i2c-exynos5.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * i2c-exynos5.c - Samsung Exynos5 I2C Controller Driver
  4. *
  5. * Copyright (C) 2013 Samsung Electronics Co., Ltd.
  6. */
  7. #include <linux/kernel.h>
  8. #include <linux/module.h>
  9. #include <linux/i2c.h>
  10. #include <linux/time.h>
  11. #include <linux/interrupt.h>
  12. #include <linux/delay.h>
  13. #include <linux/errno.h>
  14. #include <linux/err.h>
  15. #include <linux/platform_device.h>
  16. #include <linux/clk.h>
  17. #include <linux/slab.h>
  18. #include <linux/io.h>
  19. #include <linux/of_address.h>
  20. #include <linux/of_device.h>
  21. #include <linux/of_irq.h>
  22. #include <linux/spinlock.h>
  23. /*
  24. * HSI2C controller from Samsung supports 2 modes of operation
  25. * 1. Auto mode: Where in master automatically controls the whole transaction
  26. * 2. Manual mode: Software controls the transaction by issuing commands
  27. * START, READ, WRITE, STOP, RESTART in I2C_MANUAL_CMD register.
  28. *
  29. * Operation mode can be selected by setting AUTO_MODE bit in I2C_CONF register
  30. *
  31. * Special bits are available for both modes of operation to set commands
  32. * and for checking transfer status
  33. */
  34. /* Register Map */
  35. #define HSI2C_CTL 0x00
  36. #define HSI2C_FIFO_CTL 0x04
  37. #define HSI2C_TRAILIG_CTL 0x08
  38. #define HSI2C_CLK_CTL 0x0C
  39. #define HSI2C_CLK_SLOT 0x10
  40. #define HSI2C_INT_ENABLE 0x20
  41. #define HSI2C_INT_STATUS 0x24
  42. #define HSI2C_ERR_STATUS 0x2C
  43. #define HSI2C_FIFO_STATUS 0x30
  44. #define HSI2C_TX_DATA 0x34
  45. #define HSI2C_RX_DATA 0x38
  46. #define HSI2C_CONF 0x40
  47. #define HSI2C_AUTO_CONF 0x44
  48. #define HSI2C_TIMEOUT 0x48
  49. #define HSI2C_MANUAL_CMD 0x4C
  50. #define HSI2C_TRANS_STATUS 0x50
  51. #define HSI2C_TIMING_HS1 0x54
  52. #define HSI2C_TIMING_HS2 0x58
  53. #define HSI2C_TIMING_HS3 0x5C
  54. #define HSI2C_TIMING_FS1 0x60
  55. #define HSI2C_TIMING_FS2 0x64
  56. #define HSI2C_TIMING_FS3 0x68
  57. #define HSI2C_TIMING_SLA 0x6C
  58. #define HSI2C_ADDR 0x70
  59. /* I2C_CTL Register bits */
  60. #define HSI2C_FUNC_MODE_I2C (1u << 0)
  61. #define HSI2C_MASTER (1u << 3)
  62. #define HSI2C_RXCHON (1u << 6)
  63. #define HSI2C_TXCHON (1u << 7)
  64. #define HSI2C_SW_RST (1u << 31)
  65. /* I2C_FIFO_CTL Register bits */
  66. #define HSI2C_RXFIFO_EN (1u << 0)
  67. #define HSI2C_TXFIFO_EN (1u << 1)
  68. #define HSI2C_RXFIFO_TRIGGER_LEVEL(x) ((x) << 4)
  69. #define HSI2C_TXFIFO_TRIGGER_LEVEL(x) ((x) << 16)
  70. /* I2C_TRAILING_CTL Register bits */
  71. #define HSI2C_TRAILING_COUNT (0xf)
  72. /* I2C_INT_EN Register bits */
  73. #define HSI2C_INT_TX_ALMOSTEMPTY_EN (1u << 0)
  74. #define HSI2C_INT_RX_ALMOSTFULL_EN (1u << 1)
  75. #define HSI2C_INT_TRAILING_EN (1u << 6)
  76. /* I2C_INT_STAT Register bits */
  77. #define HSI2C_INT_TX_ALMOSTEMPTY (1u << 0)
  78. #define HSI2C_INT_RX_ALMOSTFULL (1u << 1)
  79. #define HSI2C_INT_TX_UNDERRUN (1u << 2)
  80. #define HSI2C_INT_TX_OVERRUN (1u << 3)
  81. #define HSI2C_INT_RX_UNDERRUN (1u << 4)
  82. #define HSI2C_INT_RX_OVERRUN (1u << 5)
  83. #define HSI2C_INT_TRAILING (1u << 6)
  84. #define HSI2C_INT_I2C (1u << 9)
  85. #define HSI2C_INT_TRANS_DONE (1u << 7)
  86. #define HSI2C_INT_TRANS_ABORT (1u << 8)
  87. #define HSI2C_INT_NO_DEV_ACK (1u << 9)
  88. #define HSI2C_INT_NO_DEV (1u << 10)
  89. #define HSI2C_INT_TIMEOUT (1u << 11)
  90. #define HSI2C_INT_I2C_TRANS (HSI2C_INT_TRANS_DONE | \
  91. HSI2C_INT_TRANS_ABORT | \
  92. HSI2C_INT_NO_DEV_ACK | \
  93. HSI2C_INT_NO_DEV | \
  94. HSI2C_INT_TIMEOUT)
