigned char aux_threshhigh;
  162. unsigned char aux_threshlow;
  163. unsigned char cb_mask[AD7280A_MAX_CHAIN];
  164. struct mutex lock; /* protect sensor state */
  165. __be32 tx __aligned(IIO_DMA_MINALIGN);
  166. __be32 rx;
  167. };
  168. static unsigned char ad7280_calc_crc8(unsigned char *crc_tab, unsigned int val)
  169. {
  170. unsigned char crc;
  171. crc = crc_tab[val >> 16 & 0xFF];
  172. crc = crc_tab[crc ^ (val >> 8 & 0xFF)];
  173. return crc ^ (val & 0xFF);
  174. }
  175. static int ad7280_check_crc(struct ad7280_state *st, unsigned int val)
  176. {
  177. unsigned char crc = ad7280_calc_crc8(st->crc_tab, val >> 10);
  178. if (crc != ((val >> 2) & 0xFF))
  179. return -EIO;
  180. return 0;
  181. }
  182. /*
  183. * After initiating a conversion sequence we need to wait until the conversion
  184. * is done. The delay is typically in the range of 15..30us however depending on
  185. * the number of devices in the daisy chain, the number of averages taken,
  186. * conversion delays and acquisition time options it may take up to 250us, in
  187. * this case we better sleep instead of busy wait.
  188. */
  189. static void ad7280_delay(struct ad7280_state *st)
  190. {
  191. if (st->readback_delay_us < 50)
  192. udelay(st->readback_delay_us);
  193. else
  194. usleep_range(250, 500);
  195. }
  196. static int __ad7280_read32(struct ad7280_state *st, unsigned int *val)
  197. {
  198. int ret;
  199. struct spi_transfer t = {
  200. .tx_buf = &st->tx,
  201. .rx_buf = &st->rx,
  202. .len = sizeof(st->tx),
  203. };
  204. st->tx = cpu_to_be32(AD7280A_READ_TXVAL);
  205. ret = spi_sync_transfer(st->spi, &t, 1);
  206. if (ret)
  207. return ret;
  208. *val = be32_to_cpu(st->rx);
  209. return 0;
  210. }
  211. static int ad7280_write(struct ad7280_state *st, unsigned int devaddr,
  212. unsigned int addr, bool all, unsigned int val)
  213. {
  214. unsigned int reg = FIELD_PREP(AD7280A_TRANS_WRITE_DEVADDR_MSK, devaddr) |
  215. FIELD_PREP(AD7280A_TRANS_WRITE_ADDR_MSK, addr) |
  216. FIELD_PREP(AD7280A_TRANS_WRITE_VAL_MSK, val) |
  217. FIELD_PREP(AD7280A_TRANS_WRITE_ALL_MSK, all);
  218. reg |= FIELD_PREP(AD7280A_TRANS_WRITE_CRC_MSK,
  219. ad7280_calc_crc8(st->crc_tab, reg >> 11));
  220. /* Reserved b010 pattern not included crc calc */
  221. reg |= AD7280A_TRANS_WRITE_RES_PATTERN;
  222. st->tx = cpu_to_be32(reg);
  223. return spi_write(st->spi, &st->tx, sizeof(st->tx));
  224. }
  225. static int ad7280_read_reg(struct ad7280_state *st, unsigned int devaddr,
  226. unsigned int addr)
  227. {
  228. int ret;
  229. unsigned int tmp;
  230. /* turns off the read operation on all parts */
  231. ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, AD7280A_CTRL_HB_REG, 1,
  232. FIELD_PREP(AD7280A_CTRL_HB_CONV_INPUT_MSK,
  233. AD7280A_CTRL_HB_CONV_INPUT_ALL) |
  234. FIELD_PREP(AD7280A_CTRL_HB_CONV_RREAD_MSK,
  235. AD7280A_CTRL_HB_CONV_RREAD_NO) |
  236. FIELD_PREP(AD7280A_CTRL_HB_CONV_AVG_MSK,
  237. st->oversampling_ratio));
  238. if (ret)
  239. return ret;
  240. /* turns on the read operation on the addressed part */
  241. ret = ad7280_write(st, devaddr, AD7280A_CTRL_HB_REG, 0,
  242. FIELD_PREP(AD7280A_CTRL_HB_CONV_INPUT_MSK,
  243. AD7280A_CTRL_HB_CONV_INPUT_ALL) |
  244. FIELD_PREP(AD7280A_CTRL_HB_CONV_RREAD_MSK,
  245. AD7280A_CTRL_HB_CONV_RREAD_ALL) |
  246. FIELD_PREP(AD7280A_CTRL_HB_CONV_AVG_MSK,
