bma220_spi.c 7.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * BMA220 Digital triaxial acceleration sensor driver
  4. *
  5. * Copyright (c) 2016,2020 Intel Corporation.
  6. */
  7. #include <linux/bits.h>
  8. #include <linux/kernel.h>
  9. #include <linux/mod_devicetable.h>
  10. #include <linux/module.h>
  11. #include <linux/spi/spi.h>
  12. #include <linux/iio/buffer.h>
  13. #include <linux/iio/iio.h>
  14. #include <linux/iio/sysfs.h>
  15. #include <linux/iio/trigger_consumer.h>
  16. #include <linux/iio/triggered_buffer.h>
  17. #define BMA220_REG_ID 0x00
  18. #define BMA220_REG_ACCEL_X 0x02
  19. #define BMA220_REG_ACCEL_Y 0x03
  20. #define BMA220_REG_ACCEL_Z 0x04
  21. #define BMA220_REG_RANGE 0x11
  22. #define BMA220_REG_SUSPEND 0x18
  23. #define BMA220_CHIP_ID 0xDD
  24. #define BMA220_READ_MASK BIT(7)
  25. #define BMA220_RANGE_MASK GENMASK(1, 0)
  26. #define BMA220_SUSPEND_SLEEP 0xFF
  27. #define BMA220_SUSPEND_WAKE 0x00
  28. #define BMA220_DEVICE_NAME "bma220"
  29. #define BMA220_ACCEL_CHANNEL(index, reg, axis) { \
  30. .type = IIO_ACCEL, \
  31. .address = reg, \
  32. .modified = 1, \
  33. .channel2 = IIO_MOD_##axis, \
  34. .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
  35. .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \
  36. .scan_index = index, \
  37. .scan_type = { \
  38. .sign = 's', \
  39. .realbits = 6, \
  40. .storagebits = 8, \
  41. .shift = 2, \
  42. .endianness = IIO_CPU, \
  43. }, \
  44. }
  45. enum bma220_axis {
  46. AXIS_X,
  47. AXIS_Y,
  48. AXIS_Z,
  49. };
  50. static const int bma220_scale_table[][2] = {
  51. {0, 623000}, {1, 248000}, {2, 491000}, {4, 983000},
  52. };
  53. struct bma220_data {
  54. struct spi_device *spi_device;
  55. struct mutex lock;
  56. struct {
  57. s8 chans[3];
  58. /* Ensure timestamp is naturally aligned. */
  59. s64 timestamp __aligned(8);
  60. } scan;
  61. u8 tx_buf[2] __aligned(IIO_DMA_MINALIGN);
  62. };
  63. static const struct iio_chan_spec bma220_channels[] = {
  64. BMA220_ACCEL_CHANNEL(0, BMA220_REG_ACCEL_X, X),
  65. BMA220_ACCEL_CHANNEL(1, BMA220_REG_ACCEL_Y, Y),
  66. BMA220_ACCEL_CHANNEL(2, BMA220_REG_ACCEL_Z, Z),
  67. IIO_CHAN_SOFT_TIMESTAMP(3),
  68. };
  69. static inline int bma220_read_reg(struct spi_device *spi, u8 reg)
  70. {
  71. return spi_w8r8(spi, reg | BMA220_READ_MASK);
  72. }
  73. static const unsigned long bma220_accel_scan_masks[] = {
  74. BIT(AXIS_X) | BIT(AXIS_Y) | BIT(AXIS_Z),
  75. 0
  76. };
  77. static irqreturn_t bma220_trigger_handler(int irq, void *p)
  78. {
  79. int ret;
  80. struct iio_poll_func *pf = p;
  81. struct iio_dev *indio_dev = pf->indio_dev;
  82. struct bma220_data *data = iio_priv(indio_dev);
  83. struct spi_device *spi = data->spi_device;
  84. mutex_lock(&data->lock);
  85. data->tx_buf[0] = BMA220_REG_ACCEL_X | BMA220_READ_MASK;
  86. ret = spi_write_then_read(spi, data->tx_buf, 1, &data->scan.chans,
  87. ARRAY_SIZE(bma220_channels) - 1);
  88. if (ret < 0)
  89. goto err;
  90. iio_push_to_buffers_with_timestamp(indio_dev, &data->scan,
  91. pf->timestamp);
  92. err:
  93. mutex_unlock(&data->lock);
  94. iio_trigger_notify_done(indio_dev->trig);