  95. /* I2C_FIFO_STAT Register bits */
  96. #define HSI2C_RX_FIFO_EMPTY (1u << 24)
  97. #define HSI2C_RX_FIFO_FULL (1u << 23)
  98. #define HSI2C_RX_FIFO_LVL(x) ((x >> 16) & 0x7f)
  99. #define HSI2C_TX_FIFO_EMPTY (1u << 8)
  100. #define HSI2C_TX_FIFO_FULL (1u << 7)
  101. #define HSI2C_TX_FIFO_LVL(x) ((x >> 0) & 0x7f)
  102. /* I2C_CONF Register bits */
  103. #define HSI2C_AUTO_MODE (1u << 31)
  104. #define HSI2C_10BIT_ADDR_MODE (1u << 30)
  105. #define HSI2C_HS_MODE (1u << 29)
  106. /* I2C_AUTO_CONF Register bits */
  107. #define HSI2C_READ_WRITE (1u << 16)
  108. #define HSI2C_STOP_AFTER_TRANS (1u << 17)
  109. #define HSI2C_MASTER_RUN (1u << 31)
  110. /* I2C_TIMEOUT Register bits */
  111. #define HSI2C_TIMEOUT_EN (1u << 31)
  112. #define HSI2C_TIMEOUT_MASK 0xff
  113. /* I2C_MANUAL_CMD register bits */
  114. #define HSI2C_CMD_READ_DATA (1u << 4)
  115. #define HSI2C_CMD_SEND_STOP (1u << 2)
  116. /* I2C_TRANS_STATUS register bits */
  117. #define HSI2C_MASTER_BUSY (1u << 17)
  118. #define HSI2C_SLAVE_BUSY (1u << 16)
  119. /* I2C_TRANS_STATUS register bits for Exynos5 variant */
  120. #define HSI2C_TIMEOUT_AUTO (1u << 4)
  121. #define HSI2C_NO_DEV (1u << 3)
  122. #define HSI2C_NO_DEV_ACK (1u << 2)
  123. #define HSI2C_TRANS_ABORT (1u << 1)
  124. #define HSI2C_TRANS_DONE (1u << 0)
  125. /* I2C_TRANS_STATUS register bits for Exynos7 variant */
  126. #define HSI2C_MASTER_ST_MASK 0xf
  127. #define HSI2C_MASTER_ST_IDLE 0x0
  128. #define HSI2C_MASTER_ST_START 0x1
  129. #define HSI2C_MASTER_ST_RESTART 0x2
  130. #define HSI2C_MASTER_ST_STOP 0x3
  131. #define HSI2C_MASTER_ST_MASTER_ID 0x4
  132. #define HSI2C_MASTER_ST_ADDR0 0x5
  133. #define HSI2C_MASTER_ST_ADDR1 0x6
  134. #define HSI2C_MASTER_ST_ADDR2 0x7
  135. #define HSI2C_MASTER_ST_ADDR_SR 0x8
  136. #define HSI2C_MASTER_ST_READ 0x9
  137. #define HSI2C_MASTER_ST_WRITE 0xa
  138. #define HSI2C_MASTER_ST_NO_ACK 0xb
  139. #define HSI2C_MASTER_ST_LOSE 0xc
  140. #define HSI2C_MASTER_ST_WAIT 0xd
  141. #define HSI2C_MASTER_ST_WAIT_CMD 0xe
  142. /* I2C_ADDR register bits */
  143. #define HSI2C_SLV_ADDR_SLV(x) ((x & 0x3ff) << 0)
  144. #define HSI2C_SLV_ADDR_MAS(x) ((x & 0x3ff) << 10)
  145. #define HSI2C_MASTER_ID(x) ((x & 0xff) << 24)
  146. #define MASTER_ID(x) ((x & 0x7) + 0x08)
  147. #define EXYNOS5_I2C_TIMEOUT (msecs_to_jiffies(100))
  148. enum i2c_type_exynos {
  149. I2C_TYPE_EXYNOS5,
  150. I2C_TYPE_EXYNOS7,
  151. I2C_TYPE_EXYNOSAUTOV9,
  152. };
  153. struct exynos5_i2c {
  154. struct i2c_adapter adap;
  155. struct i2c_msg *msg;
  156. struct completion msg_complete;
  157. unsigned int msg_ptr;
  158. unsigned int irq;
  159. void __iomem *regs;
  160. struct clk *clk; /* operating clock */
  161. struct clk *pclk; /* bus clock */
  162. struct device *dev;
  163. int state;
  164. spinlock_t lock; /* IRQ synchronization */
  165. /*
  166. * Since the TRANS_DONE bit is cleared on read, and we may read it
  167. * either during an IRQ or after a transaction, keep track of its
  168. * state here.
  169. */
  170. int trans_done;
  171. /* Controller operating frequency */
  172. unsigned int op_clock;
  173. /* Version of HS-I2C Hardware */
  174. const struct exynos_hsi2c_variant *variant;
  175. };
  176. /**
  177. * struct exynos_hsi2c_variant - platform specific HSI2C driver data
  178. * @fifo_depth: the fifo depth supported by the HSI2C module
  179. * @hw: the hardware variant of Exynos I2C controller
  180. *
  181. * Specifies platform specific configuration of HSI2C module.
  182. * Note: A structure for driver specific platform data is used for future
  183. * expansion of its usage.