  247. st->oversampling_ratio));
  248. if (ret)
  249. return ret;
  250. /* Set register address on the part to be read from */
  251. ret = ad7280_write(st, devaddr, AD7280A_READ_REG, 0,
  252. FIELD_PREP(AD7280A_READ_ADDR_MSK, addr));
  253. if (ret)
  254. return ret;
  255. ret = __ad7280_read32(st, &tmp);
  256. if (ret)
  257. return ret;
  258. if (ad7280_check_crc(st, tmp))
  259. return -EIO;
  260. if ((FIELD_GET(AD7280A_TRANS_READ_DEVADDR_MSK, tmp) != devaddr) ||
  261. (FIELD_GET(AD7280A_TRANS_READ_REG_REGADDR_MSK, tmp) != addr))
  262. return -EFAULT;
  263. return FIELD_GET(AD7280A_TRANS_READ_REG_DATA_MSK, tmp);
  264. }
  265. static int ad7280_read_channel(struct ad7280_state *st, unsigned int devaddr,
  266. unsigned int addr)
  267. {
  268. int ret;
  269. unsigned int tmp;
  270. ret = ad7280_write(st, devaddr, AD7280A_READ_REG, 0,
  271. FIELD_PREP(AD7280A_READ_ADDR_MSK, addr));
  272. if (ret)
  273. return ret;
  274. ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, AD7280A_CTRL_HB_REG, 1,
  275. FIELD_PREP(AD7280A_CTRL_HB_CONV_INPUT_MSK,
  276. AD7280A_CTRL_HB_CONV_INPUT_ALL) |
  277. FIELD_PREP(AD7280A_CTRL_HB_CONV_RREAD_MSK,
  278. AD7280A_CTRL_HB_CONV_RREAD_NO) |
  279. FIELD_PREP(AD7280A_CTRL_HB_CONV_AVG_MSK,
  280. st->oversampling_ratio));
  281. if (ret)
  282. return ret;
  283. ret = ad7280_write(st, devaddr, AD7280A_CTRL_HB_REG, 0,
  284. FIELD_PREP(AD7280A_CTRL_HB_CONV_INPUT_MSK,
  285. AD7280A_CTRL_HB_CONV_INPUT_ALL) |
  286. FIELD_PREP(AD7280A_CTRL_HB_CONV_RREAD_MSK,
  287. AD7280A_CTRL_HB_CONV_RREAD_ALL) |
  288. FIELD_PREP(AD7280A_CTRL_HB_CONV_START_MSK,
  289. AD7280A_CTRL_HB_CONV_START_CS) |
  290. FIELD_PREP(AD7280A_CTRL_HB_CONV_AVG_MSK,
  291. st->oversampling_ratio));
  292. if (ret)
  293. return ret;
  294. ad7280_delay(st);
  295. ret = __ad7280_read32(st, &tmp);
  296. if (ret)
  297. return ret;
  298. if (ad7280_check_crc(st, tmp))
  299. return -EIO;
  300. if ((FIELD_GET(AD7280A_TRANS_READ_DEVADDR_MSK, tmp) != devaddr) ||
  301. (FIELD_GET(AD7280A_TRANS_READ_CONV_CHANADDR_MSK, tmp) != addr))
  302. return -EFAULT;
  303. return FIELD_GET(AD7280A_TRANS_READ_CONV_DATA_MSK, tmp);
  304. }
  305. static int ad7280_read_all_channels(struct ad7280_state *st, unsigned int cnt,
  306. unsigned int *array)
  307. {
  308. int i, ret;
  309. unsigned int tmp, sum = 0;
  310. ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, AD7280A_READ_REG, 1,
  311. AD7280A_CELL_VOLTAGE_1_REG << 2);
  312. if (ret)
  313. return ret;
  314. ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, AD7280A_CTRL_HB_REG, 1,
  315. FIELD_PREP(AD7280A_CTRL_HB_CONV_INPUT_MSK,
  316. AD7280A_CTRL_HB_CONV_INPUT_ALL) |
  317. FIELD_PREP(AD7280A_CTRL_HB_CONV_RREAD_MSK,
  318. AD7280A_CTRL_HB_CONV_RREAD_ALL) |
  319. FIELD_PREP(AD7280A_CTRL_HB_CONV_START_MSK,
  320. AD7280A_CTRL_HB_CONV_START_CS) |
  321. FIELD_PREP(AD7280A_CTRL_HB_CONV_AVG_MSK,
  322. st->oversampling_ratio));
  323. if (ret)
  324. return ret;
  325. ad7280_delay(st);
  326. for (i = 0; i < cnt; i++) {
  327. ret = __ad7280_read32(st, &tmp);
  328. if (ret)
  329. return ret;
  330. if (ad7280_check_crc(st, tmp))
  331. return -EIO;
  332. if (array)
  333. array[i] = tmp;
  334. /* only sum cell voltages */
  335. if (FIELD_GET(AD7280A_TRANS_READ_CONV_CHANADDR_MSK, tmp) <=
  336. AD7280A_CELL_VOLTAGE_6_REG)