  95. return IRQ_HANDLED;
  96. }
  97. static int bma220_read_raw(struct iio_dev *indio_dev,
  98. struct iio_chan_spec const *chan,
  99. int *val, int *val2, long mask)
  100. {
  101. int ret;
  102. u8 range_idx;
  103. struct bma220_data *data = iio_priv(indio_dev);
  104. switch (mask) {
  105. case IIO_CHAN_INFO_RAW:
  106. ret = bma220_read_reg(data->spi_device, chan->address);
  107. if (ret < 0)
  108. return -EINVAL;
  109. *val = sign_extend32(ret >> chan->scan_type.shift,
  110. chan->scan_type.realbits - 1);
  111. return IIO_VAL_INT;
  112. case IIO_CHAN_INFO_SCALE:
  113. ret = bma220_read_reg(data->spi_device, BMA220_REG_RANGE);
  114. if (ret < 0)
  115. return ret;
  116. range_idx = ret & BMA220_RANGE_MASK;
  117. *val = bma220_scale_table[range_idx][0];
  118. *val2 = bma220_scale_table[range_idx][1];
  119. return IIO_VAL_INT_PLUS_MICRO;
  120. }
  121. return -EINVAL;
  122. }
  123. static int bma220_write_raw(struct iio_dev *indio_dev,
  124. struct iio_chan_spec const *chan,
  125. int val, int val2, long mask)
  126. {
  127. int i;
  128. int ret;
  129. int index = -1;
  130. struct bma220_data *data = iio_priv(indio_dev);
  131. switch (mask) {
  132. case IIO_CHAN_INFO_SCALE:
  133. for (i = 0; i < ARRAY_SIZE(bma220_scale_table); i++)
  134. if (val == bma220_scale_table[i][0] &&
  135. val2 == bma220_scale_table[i][1]) {
  136. index = i;
  137. break;
  138. }
  139. if (index < 0)
  140. return -EINVAL;
  141. mutex_lock(&data->lock);
  142. data->tx_buf[0] = BMA220_REG_RANGE;
  143. data->tx_buf[1] = index;
  144. ret = spi_write(data->spi_device, data->tx_buf,
  145. sizeof(data->tx_buf));
  146. if (ret < 0)
  147. dev_err(&data->spi_device->dev,
  148. "failed to set measurement range\n");
  149. mutex_unlock(&data->lock);
  150. return 0;
  151. }
  152. return -EINVAL;
  153. }
  154. static int bma220_read_avail(struct iio_dev *indio_dev,
  155. struct iio_chan_spec const *chan,
  156. const int **vals, int *type, int *length,
  157. long mask)
  158. {
  159. switch (mask) {
  160. case IIO_CHAN_INFO_SCALE:
  161. *vals = (int *)bma220_scale_table;
  162. *type = IIO_VAL_INT_PLUS_MICRO;
  163. *length = ARRAY_SIZE(bma220_scale_table) * 2;
  164. return IIO_AVAIL_LIST;
  165. default:
  166. return -EINVAL;
  167. }
  168. }
  169. static const struct iio_info bma220_info = {
  170. .read_raw = bma220_read_raw,
  171. .write_raw = bma220_write_raw,
  172. .read_avail = bma220_read_avail,
  173. };
  174. static int bma220_init(struct spi_device *spi)
  175. {
  176. int ret;
  177. ret = bma220_read_reg(spi, BMA220_REG_ID);
  178. if (ret != BMA220_CHIP_ID)
  179. return -ENODEV;
  180. /* Make sure the chip is powered on */
  181. ret = bma220_read_reg(spi, BMA220_REG_SUSPEND);
  182. if (ret == BMA220_SUSPEND_WAKE)
  183. ret = bma220_read_reg(spi, BMA220_REG_SUSPEND);
  184. if (ret < 0)
  185. return ret;
  186. if (ret == BMA220_SUSPEND_WAKE)
  187. return -EBUSY;
  188. return 0;
  189. }
  190. static int bma220_power(struct spi_device *spi, bool up)
  191. {
  192. int i, ret;
  193. /**
  194. * The chip can be suspended/woken up by a simple register read.