  184. */
  185. struct exynos_hsi2c_variant {
  186. unsigned int fifo_depth;
  187. enum i2c_type_exynos hw;
  188. };
  189. static const struct exynos_hsi2c_variant exynos5250_hsi2c_data = {
  190. .fifo_depth = 64,
  191. .hw = I2C_TYPE_EXYNOS5,
  192. };
  193. static const struct exynos_hsi2c_variant exynos5260_hsi2c_data = {
  194. .fifo_depth = 16,
  195. .hw = I2C_TYPE_EXYNOS5,
  196. };
  197. static const struct exynos_hsi2c_variant exynos7_hsi2c_data = {
  198. .fifo_depth = 16,
  199. .hw = I2C_TYPE_EXYNOS7,
  200. };
  201. static const struct exynos_hsi2c_variant exynosautov9_hsi2c_data = {
  202. .fifo_depth = 64,
  203. .hw = I2C_TYPE_EXYNOSAUTOV9,
  204. };
  205. static const struct of_device_id exynos5_i2c_match[] = {
  206. {
  207. .compatible = "samsung,exynos5-hsi2c",
  208. .data = &exynos5250_hsi2c_data
  209. }, {
  210. .compatible = "samsung,exynos5250-hsi2c",
  211. .data = &exynos5250_hsi2c_data
  212. }, {
  213. .compatible = "samsung,exynos5260-hsi2c",
  214. .data = &exynos5260_hsi2c_data
  215. }, {
  216. .compatible = "samsung,exynos7-hsi2c",
  217. .data = &exynos7_hsi2c_data
  218. }, {
  219. .compatible = "samsung,exynosautov9-hsi2c",
  220. .data = &exynosautov9_hsi2c_data
  221. }, {},
  222. };
  223. MODULE_DEVICE_TABLE(of, exynos5_i2c_match);
  224. static void exynos5_i2c_clr_pend_irq(struct exynos5_i2c *i2c)
  225. {
  226. writel(readl(i2c->regs + HSI2C_INT_STATUS),
  227. i2c->regs + HSI2C_INT_STATUS);
  228. }
  229. /*
  230. * exynos5_i2c_set_timing: updates the registers with appropriate
  231. * timing values calculated
  232. *
  233. * Timing values for operation are calculated against either 100kHz
  234. * or 1MHz controller operating frequency.
  235. *
  236. * Returns 0 on success, -EINVAL if the cycle length cannot
  237. * be calculated.
  238. */
  239. static int exynos5_i2c_set_timing(struct exynos5_i2c *i2c, bool hs_timings)
  240. {
  241. u32 i2c_timing_s1;
  242. u32 i2c_timing_s2;
  243. u32 i2c_timing_s3;
  244. u32 i2c_timing_sla;
  245. unsigned int t_start_su, t_start_hd;
  246. unsigned int t_stop_su;
  247. unsigned int t_data_su, t_data_hd;
  248. unsigned int t_scl_l, t_scl_h;
  249. unsigned int t_sr_release;
  250. unsigned int t_ftl_cycle;
  251. unsigned int clkin = clk_get_rate(i2c->clk);
  252. unsigned int op_clk = hs_timings ? i2c->op_clock :
  253. (i2c->op_clock >= I2C_MAX_FAST_MODE_PLUS_FREQ) ? I2C_MAX_STANDARD_MODE_FREQ :
  254. i2c->op_clock;
  255. int div, clk_cycle, temp;
  256. /*
  257. * In case of HSI2C controllers in ExynosAutoV9:
  258. *
  259. * FSCL = IPCLK / ((CLK_DIV + 1) * 16)
  260. * T_SCL_LOW = IPCLK * (CLK_DIV + 1) * (N + M)
  261. * [N : number of 0's in the TSCL_H_HS]
  262. * [M : number of 0's in the TSCL_L_HS]
  263. * T_SCL_HIGH = IPCLK * (CLK_DIV + 1) * (N + M)
  264. * [N : number of 1's in the TSCL_H_HS]
  265. * [M : number of 1's in the TSCL_L_HS]
  266. *
  267. * Result of (N + M) is always 8.
  268. * In general case, we don't need to control timing_s1 and timing_s2.