  337. sum += FIELD_GET(AD7280A_TRANS_READ_CONV_DATA_MSK, tmp);
  338. }
  339. return sum;
  340. }
  341. static void ad7280_sw_power_down(void *data)
  342. {
  343. struct ad7280_state *st = data;
  344. ad7280_write(st, AD7280A_DEVADDR_MASTER, AD7280A_CTRL_HB_REG, 1,
  345. AD7280A_CTRL_HB_PWRDN_SW |
  346. FIELD_PREP(AD7280A_CTRL_HB_CONV_AVG_MSK, st->oversampling_ratio));
  347. }
  348. static int ad7280_chain_setup(struct ad7280_state *st)
  349. {
  350. unsigned int val, n;
  351. int ret;
  352. ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, AD7280A_CTRL_LB_REG, 1,
  353. FIELD_PREP(AD7280A_CTRL_LB_DAISY_CHAIN_RB_MSK, 1) |
  354. FIELD_PREP(AD7280A_CTRL_LB_LOCK_DEV_ADDR_MSK, 1) |
  355. AD7280A_CTRL_LB_MUST_SET |
  356. FIELD_PREP(AD7280A_CTRL_LB_SWRST_MSK, 1) |
  357. st->ctrl_lb);
  358. if (ret)
  359. return ret;
  360. ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, AD7280A_CTRL_LB_REG, 1,
  361. FIELD_PREP(AD7280A_CTRL_LB_DAISY_CHAIN_RB_MSK, 1) |
  362. FIELD_PREP(AD7280A_CTRL_LB_LOCK_DEV_ADDR_MSK, 1) |
  363. AD7280A_CTRL_LB_MUST_SET |
  364. FIELD_PREP(AD7280A_CTRL_LB_SWRST_MSK, 0) |
  365. st->ctrl_lb);
  366. if (ret)
  367. goto error_power_down;
  368. ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, AD7280A_READ_REG, 1,
  369. FIELD_PREP(AD7280A_READ_ADDR_MSK, AD7280A_CTRL_LB_REG));
  370. if (ret)
  371. goto error_power_down;
  372. for (n = 0; n <= AD7280A_MAX_CHAIN; n++) {
  373. ret = __ad7280_read32(st, &val);
  374. if (ret)
  375. goto error_power_down;
  376. if (val == 0)
  377. return n - 1;
  378. if (ad7280_check_crc(st, val)) {
  379. ret = -EIO;
  380. goto error_power_down;
  381. }
  382. if (n != ad7280a_devaddr(FIELD_GET(AD7280A_TRANS_READ_DEVADDR_MSK, val))) {
  383. ret = -EIO;
  384. goto error_power_down;
  385. }
  386. }
  387. ret = -EFAULT;
  388. error_power_down:
  389. ad7280_write(st, AD7280A_DEVADDR_MASTER, AD7280A_CTRL_HB_REG, 1,
  390. AD7280A_CTRL_HB_PWRDN_SW |
  391. FIELD_PREP(AD7280A_CTRL_HB_CONV_AVG_MSK, st->oversampling_ratio));
  392. return ret;
  393. }
  394. static ssize_t ad7280_show_balance_sw(struct iio_dev *indio_dev,
  395. uintptr_t private,
  396. const struct iio_chan_spec *chan, char *buf)
  397. {
  398. struct ad7280_state *st = iio_priv(indio_dev);
  399. return sysfs_emit(buf, "%d\n",
  400. !!(st->cb_mask[chan->address >> 8] &
  401. BIT(chan->address & 0xFF)));
  402. }
  403. static ssize_t ad7280_store_balance_sw(struct iio_dev *indio_dev,
  404. uintptr_t private,
  405. const struct iio_chan_spec *chan,
  406. const char *buf, size_t len)
  407. {
  408. struct ad7280_state *st = iio_priv(indio_dev);
  409. unsigned int devaddr, ch;
  410. bool readin;
  411. int ret;
  412. ret = kstrtobool(buf, &readin);
  413. if (ret)
  414. return ret;
  415. devaddr = chan->address >> 8;
  416. ch = chan->address & 0xFF;
  417. mutex_lock(&st->lock);
  418. if (readin)
  419. st->cb_mask[devaddr] |= BIT(ch);
  420. else
  421. st->cb_mask[devaddr] &= ~BIT(ch);
  422. ret = ad7280_write(st, devaddr, AD7280A_CELL_BALANCE_REG, 0,
  423. FIELD_PREP(AD7280A_CELL_BALANCE_CHAN_BITMAP_MSK,
  424. st->cb_mask[devaddr]));
  425. mutex_unlock(&st->lock);
  426. return ret ? ret : len;
  427. }
  428. static ssize_t ad7280_show_balance_timer(struct iio_dev *indio_dev,
  429. uintptr_t private,
  430. const struct iio_chan_spec *chan,
  431. char *buf)
  432. {