  195. * So, we need up to 2 register reads of the suspend register
  196. * to make sure that the device is in the desired state.
  197. */
  198. for (i = 0; i < 2; i++) {
  199. ret = bma220_read_reg(spi, BMA220_REG_SUSPEND);
  200. if (ret < 0)
  201. return ret;
  202. if (up && ret == BMA220_SUSPEND_SLEEP)
  203. return 0;
  204. if (!up && ret == BMA220_SUSPEND_WAKE)
  205. return 0;
  206. }
  207. return -EBUSY;
  208. }
  209. static void bma220_deinit(void *spi)
  210. {
  211. bma220_power(spi, false);
  212. }
  213. static int bma220_probe(struct spi_device *spi)
  214. {
  215. int ret;
  216. struct iio_dev *indio_dev;
  217. struct bma220_data *data;
  218. indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*data));
  219. if (!indio_dev) {
  220. dev_err(&spi->dev, "iio allocation failed!\n");
  221. return -ENOMEM;
  222. }
  223. data = iio_priv(indio_dev);
  224. data->spi_device = spi;
  225. mutex_init(&data->lock);
  226. indio_dev->info = &bma220_info;
  227. indio_dev->name = BMA220_DEVICE_NAME;
  228. indio_dev->modes = INDIO_DIRECT_MODE;
  229. indio_dev->channels = bma220_channels;
  230. indio_dev->num_channels = ARRAY_SIZE(bma220_channels);
  231. indio_dev->available_scan_masks = bma220_accel_scan_masks;
  232. ret = bma220_init(data->spi_device);
  233. if (ret)
  234. return ret;
  235. ret = devm_add_action_or_reset(&spi->dev, bma220_deinit, spi);
  236. if (ret)
  237. return ret;
  238. ret = devm_iio_triggered_buffer_setup(&spi->dev, indio_dev,
  239. iio_pollfunc_store_time,
  240. bma220_trigger_handler, NULL);
  241. if (ret < 0) {
  242. dev_err(&spi->dev, "iio triggered buffer setup failed\n");
  243. return ret;
  244. }
  245. return devm_iio_device_register(&spi->dev, indio_dev);
  246. }
  247. static int bma220_suspend(struct device *dev)
  248. {
  249. struct spi_device *spi = to_spi_device(dev);
  250. return bma220_power(spi, false);
  251. }
  252. static int bma220_resume(struct device *dev)
  253. {
  254. struct spi_device *spi = to_spi_device(dev);
  255. return bma220_power(spi, true);
  256. }
  257. static DEFINE_SIMPLE_DEV_PM_OPS(bma220_pm_ops, bma220_suspend, bma220_resume);
  258. static const struct spi_device_id bma220_spi_id[] = {
  259. {"bma220", 0},
  260. {}
  261. };
  262. static const struct acpi_device_id bma220_acpi_id[] = {
  263. {"BMA0220", 0},
  264. {}
  265. };
  266. MODULE_DEVICE_TABLE(spi, bma220_spi_id);
  267. static struct spi_driver bma220_driver = {
  268. .driver = {
  269. .name = "bma220_spi",
  270. .pm = pm_sleep_ptr(&bma220_pm_ops),
  271. .acpi_match_table = bma220_acpi_id,
  272. },
  273. .probe = bma220_probe,
  274. .id_table = bma220_spi_id,
  275. };
  276. module_spi_driver(bma220_driver);
  277. MODULE_AUTHOR("Tiberiu Breana <[email protected]>");
  278. MODULE_DESCRIPTION("BMA220 acceleration sensor driver");
  279. MODULE_LICENSE("GPL v2");