  269. */
  270. if (i2c->variant->hw == I2C_TYPE_EXYNOSAUTOV9) {
  271. div = ((clkin / (16 * i2c->op_clock)) - 1);
  272. i2c_timing_s3 = div << 16;
  273. if (hs_timings)
  274. writel(i2c_timing_s3, i2c->regs + HSI2C_TIMING_HS3);
  275. else
  276. writel(i2c_timing_s3, i2c->regs + HSI2C_TIMING_FS3);
  277. return 0;
  278. }
  279. /*
  280. * In case of HSI2C controller in Exynos5 series
  281. * FPCLK / FI2C =
  282. * (CLK_DIV + 1) * (TSCLK_L + TSCLK_H + 2) + 8 + 2 * FLT_CYCLE
  283. *
  284. * In case of HSI2C controllers in Exynos7 series
  285. * FPCLK / FI2C =
  286. * (CLK_DIV + 1) * (TSCLK_L + TSCLK_H + 2) + 8 + FLT_CYCLE
  287. *
  288. * clk_cycle := TSCLK_L + TSCLK_H
  289. * temp := (CLK_DIV + 1) * (clk_cycle + 2)
  290. *
  291. * Constraints: 4 <= temp, 0 <= CLK_DIV < 256, 2 <= clk_cycle <= 510
  292. *
  293. */
  294. t_ftl_cycle = (readl(i2c->regs + HSI2C_CONF) >> 16) & 0x7;
  295. temp = clkin / op_clk - 8 - t_ftl_cycle;
  296. if (i2c->variant->hw != I2C_TYPE_EXYNOS7)
  297. temp -= t_ftl_cycle;
  298. div = temp / 512;
  299. clk_cycle = temp / (div + 1) - 2;
  300. if (temp < 4 || div >= 256 || clk_cycle < 2) {
  301. dev_err(i2c->dev, "%s clock set-up failed\n",
  302. hs_timings ? "HS" : "FS");
  303. return -EINVAL;
  304. }
  305. t_scl_l = clk_cycle / 2;
  306. t_scl_h = clk_cycle / 2;
  307. t_start_su = t_scl_l;
  308. t_start_hd = t_scl_l;
  309. t_stop_su = t_scl_l;
  310. t_data_su = t_scl_l / 2;
  311. t_data_hd = t_scl_l / 2;
  312. t_sr_release = clk_cycle;
  313. i2c_timing_s1 = t_start_su << 24 | t_start_hd << 16 | t_stop_su << 8;
  314. i2c_timing_s2 = t_data_su << 24 | t_scl_l << 8 | t_scl_h << 0;
  315. i2c_timing_s3 = div << 16 | t_sr_release << 0;
  316. i2c_timing_sla = t_data_hd << 0;
  317. dev_dbg(i2c->dev, "tSTART_SU: %X, tSTART_HD: %X, tSTOP_SU: %X\n",
  318. t_start_su, t_start_hd, t_stop_su);
  319. dev_dbg(i2c->dev, "tDATA_SU: %X, tSCL_L: %X, tSCL_H: %X\n",
  320. t_data_su, t_scl_l, t_scl_h);
  321. dev_dbg(i2c->dev, "nClkDiv: %X, tSR_RELEASE: %X\n",
  322. div, t_sr_release);
  323. dev_dbg(i2c->dev, "tDATA_HD: %X\n", t_data_hd);
  324. if (hs_timings) {
  325. writel(i2c_timing_s1, i2c->regs + HSI2C_TIMING_HS1);
  326. writel(i2c_timing_s2, i2c->regs + HSI2C_TIMING_HS2);
  327. writel(i2c_timing_s3, i2c->regs + HSI2C_TIMING_HS3);
  328. } else {
  329. writel(i2c_timing_s1, i2c->regs + HSI2C_TIMING_FS1);
  330. writel(i2c_timing_s2, i2c->regs + HSI2C_TIMING_FS2);
  331. writel(i2c_timing_s3, i2c->regs + HSI2C_TIMING_FS3);
  332. }
  333. writel(i2c_timing_sla, i2c->regs + HSI2C_TIMING_SLA);
  334. return 0;
  335. }
  336. static int exynos5_hsi2c_clock_setup(struct exynos5_i2c *i2c)
  337. {
  338. /* always set Fast Speed timings */
  339. int ret = exynos5_i2c_set_timing(i2c, false);
  340. if (ret < 0 || i2c->op_clock < I2C_MAX_FAST_MODE_PLUS_FREQ)
  341. return ret;
  342. return exynos5_i2c_set_timing(i2c, true);
  343. }
  344. /*
  345. * exynos5_i2c_init: configures the controller for I2C functionality
  346. * Programs I2C controller for Master mode operation
  347. */
  348. static void exynos5_i2c_init(struct exynos5_i2c *i2c)
  349. {
  350. u32 i2c_conf = readl(i2c->regs + HSI2C_CONF);
  351. u32 i2c_timeout = readl(i2c->regs + HSI2C_TIMEOUT);
  352. /* Clear to disable Timeout */
  353. i2c_timeout &= ~HSI2C_TIMEOUT_EN;
  354. writel(i2c_timeout, i2c->regs + HSI2C_TIMEOUT);
  355. writel((HSI2C_FUNC_MODE_I2C | HSI2C_MASTER),
  356. i2c->regs + HSI2C_CTL);
  357. writel(HSI2C_TRAILING_COUNT, i2c->regs + HSI2C_TRAILIG_CTL);
  358. if (i2c->op_clock >= I2C_MAX_FAST_MODE_PLUS_FREQ) {
  359. writel(HSI2C_MASTER_ID(MASTER_ID(i2c->adap.nr)),
  360. i2c->regs + HSI2C_ADDR);
  361. i2c_conf |= HSI2C_HS_MODE;
  362. }
  363. writel(i2c_conf | HSI2C_AUTO_MODE, i2c->regs + HSI2C_CONF);
  364. }
  365. static void exynos5_i2c_reset(struct exynos5_i2c *i2c)
  366. {
  367. u32 i2c_ctl;
  368. /* Set and clear the bit for reset */
  369. i2c_ctl = readl(i2c->regs + HSI2C_CTL);
  370. i2c_ctl |= HSI2C_SW_RST;
  371. writel(i2c_ctl, i2c->regs + HSI2C_CTL);
  372. i2c_ctl = readl(i2c->regs + HSI2C_CTL);
  373. i2c_ctl &= ~HSI2C_SW_RST;
  374. writel(i2c_ctl, i2c->regs + HSI2C_CTL);
  375. /* We don't expect calculations to fail during the run */
  376. exynos5_hsi2c_clock_setup(i2c);
  377. /* Initialize the configure registers */
  378. exynos5_i2c_init(i2c);
  379. }
  380. /*
  381. * exynos5_i2c_irq: top level IRQ servicing routine
  382. *
  383. * INT_STATUS registers gives the interrupt details. Further,
  384. * FIFO_STATUS or TRANS_STATUS registers are to be check for detailed
  385. * state of the bus.