  433. struct ad7280_state *st = iio_priv(indio_dev);
  434. unsigned int msecs;
  435. int ret;
  436. mutex_lock(&st->lock);
  437. ret = ad7280_read_reg(st, chan->address >> 8,
  438. (chan->address & 0xFF) + AD7280A_CB1_TIMER_REG);
  439. mutex_unlock(&st->lock);
  440. if (ret < 0)
  441. return ret;
  442. msecs = FIELD_GET(AD7280A_CB_TIMER_VAL_MSK, ret) * 71500;
  443. return sysfs_emit(buf, "%u.%u\n", msecs / 1000, msecs % 1000);
  444. }
  445. static ssize_t ad7280_store_balance_timer(struct iio_dev *indio_dev,
  446. uintptr_t private,
  447. const struct iio_chan_spec *chan,
  448. const char *buf, size_t len)
  449. {
  450. struct ad7280_state *st = iio_priv(indio_dev);
  451. int val, val2;
  452. int ret;
  453. ret = iio_str_to_fixpoint(buf, 1000, &val, &val2);
  454. if (ret)
  455. return ret;
  456. val = val * 1000 + val2;
  457. val /= 71500;
  458. if (val > 31)
  459. return -EINVAL;
  460. mutex_lock(&st->lock);
  461. ret = ad7280_write(st, chan->address >> 8,
  462. (chan->address & 0xFF) + AD7280A_CB1_TIMER_REG, 0,
  463. FIELD_PREP(AD7280A_CB_TIMER_VAL_MSK, val));
  464. mutex_unlock(&st->lock);
  465. return ret ? ret : len;
  466. }
  467. static const struct iio_chan_spec_ext_info ad7280_cell_ext_info[] = {
  468. {
  469. .name = "balance_switch_en",
  470. .read = ad7280_show_balance_sw,
  471. .write = ad7280_store_balance_sw,
  472. .shared = IIO_SEPARATE,
  473. }, {
  474. .name = "balance_switch_timer",
  475. .read = ad7280_show_balance_timer,
  476. .write = ad7280_store_balance_timer,
  477. .shared = IIO_SEPARATE,
  478. },
  479. {}
  480. };
  481. static const struct iio_event_spec ad7280_events[] = {
  482. {
  483. .type = IIO_EV_TYPE_THRESH,
  484. .dir = IIO_EV_DIR_RISING,
  485. .mask_shared_by_type = BIT(IIO_EV_INFO_VALUE),
  486. }, {
  487. .type = IIO_EV_TYPE_THRESH,
  488. .dir = IIO_EV_DIR_FALLING,
  489. .mask_shared_by_type = BIT(IIO_EV_INFO_VALUE),
  490. },
  491. };
  492. static void ad7280_voltage_channel_init(struct iio_chan_spec *chan, int i,
  493. bool irq_present)
  494. {
  495. chan->type = IIO_VOLTAGE;
  496. chan->differential = 1;
  497. chan->channel = i;
  498. chan->channel2 = chan->channel + 1;
  499. if (irq_present) {
  500. chan->event_spec = ad7280_events;
  501. chan->num_event_specs = ARRAY_SIZE(ad7280_events);
  502. }
  503. chan->ext_info = ad7280_cell_ext_info;
  504. }
  505. static void ad7280_temp_channel_init(struct iio_chan_spec *chan, int i,
  506. bool irq_present)
  507. {
  508. chan->type = IIO_TEMP;
  509. chan->channel = i;
  510. if (irq_present) {
  511. chan->event_spec = ad7280_events;
  512. chan->num_event_specs = ARRAY_SIZE(ad7280_events);
  513. }
  514. }
  515. static void ad7280_common_fields_init(struct iio_chan_spec *chan, int addr,
  516. int cnt)
  517. {
  518. chan->indexed = 1;
  519. chan->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
  520. chan->info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE);
  521. chan->info_mask_shared_by_all = BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO);
  522. chan->address = addr;
  523. chan->scan_index = cnt;
  524. chan->scan_type.sign = 'u';
  525. chan->scan_type.realbits = 12;
  526. chan->scan_type.storagebits = 32;
  527. }
  528. static void ad7280_total_voltage_channel_init(struct iio_chan_spec *chan,
  529. int cnt, int dev)
  530. {
  531. chan->type = IIO_VOLTAGE;