  386. */
  387. static irqreturn_t exynos5_i2c_irq(int irqno, void *dev_id)
  388. {
  389. struct exynos5_i2c *i2c = dev_id;
  390. u32 fifo_level, int_status, fifo_status, trans_status;
  391. unsigned char byte;
  392. int len = 0;
  393. i2c->state = -EINVAL;
  394. spin_lock(&i2c->lock);
  395. int_status = readl(i2c->regs + HSI2C_INT_STATUS);
  396. writel(int_status, i2c->regs + HSI2C_INT_STATUS);
  397. /* handle interrupt related to the transfer status */
  398. switch (i2c->variant->hw) {
  399. case I2C_TYPE_EXYNOSAUTOV9:
  400. fallthrough;
  401. case I2C_TYPE_EXYNOS7:
  402. if (int_status & HSI2C_INT_TRANS_DONE) {
  403. i2c->trans_done = 1;
  404. i2c->state = 0;
  405. } else if (int_status & HSI2C_INT_TRANS_ABORT) {
  406. dev_dbg(i2c->dev, "Deal with arbitration lose\n");
  407. i2c->state = -EAGAIN;
  408. goto stop;
  409. } else if (int_status & HSI2C_INT_NO_DEV_ACK) {
  410. dev_dbg(i2c->dev, "No ACK from device\n");
  411. i2c->state = -ENXIO;
  412. goto stop;
  413. } else if (int_status & HSI2C_INT_NO_DEV) {
  414. dev_dbg(i2c->dev, "No device\n");
  415. i2c->state = -ENXIO;
  416. goto stop;
  417. } else if (int_status & HSI2C_INT_TIMEOUT) {
  418. dev_dbg(i2c->dev, "Accessing device timed out\n");
  419. i2c->state = -ETIMEDOUT;
  420. goto stop;
  421. }
  422. break;
  423. case I2C_TYPE_EXYNOS5:
  424. if (!(int_status & HSI2C_INT_I2C))
  425. break;
  426. trans_status = readl(i2c->regs + HSI2C_TRANS_STATUS);
  427. if (trans_status & HSI2C_NO_DEV_ACK) {
  428. dev_dbg(i2c->dev, "No ACK from device\n");
  429. i2c->state = -ENXIO;
  430. goto stop;
  431. } else if (trans_status & HSI2C_NO_DEV) {
  432. dev_dbg(i2c->dev, "No device\n");
  433. i2c->state = -ENXIO;
  434. goto stop;
  435. } else if (trans_status & HSI2C_TRANS_ABORT) {
  436. dev_dbg(i2c->dev, "Deal with arbitration lose\n");
  437. i2c->state = -EAGAIN;
  438. goto stop;
  439. } else if (trans_status & HSI2C_TIMEOUT_AUTO) {
  440. dev_dbg(i2c->dev, "Accessing device timed out\n");
  441. i2c->state = -ETIMEDOUT;
  442. goto stop;
  443. } else if (trans_status & HSI2C_TRANS_DONE) {
  444. i2c->trans_done = 1;
  445. i2c->state = 0;
  446. }
  447. break;
  448. }
  449. if ((i2c->msg->flags & I2C_M_RD) && (int_status &
  450. (HSI2C_INT_TRAILING | HSI2C_INT_RX_ALMOSTFULL))) {
  451. fifo_status = readl(i2c->regs + HSI2C_FIFO_STATUS);
  452. fifo_level = HSI2C_RX_FIFO_LVL(fifo_status);
  453. len = min(fifo_level, i2c->msg->len - i2c->msg_ptr);
  454. while (len > 0) {
  455. byte = (unsigned char)
  456. readl(i2c->regs + HSI2C_RX_DATA);
  457. i2c->msg->buf[i2c->msg_ptr++] = byte;
  458. len--;
  459. }
  460. i2c->state = 0;
  461. } else if (int_status & HSI2C_INT_TX_ALMOSTEMPTY) {
  462. fifo_status = readl(i2c->regs + HSI2C_FIFO_STATUS);
  463. fifo_level = HSI2C_TX_FIFO_LVL(fifo_status);
  464. len = i2c->variant->fifo_depth - fifo_level;
  465. if (len > (i2c->msg->len - i2c->msg_ptr)) {
  466. u32 int_en = readl(i2c->regs + HSI2C_INT_ENABLE);
  467. int_en &= ~HSI2C_INT_TX_ALMOSTEMPTY_EN;
  468. writel(int_en, i2c->regs + HSI2C_INT_ENABLE);
  469. len = i2c->msg->len - i2c->msg_ptr;
  470. }
  471. while (len > 0) {
  472. byte = i2c->msg->buf[i2c->msg_ptr++];
  473. writel(byte, i2c->regs + HSI2C_TX_DATA);
  474. len--;
  475. }
  476. i2c->state = 0;
  477. }
  478. stop:
  479. if ((i2c->trans_done && (i2c->msg->len == i2c->msg_ptr)) ||
  480. (i2c->state < 0)) {
  481. writel(0, i2c->regs + HSI2C_INT_ENABLE);
  482. exynos5_i2c_clr_pend_irq(i2c);
  483. complete(&i2c->msg_complete);
  484. }
  485. spin_unlock(&i2c->lock);
  486. return IRQ_HANDLED;
  487. }
  488. /*
  489. * exynos5_i2c_wait_bus_idle
  490. *
  491. * Wait for the bus to go idle, indicated by the MASTER_BUSY bit being
  492. * cleared.
  493. *
  494. * Returns -EBUSY if the bus cannot be bought to idle
  495. */
  496. static int exynos5_i2c_wait_bus_idle(struct exynos5_i2c *i2c)
  497. {
  498. unsigned long stop_time;
  499. u32 trans_status;
  500. /* wait for 100 milli seconds for the bus to be idle */
  501. stop_time = jiffies + msecs_to_jiffies(100) + 1;
  502. do {
  503. trans_status = readl(i2c->regs + HSI2C_TRANS_STATUS);
  504. if (!(trans_status & HSI2C_MASTER_BUSY))
  505. return 0;
  506. usleep_range(50, 200);
  507. } while (time_before(jiffies, stop_time));
  508. return -EBUSY;
  509. }
  510. static void exynos5_i2c_bus_recover(struct exynos5_i2c *i2c)
  511. {
  512. u32 val;
  513. val = readl(i2c->regs + HSI2C_CTL) | HSI2C_RXCHON;
  514. writel(val, i2c->regs + HSI2C_CTL);
  515. val = readl(i2c->regs + HSI2C_CONF) & ~HSI2C_AUTO_MODE;
  516. writel(val, i2c->regs + HSI2C_CONF);
  517. /*
  518. * Specification says master should send nine clock pulses. It can be
  519. * emulated by sending manual read command (nine pulses for read eight
  520. * bits + one pulse for NACK).
  521. */
  522. writel(HSI2C_CMD_READ_DATA, i2c->regs + HSI2C_MANUAL_CMD);
  523. exynos5_i2c_wait_bus_idle(i2c);
  524. writel(HSI2C_CMD_SEND_STOP, i2c->regs + HSI2C_MANUAL_CMD);
  525. exynos5_i2c_wait_bus_idle(i2c);
  526. val = readl(i2c->regs + HSI2C_CTL) & ~HSI2C_RXCHON;
  527. writel(val, i2c->regs + HSI2C_CTL);
  528. val = readl(i2c->regs + HSI2C_CONF) | HSI2C_AUTO_MODE;
  529. writel(val, i2c->regs + HSI2C_CONF);
  530. }
  531. static void exynos5_i2c_bus_check(struct exynos5_i2c *i2c)
  532. {
  533. unsigned long timeout;
  534. if (i2c->variant->hw == I2C_TYPE_EXYNOS5)
  535. return;
  536. /*
  537. * HSI2C_MASTER_ST_LOSE state (in Exynos7 and ExynosAutoV9 variants)
  538. * before transaction indicates that bus is stuck (SDA is low).
  539. * In such case bus recovery can be performed.
  540. */
  541. timeout = jiffies + msecs_to_jiffies(100);
  542. for (;;) {
  543. u32 st = readl(i2c->regs + HSI2C_TRANS_STATUS);
  544. if ((st & HSI2C_MASTER_ST_MASK) != HSI2C_MASTER_ST_LOSE)
  545. return;
  546. if (time_is_before_jiffies(timeout))
  547. return;
  548. exynos5_i2c_bus_recover(i2c);
  549. }
  550. }
  551. /*
  552. * exynos5_i2c_message_start: Configures the bus and starts the xfer
  553. * i2c: struct exynos5_i2c pointer for the current bus
  554. * stop: Enables stop after transfer if set. Set for last transfer of
  555. * in the list of messages.
  556. *
  557. * Configures the bus for read/write function
  558. * Sets chip address to talk to, message length to be sent.
  559. * Enables appropriate interrupts and sends start xfer command.
  560. */
  561. static void exynos5_i2c_message_start(struct exynos5_i2c *i2c, int stop)
  562. {
  563. u32 i2c_ctl;
  564. u32 int_en = 0;
  565. u32 i2c_auto_conf = 0;
  566. u32 i2c_addr = 0;
  567. u32 fifo_ctl;
  568. unsigned long flags;
  569. unsigned short trig_lvl;
  570. if (i2c->variant->hw == I2C_TYPE_EXYNOS5)
  571. int_en |= HSI2C_INT_I2C;
  572. else
  573. int_en |= HSI2C_INT_I2C_TRANS;
  574. i2c_ctl = readl(i2c->regs + HSI2C_CTL);
  575. i2c_ctl &= ~(HSI2C_TXCHON | HSI2C_RXCHON);
  576. fifo_ctl = HSI2C_RXFIFO_EN | HSI2C_TXFIFO_EN;
  577. if (i2c->msg->flags & I2C_M_RD) {
  578. i2c_ctl |= HSI2C_RXCHON;
  579. i2c_auto_conf |= HSI2C_READ_WRITE;
  580. trig_lvl = (i2c->msg->len > i2c->variant->fifo_depth) ?