  532. chan->differential = 1;
  533. chan->channel = 0;
  534. chan->channel2 = dev * AD7280A_CELLS_PER_DEV;
  535. chan->address = AD7280A_ALL_CELLS;
  536. chan->indexed = 1;
  537. chan->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
  538. chan->info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE);
  539. chan->scan_index = cnt;
  540. chan->scan_type.sign = 'u';
  541. chan->scan_type.realbits = 32;
  542. chan->scan_type.storagebits = 32;
  543. }
  544. static void ad7280_init_dev_channels(struct ad7280_state *st, int dev, int *cnt,
  545. bool irq_present)
  546. {
  547. int addr, ch, i;
  548. struct iio_chan_spec *chan;
  549. for (ch = AD7280A_CELL_VOLTAGE_1_REG; ch <= AD7280A_AUX_ADC_6_REG; ch++) {
  550. chan = &st->channels[*cnt];
  551. if (ch < AD7280A_AUX_ADC_1_REG) {
  552. i = AD7280A_CALC_VOLTAGE_CHAN_NUM(dev, ch);
  553. ad7280_voltage_channel_init(chan, i, irq_present);
  554. } else {
  555. i = AD7280A_CALC_TEMP_CHAN_NUM(dev, ch);
  556. ad7280_temp_channel_init(chan, i, irq_present);
  557. }
  558. addr = ad7280a_devaddr(dev) << 8 | ch;
  559. ad7280_common_fields_init(chan, addr, *cnt);
  560. (*cnt)++;
  561. }
  562. }
  563. static int ad7280_channel_init(struct ad7280_state *st, bool irq_present)
  564. {
  565. int dev, cnt = 0;
  566. st->channels = devm_kcalloc(&st->spi->dev, (st->slave_num + 1) * 12 + 1,
  567. sizeof(*st->channels), GFP_KERNEL);
  568. if (!st->channels)
  569. return -ENOMEM;
  570. for (dev = 0; dev <= st->slave_num; dev++)
  571. ad7280_init_dev_channels(st, dev, &cnt, irq_present);
  572. ad7280_total_voltage_channel_init(&st->channels[cnt], cnt, dev);
  573. return cnt + 1;
  574. }
  575. static int ad7280a_read_thresh(struct iio_dev *indio_dev,
  576. const struct iio_chan_spec *chan,
  577. enum iio_event_type type,
  578. enum iio_event_direction dir,
  579. enum iio_event_info info, int *val, int *val2)
  580. {
  581. struct ad7280_state *st = iio_priv(indio_dev);
  582. switch (chan->type) {
  583. case IIO_VOLTAGE:
  584. switch (dir) {
  585. case IIO_EV_DIR_RISING:
  586. *val = 1000 + (st->cell_threshhigh * 1568L) / 100;
  587. return IIO_VAL_INT;
  588. case IIO_EV_DIR_FALLING:
  589. *val = 1000 + (st->cell_threshlow * 1568L) / 100;
  590. return IIO_VAL_INT;
  591. default:
  592. return -EINVAL;
  593. }
  594. break;
  595. case IIO_TEMP:
  596. switch (dir) {
  597. case IIO_EV_DIR_RISING:
  598. *val = ((st->aux_threshhigh) * 196L) / 10;
  599. return IIO_VAL_INT;
  600. case IIO_EV_DIR_FALLING:
  601. *val = (st->aux_threshlow * 196L) / 10;
  602. return IIO_VAL_INT;
  603. default:
  604. return -EINVAL;
  605. }
  606. break;
  607. default:
  608. return -EINVAL;
  609. }
  610. }
  611. static int ad7280a_write_thresh(struct iio_dev *indio_dev,
  612. const struct iio_chan_spec *chan,
  613. enum iio_event_type type,
  614. enum iio_event_direction dir,
  615. enum iio_event_info info,
  616. int val, int val2)
  617. {
  618. struct ad7280_state *st = iio_priv(indio_dev);
  619. unsigned int addr;
  620. long value;
  621. int ret;
  622. if (val2 != 0)
  623. return -EINVAL;
  624. mutex_lock(&st->lock);
  625. switch (chan->type) {
  626. case IIO_VOLTAGE:
  627. value = ((val - 1000) * 100) / 1568; /* LSB 15.68mV */
  628. value = clamp(value, 0L, 0xFFL);
  629. switch (dir) {
  630. case IIO_EV_DIR_RISING:
  631. addr = AD7280A_CELL_OVERVOLTAGE_REG;