  581. (i2c->variant->fifo_depth * 3 / 4) : i2c->msg->len;
  582. fifo_ctl |= HSI2C_RXFIFO_TRIGGER_LEVEL(trig_lvl);
  583. int_en |= (HSI2C_INT_RX_ALMOSTFULL_EN |
  584. HSI2C_INT_TRAILING_EN);
  585. } else {
  586. i2c_ctl |= HSI2C_TXCHON;
  587. trig_lvl = (i2c->msg->len > i2c->variant->fifo_depth) ?
  588. (i2c->variant->fifo_depth * 1 / 4) : i2c->msg->len;
  589. fifo_ctl |= HSI2C_TXFIFO_TRIGGER_LEVEL(trig_lvl);
  590. int_en |= HSI2C_INT_TX_ALMOSTEMPTY_EN;
  591. }
  592. i2c_addr = HSI2C_SLV_ADDR_MAS(i2c->msg->addr);
  593. if (i2c->op_clock >= I2C_MAX_FAST_MODE_PLUS_FREQ)
  594. i2c_addr |= HSI2C_MASTER_ID(MASTER_ID(i2c->adap.nr));
  595. writel(i2c_addr, i2c->regs + HSI2C_ADDR);
  596. writel(fifo_ctl, i2c->regs + HSI2C_FIFO_CTL);
  597. writel(i2c_ctl, i2c->regs + HSI2C_CTL);
  598. exynos5_i2c_bus_check(i2c);
  599. /*
  600. * Enable interrupts before starting the transfer so that we don't
  601. * miss any INT_I2C interrupts.
  602. */
  603. spin_lock_irqsave(&i2c->lock, flags);
  604. writel(int_en, i2c->regs + HSI2C_INT_ENABLE);
  605. if (stop == 1)
  606. i2c_auto_conf |= HSI2C_STOP_AFTER_TRANS;
  607. i2c_auto_conf |= i2c->msg->len;
  608. i2c_auto_conf |= HSI2C_MASTER_RUN;
  609. writel(i2c_auto_conf, i2c->regs + HSI2C_AUTO_CONF);
  610. spin_unlock_irqrestore(&i2c->lock, flags);
  611. }
  612. static int exynos5_i2c_xfer_msg(struct exynos5_i2c *i2c,
  613. struct i2c_msg *msgs, int stop)
  614. {
  615. unsigned long timeout;
  616. int ret;
  617. i2c->msg = msgs;
  618. i2c->msg_ptr = 0;
  619. i2c->trans_done = 0;
  620. reinit_completion(&i2c->msg_complete);
  621. exynos5_i2c_message_start(i2c, stop);
  622. timeout = wait_for_completion_timeout(&i2c->msg_complete,
  623. EXYNOS5_I2C_TIMEOUT);
  624. if (timeout == 0)
  625. ret = -ETIMEDOUT;
  626. else
  627. ret = i2c->state;
  628. /*
  629. * If this is the last message to be transfered (stop == 1)
  630. * Then check if the bus can be brought back to idle.
  631. */
  632. if (ret == 0 && stop)
  633. ret = exynos5_i2c_wait_bus_idle(i2c);
  634. if (ret < 0) {
  635. exynos5_i2c_reset(i2c);
  636. if (ret == -ETIMEDOUT)
  637. dev_warn(i2c->dev, "%s timeout\n",
  638. (msgs->flags & I2C_M_RD) ? "rx" : "tx");
  639. }
  640. /* Return the state as in interrupt routine */
  641. return ret;
  642. }
  643. static int exynos5_i2c_xfer(struct i2c_adapter *adap,
  644. struct i2c_msg *msgs, int num)
  645. {
  646. struct exynos5_i2c *i2c = adap->algo_data;
  647. int i, ret;
  648. ret = clk_enable(i2c->pclk);
  649. if (ret)
  650. return ret;
  651. ret = clk_enable(i2c->clk);
  652. if (ret)
  653. goto err_pclk;
  654. for (i = 0; i < num; ++i) {
  655. ret = exynos5_i2c_xfer_msg(i2c, msgs + i, i + 1 == num);
  656. if (ret)
  657. break;
  658. }
  659. clk_disable(i2c->clk);
  660. err_pclk:
  661. clk_disable(i2c->pclk);
  662. return ret ?: num;
  663. }
  664. static u32 exynos5_i2c_func(struct i2c_adapter *adap)
  665. {
  666. return I2C_FUNC_I2C | (I2C_FUNC_SMBUS_EMUL & ~I2C_FUNC_SMBUS_QUICK);
  667. }
  668. static const struct i2c_algorithm exynos5_i2c_algorithm = {
  669. .master_xfer = exynos5_i2c_xfer,
  670. .functionality = exynos5_i2c_func,
  671. };
  672. static int exynos5_i2c_probe(struct platform_device *pdev)
  673. {
  674. struct device_node *np = pdev->dev.of_node;
  675. struct exynos5_i2c *i2c;
  676. int ret;
  677. i2c = devm_kzalloc(&pdev->dev, sizeof(struct exynos5_i2c), GFP_KERNEL);
  678. if (!i2c)
  679. return -ENOMEM;
  680. if (of_property_read_u32(np, "clock-frequency", &i2c->op_clock))
  681. i2c->op_clock = I2C_MAX_STANDARD_MODE_FREQ;
  682. strscpy(i2c->adap.name, "exynos5-i2c", sizeof(i2c->adap.name));
  683. i2c->adap.owner = THIS_MODULE;
  684. i2c->adap.algo = &exynos5_i2c_algorithm;
  685. i2c->adap.retries = 3;
  686. i2c->dev = &pdev->dev;
  687. i2c->clk = devm_clk_get(&pdev->dev, "hsi2c");
  688. if (IS_ERR(i2c->clk)) {
  689. dev_err(&pdev->dev, "cannot get clock\n");
  690. return -ENOENT;
  691. }
  692. i2c->pclk = devm_clk_get_optional(&pdev->dev, "hsi2c_pclk");
  693. if (IS_ERR(i2c->pclk)) {
  694. return dev_err_probe(&pdev->dev, PTR_ERR(i2c->pclk),
  695. "cannot get pclk");
  696. }
  697. ret = clk_prepare_enable(i2c->pclk);
  698. if (ret)
  699. return ret;
  700. ret = clk_prepare_enable(i2c->clk);
  701. if (ret)
  702. goto err_pclk;
  703. i2c->regs = devm_platform_ioremap_resource(pdev, 0);
  704. if (IS_ERR(i2c->regs)) {
  705. ret = PTR_ERR(i2c->regs);
  706. goto err_clk;
  707. }
  708. i2c->adap.dev.of_node = np;
  709. i2c->adap.algo_data = i2c;
  710. i2c->adap.dev.parent = &pdev->dev;
  711. /* Clear pending interrupts from u-boot or misc causes */
  712. exynos5_i2c_clr_pend_irq(i2c);
  713. spin_lock_init(&i2c->lock);
  714. init_completion(&i2c->msg_complete);
  715. i2c->irq = ret = platform_get_irq(pdev, 0);
  716. if (ret < 0)
  717. goto err_clk;
  718. ret = devm_request_irq(&pdev->dev, i2c->irq, exynos5_i2c_irq,
  719. IRQF_NO_SUSPEND, dev_name(&pdev->dev), i2c);
  720. if (ret != 0) {
  721. dev_err(&pdev->dev, "cannot request HS-I2C IRQ %d\n", i2c->irq);
  722. goto err_clk;
  723. }
  724. i2c->variant = of_device_get_match_data(&pdev->dev);
  725. ret = exynos5_hsi2c_clock_setup(i2c);
  726. if (ret)
  727. goto err_clk;
  728. exynos5_i2c_reset(i2c);
  729. ret = i2c_add_adapter(&i2c->adap);
  730. if (ret < 0)
  731. goto err_clk;
  732. platform_set_drvdata(pdev, i2c);
  733. clk_disable(i2c->clk);
  734. clk_disable(i2c->pclk);
  735. return 0;
  736. err_clk:
  737. clk_disable_unprepare(i2c->clk);
  738. err_pclk:
  739. clk_disable_unprepare(i2c->pclk);
  740. return ret;
  741. }
  742. static int exynos5_i2c_remove(struct platform_device *pdev)
  743. {
  744. struct exynos5_i2c *i2c = platform_get_drvdata(pdev);
  745. i2c_del_adapter(&i2c->adap);
  746. clk_unprepare(i2c->clk);
  747. clk_unprepare(i2c->pclk);
  748. return 0;
  749. }
  750. #ifdef CONFIG_PM_SLEEP
  751. static int exynos5_i2c_suspend_noirq(struct device *dev)
  752. {
  753. struct exynos5_i2c *i2c = dev_get_drvdata(dev);
  754. i2c_mark_adapter_suspended(&i2c->adap);
  755. clk_unprepare(i2c->clk);
  756. clk_unprepare(i2c->pclk);
  757. return 0;
  758. }
  759. static int exynos5_i2c_resume_noirq(struct device *dev)
  760. {
  761. struct exynos5_i2c *i2c = dev_get_drvdata(dev);
  762. int ret = 0;
  763. ret = clk_prepare_enable(i2c->pclk);
  764. if (ret)
  765. return ret;
  766. ret = clk_prepare_enable(i2c->clk);
  767. if (ret)
  768. goto err_pclk;
  769. ret = exynos5_hsi2c_clock_setup(i2c);
  770. if (ret)
  771. goto err_clk;
  772. exynos5_i2c_init(i2c);
  773. clk_disable(i2c->clk);
  774. clk_disable(i2c->pclk);
  775. i2c_mark_adapter_resumed(&i2c->adap);
  776. return 0;
  777. err_clk:
  778. clk_disable_unprepare(i2c->clk);
  779. err_pclk:
  780. clk_disable_unprepare(i2c->pclk);
  781. return ret;
  782. }
  783. #endif
  784. static const struct dev_pm_ops exynos5_i2c_dev_pm_ops = {
  785. SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(exynos5_i2c_suspend_noirq,
  786. exynos5_i2c_resume_noirq)
  787. };
  788. static struct platform_driver exynos5_i2c_driver = {
  789. .probe = exynos5_i2c_probe,
  790. .remove = exynos5_i2c_remove,
  791. .driver = {
  792. .name = "exynos5-hsi2c",
  793. .pm = &exynos5_i2c_dev_pm_ops,
  794. .of_match_table = exynos5_i2c_match,
  795. },
  796. };
  797. module_platform_driver(exynos5_i2c_driver);
  798. MODULE_DESCRIPTION("Exynos5 HS-I2C Bus driver");
  799. MODULE_AUTHOR("Naveen Krishna Chatradhi <[email protected]>");
  800. MODULE_AUTHOR("Taekgyun Ko <[email protected]>");
  801. MODULE_LICENSE("GPL v2");