  632. ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, addr,
  633. 1, value);
  634. if (ret)
  635. break;
  636. st->cell_threshhigh = value;
  637. break;
  638. case IIO_EV_DIR_FALLING:
  639. addr = AD7280A_CELL_UNDERVOLTAGE_REG;
  640. ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, addr,
  641. 1, value);
  642. if (ret)
  643. break;
  644. st->cell_threshlow = value;
  645. break;
  646. default:
  647. ret = -EINVAL;
  648. goto err_unlock;
  649. }
  650. break;
  651. case IIO_TEMP:
  652. value = (val * 10) / 196; /* LSB 19.6mV */
  653. value = clamp(value, 0L, 0xFFL);
  654. switch (dir) {
  655. case IIO_EV_DIR_RISING:
  656. addr = AD7280A_AUX_ADC_OVERVOLTAGE_REG;
  657. ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, addr,
  658. 1, value);
  659. if (ret)
  660. break;
  661. st->aux_threshhigh = value;
  662. break;
  663. case IIO_EV_DIR_FALLING:
  664. addr = AD7280A_AUX_ADC_UNDERVOLTAGE_REG;
  665. ret = ad7280_write(st, AD7280A_DEVADDR_MASTER, addr,
  666. 1, value);
  667. if (ret)
  668. break;
  669. st->aux_threshlow = value;
  670. break;
  671. default:
  672. ret = -EINVAL;
  673. goto err_unlock;
  674. }
  675. break;
  676. default:
  677. ret = -EINVAL;
  678. goto err_unlock;
  679. }
  680. err_unlock:
  681. mutex_unlock(&st->lock);
  682. return ret;
  683. }
  684. static irqreturn_t ad7280_event_handler(int irq, void *private)
  685. {
  686. struct iio_dev *indio_dev = private;
  687. struct ad7280_state *st = iio_priv(indio_dev);
  688. unsigned int *channels;
  689. int i, ret;
  690. channels = kcalloc(st->scan_cnt, sizeof(*channels), GFP_KERNEL);
  691. if (!channels)
  692. return IRQ_HANDLED;
  693. ret = ad7280_read_all_channels(st, st->scan_cnt, channels);
  694. if (ret < 0)
  695. goto out;
  696. for (i = 0; i < st->scan_cnt; i++) {
  697. unsigned int val;
  698. val = FIELD_GET(AD7280A_TRANS_READ_CONV_DATA_MSK, channels[i]);
  699. if (FIELD_GET(AD7280A_TRANS_READ_CONV_CHANADDR_MSK, channels[i]) <=
  700. AD7280A_CELL_VOLTAGE_6_REG) {
  701. if (val >= st->cell_threshhigh) {
  702. u64 tmp = IIO_EVENT_CODE(IIO_VOLTAGE, 1, 0,
  703. IIO_EV_DIR_RISING,
  704. IIO_EV_TYPE_THRESH,
  705. 0, 0, 0);
  706. iio_push_event(indio_dev, tmp,
  707. iio_get_time_ns(indio_dev));
  708. } else if (val <= st->cell_threshlow) {
  709. u64 tmp = IIO_EVENT_CODE(IIO_VOLTAGE, 1, 0,
  710. IIO_EV_DIR_FALLING,
  711. IIO_EV_TYPE_THRESH,
  712. 0, 0, 0);
  713. iio_push_event(indio_dev, tmp,
  714. iio_get_time_ns(indio_dev));
  715. }
  716. } else {
  717. if (val >= st->aux_threshhigh) {
  718. u64 tmp = IIO_UNMOD_EVENT_CODE(IIO_TEMP, 0,
  719. IIO_EV_TYPE_THRESH,
  720. IIO_EV_DIR_RISING);
  721. iio_push_event(indio_dev, tmp,
  722. iio_get_time_ns(indio_dev));
  723. } else if (val <= st->aux_threshlow) {
  724. u64 tmp = IIO_UNMOD_EVENT_CODE(IIO_TEMP, 0,
  725. IIO_EV_TYPE_THRESH,
  726. IIO_EV_DIR_FALLING);
  727. iio_push_event(indio_dev, tmp,
  728. iio_get_time_ns(indio_dev));
  729. }
  730. }
  731. }
  732. out:
  733. kfree(channels);
  734. return IRQ_HANDLED;
  735. }
  736. static void ad7280_update_delay(struct ad7280_state *st)
  737. {
  738. /*
  739. * Total Conversion Time = ((tACQ + tCONV) *
  740. * (Number of Conversions per Part)) −
  741. * tACQ + ((N - 1) * tDELAY)
  742. *
  743. * Readback Delay = Total Conversion Time + tWAIT
  744. */
  745. st->readback_delay_us =
  746. ((ad7280a_t_acq_ns[st->acquisition_time & 0x3] + 720) *
  747. (AD7280A_NUM_CH * ad7280a_n_avg[st->oversampling_ratio & 0x3])) -
  748. ad7280a_t_acq_ns[st->acquisition_time & 0x3] + st->slave_num * 250;
  749. /* Convert to usecs */
  750. st->readback_delay_us = DIV_ROUND_UP(st->readback_delay_us, 1000);
  751. st->readback_delay_us += 5; /* Add tWAIT */
  752. }
  753. static int ad7280_read_raw(struct iio_dev *indio_dev,
  754. struct iio_chan_spec const *chan,
  755. int *val,
  756. int *val2,
  757. long m)
  758. {
  759. struct ad7280_state *st = iio_priv(indio_dev);
  760. int ret;
  761. switch (m) {
  762. case IIO_CHAN_INFO_RAW:
  763. mutex_lock(&st->lock);
  764. if (chan->address == AD7280A_ALL_CELLS)
  765. ret = ad7280_read_all_channels(st, st->scan_cnt, NULL);
  766. else
  767. ret = ad7280_read_channel(st, chan->address >> 8,
  768. chan->address & 0xFF);
  769. mutex_unlock(&st->lock);
  770. if (ret < 0)
  771. return ret;
  772. *val = ret;
  773. return IIO_VAL_INT;
  774. case IIO_CHAN_INFO_SCALE:
  775. if ((chan->address & 0xFF) <= AD7280A_CELL_VOLTAGE_6_REG)
  776. *val = 4000;
  777. else
  778. *val = 5000;
  779. *val2 = AD7280A_BITS;
  780. return IIO_VAL_FRACTIONAL_LOG2;
  781. case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
  782. *val = ad7280a_n_avg[st->oversampling_ratio];
  783. return IIO_VAL_INT;
  784. }
  785. return -EINVAL;
  786. }
  787. static int ad7280_write_raw(struct iio_dev *indio_dev,
  788. struct iio_chan_spec const *chan,
  789. int val, int val2, long mask)
  790. {
  791. struct ad7280_state *st = iio_priv(indio_dev);
  792. int i;
  793. switch (mask) {
  794. case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
  795. if (val2 != 0)
  796. return -EINVAL;
  797. for (i = 0; i < ARRAY_SIZE(ad7280a_n_avg); i++) {
  798. if (val == ad7280a_n_avg[i]) {
  799. st->oversampling_ratio = i;
  800. ad7280_update_delay(st);
  801. return 0;
  802. }
  803. }
  804. return -EINVAL;
  805. default:
  806. return -EINVAL;
  807. }
  808. }
  809. static const struct iio_info ad7280_info = {
  810. .read_raw = ad7280_read_raw,
  811. .write_raw = ad7280_write_raw,
  812. .read_event_value = &ad7280a_read_thresh,
  813. .write_event_value = &ad7280a_write_thresh,
  814. };
  815. static const struct iio_info ad7280_info_no_irq = {
  816. .read_raw = ad7280_read_raw,
  817. .write_raw = ad7280_write_raw,
  818. };
  819. static int ad7280_probe(struct spi_device *spi)
  820. {
  821. struct device *dev = &spi->dev;
  822. struct ad7280_state *st;
  823. int ret;
  824. struct iio_dev *indio_dev;
  825. indio_dev = devm_iio_device_alloc(dev, sizeof(*st));
  826. if (!indio_dev)
  827. return -ENOMEM;
  828. st = iio_priv(indio_dev);
  829. spi_set_drvdata(spi, indio_dev);
  830. st->spi = spi;
  831. mutex_init(&st->lock);
  832. st->thermistor_term_en =
  833. device_property_read_bool(dev, "adi,thermistor-termination");
  834. if (device_property_present(dev, "adi,acquisition-time-ns")) {
  835. u32 val;
  836. ret = device_property_read_u32(dev, "adi,acquisition-time-ns", &val);
  837. if (ret)
  838. return ret;
  839. switch (val) {
  840. case 400:
  841. st->acquisition_time = AD7280A_CTRL_LB_ACQ_TIME_400ns;
  842. break;
  843. case 800:
  844. st->acquisition_time = AD7280A_CTRL_LB_ACQ_TIME_800ns;
  845. break;
  846. case 1200:
  847. st->acquisition_time = AD7280A_CTRL_LB_ACQ_TIME_1200ns;
  848. break;
  849. case 1600:
  850. st->acquisition_time = AD7280A_CTRL_LB_ACQ_TIME_1600ns;
  851. break;
  852. default:
  853. dev_err(dev, "Firmware provided acquisition time is invalid\n");
  854. return -EINVAL;
  855. }
  856. } else {
  857. st->acquisition_time = AD7280A_CTRL_LB_ACQ_TIME_400ns;
  858. }
  859. /* Alert masks are intended for when particular inputs are not wired up */
  860. if (device_property_present(dev, "adi,voltage-alert-last-chan")) {
  861. u32 val;
  862. ret = device_property_read_u32(dev, "adi,voltage-alert-last-chan", &val);
  863. if (ret)
  864. return ret;
  865. switch (val) {
  866. case 3:
  867. st->chain_last_alert_ignore |= AD7280A_ALERT_REMOVE_VIN4_VIN5;
  868. break;
  869. case 4:
  870. st->chain_last_alert_ignore |= AD7280A_ALERT_REMOVE_VIN5;
  871. break;
  872. case 5:
  873. break;
  874. default:
  875. dev_err(dev,
  876. "Firmware provided last voltage alert channel invalid\n");
  877. break;
  878. }
  879. }
  880. crc8_populate_msb(st->crc_tab, POLYNOM);
  881. st->spi->max_speed_hz = AD7280A_MAX_SPI_CLK_HZ;
  882. st->spi->mode = SPI_MODE_1;
  883. spi_setup(st->spi);
  884. st->ctrl_lb = FIELD_PREP(AD7280A_CTRL_LB_ACQ_TIME_MSK, st->acquisition_time) |
  885. FIELD_PREP(AD7280A_CTRL_LB_THERMISTOR_MSK, st->thermistor_term_en);
  886. st->oversampling_ratio = 0; /* No oversampling */
  887. ret = ad7280_chain_setup(st);
  888. if (ret < 0)
  889. return ret;
  890. st->slave_num = ret;
  891. st->scan_cnt = (st->slave_num + 1) * AD7280A_NUM_CH;
  892. st->cell_threshhigh = 0xFF;
  893. st->aux_threshhigh = 0xFF;
  894. ret = devm_add_action_or_reset(dev, ad7280_sw_power_down, st);
  895. if (ret)
  896. return ret;
  897. ad7280_update_delay(st);
  898. indio_dev->name = spi_get_device_id(spi)->name;
  899. indio_dev->modes = INDIO_DIRECT_MODE;
  900. ret = ad7280_channel_init(st, spi->irq > 0);
  901. if (ret < 0)
  902. return ret;
  903. indio_dev->num_channels = ret;
  904. indio_dev->channels = st->channels;
  905. if (spi->irq > 0) {
  906. ret = ad7280_write(st, AD7280A_DEVADDR_MASTER,
  907. AD7280A_ALERT_REG, 1,
  908. AD7280A_ALERT_RELAY_SIG_CHAIN_DOWN);
  909. if (ret)
  910. return ret;
  911. ret = ad7280_write(st, ad7280a_devaddr(st->slave_num),
  912. AD7280A_ALERT_REG, 0,
  913. AD7280A_ALERT_GEN_STATIC_HIGH |
  914. FIELD_PREP(AD7280A_ALERT_REMOVE_MSK,
  915. st->chain_last_alert_ignore));
  916. if (ret)
  917. return ret;
  918. ret = devm_request_threaded_irq(dev, spi->irq,
  919. NULL,
  920. ad7280_event_handler,
  921. IRQF_TRIGGER_FALLING |
  922. IRQF_ONESHOT,
  923. indio_dev->name,
  924. indio_dev);
  925. if (ret)
  926. return ret;
  927. indio_dev->info = &ad7280_info;
  928. } else {
  929. indio_dev->info = &ad7280_info_no_irq;
  930. }
  931. return devm_iio_device_register(dev, indio_dev);
  932. }
  933. static const struct spi_device_id ad7280_id[] = {
  934. {"ad7280a", 0},
  935. {}
  936. };
  937. MODULE_DEVICE_TABLE(spi, ad7280_id);
  938. static struct spi_driver ad7280_driver = {
  939. .driver = {
  940. .name = "ad7280",
  941. },
  942. .probe = ad7280_probe,
  943. .id_table = ad7280_id,
  944. };
  945. module_spi_driver(ad7280_driver);
  946. MODULE_AUTHOR("Michael Hennerich <[email protected]>");
  947. MODULE_DESCRIPTION("Analog Devices AD7280A");
  948. MODULE_LICENSE("GPL v2");