via686a.c 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945
  1. // SPDX-License-Identifier: GPL-2.0-or-later
  2. /*
  3. * via686a.c - Part of lm_sensors, Linux kernel modules
  4. * for hardware monitoring
  5. *
  6. * Copyright (c) 1998 - 2002 Frodo Looijaard <[email protected]>,
  7. * Kyösti Mälkki <[email protected]>,
  8. * Mark Studebaker <[email protected]>,
  9. * and Bob Dougherty <[email protected]>
  10. *
  11. * (Some conversion-factor data were contributed by Jonathan Teh Soon Yew
  12. * <[email protected]> and Alex van Kaam <[email protected]>.)
  13. */
  14. /*
  15. * Supports the Via VT82C686A, VT82C686B south bridges.
  16. * Reports all as a 686A.
  17. * Warning - only supports a single device.
  18. */
  19. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  20. #include <linux/module.h>
  21. #include <linux/slab.h>
  22. #include <linux/pci.h>
  23. #include <linux/jiffies.h>
  24. #include <linux/platform_device.h>
  25. #include <linux/hwmon.h>
  26. #include <linux/hwmon-sysfs.h>
  27. #include <linux/err.h>
  28. #include <linux/init.h>
  29. #include <linux/mutex.h>
  30. #include <linux/sysfs.h>
  31. #include <linux/acpi.h>
  32. #include <linux/io.h>
  33. #define DRIVER_NAME "via686a"
  34. /*
  35. * If force_addr is set to anything different from 0, we forcibly enable
  36. * the device at the given address.
  37. */
  38. static unsigned short force_addr;
  39. module_param(force_addr, ushort, 0);
  40. MODULE_PARM_DESC(force_addr,
  41. "Initialize the base address of the sensors");
  42. static struct platform_device *pdev;
  43. /*
  44. * The Via 686a southbridge has a LM78-like chip integrated on the same IC.
  45. * This driver is a customized copy of lm78.c
  46. */
  47. /* Many VIA686A constants specified below */
  48. /* Length of ISA address segment */
  49. #define VIA686A_EXTENT 0x80
  50. #define VIA686A_BASE_REG 0x70
  51. #define VIA686A_ENABLE_REG 0x74
  52. /* The VIA686A registers */
  53. /* ins numbered 0-4 */
  54. #define VIA686A_REG_IN_MAX(nr) (0x2b + ((nr) * 2))
  55. #define VIA686A_REG_IN_MIN(nr) (0x2c + ((nr) * 2))
  56. #define VIA686A_REG_IN(nr) (0x22 + (nr))
  57. /* fans numbered 1-2 */
  58. #define VIA686A_REG_FAN_MIN(nr) (0x3a + (nr))
  59. #define VIA686A_REG_FAN(nr) (0x28 + (nr))
  60. /* temps numbered 1-3 */
  61. static const u8 VIA686A_REG_TEMP[] = { 0x20, 0x21, 0x1f };
  62. static const u8 VIA686A_REG_TEMP_OVER[] = { 0x39, 0x3d, 0x1d };
  63. static const u8 VIA686A_REG_TEMP_HYST[] = { 0x3a, 0x3e, 0x1e };
  64. /* bits 7-6 */
  65. #define VIA686A_REG_TEMP_LOW1 0x4b
  66. /* 2 = bits 5-4, 3 = bits 7-6 */
  67. #define VIA686A_REG_TEMP_LOW23 0x49
  68. #define VIA686A_REG_ALARM1 0x41
  69. #define VIA686A_REG_ALARM2 0x42
  70. #define VIA686A_REG_FANDIV 0x47
  71. #define VIA686A_REG_CONFIG 0x40
  72. /*
  73. * The following register sets temp interrupt mode (bits 1-0 for temp1,
  74. * 3-2 for temp2, 5-4 for temp3). Modes are:
  75. * 00 interrupt stays as long as value is out-of-range
  76. * 01 interrupt is cleared once register is read (default)
  77. * 10 comparator mode- like 00, but ignores hysteresis
  78. * 11 same as 00
  79. */
  80. #define VIA686A_REG_TEMP_MODE 0x4b
  81. /* We'll just assume that you want to set all 3 simultaneously: */
  82. #define VIA686A_TEMP_MODE_MASK 0x3F
  83. #define VIA686A_TEMP_MODE_CONTINUOUS 0x00
  84. /*
  85. * Conversions. Limit checking is only done on the TO_REG
  86. * variants.
  87. *
  88. ******** VOLTAGE CONVERSIONS (Bob Dougherty) ********
  89. * From HWMon.cpp (Copyright 1998-2000 Jonathan Teh Soon Yew):
  90. * voltagefactor[0]=1.25/2628; (2628/1.25=2102.4) // Vccp
  91. * voltagefactor[1]=1.25/2628; (2628/1.25=2102.4) // +2.5V
  92. * voltagefactor[2]=1.67/2628; (2628/1.67=1573.7) // +3.3V
  93. * voltagefactor[3]=2.6/2628; (2628/2.60=1010.8) // +5V
  94. * voltagefactor[4]=6.3/2628; (2628/6.30=417.14) // +12V
  95. * in[i]=(data[i+2]*25.0+133)*voltagefactor[i];
  96. * That is:
  97. * volts = (25*regVal+133)*factor
  98. * regVal = (volts/factor-133)/25
  99. * (These conversions were contributed by Jonathan Teh Soon Yew
  100. * <[email protected]>)
  101. */
  102. static inline u8 IN_TO_REG(long val, int in_num)
  103. {
  104. /*
  105. * To avoid floating point, we multiply constants by 10 (100 for +12V).
  106. * Rounding is done (120500 is actually 133000 - 12500).
  107. * Remember that val is expressed in 0.001V/bit, which is why we divide
  108. * by an additional 10000 (100000 for +12V): 1000 for val and 10 (100)
  109. * for the constants.
  110. */
  111. if (in_num <= 1)
  112. return (u8) clamp_val((val * 21024 - 1205000) / 250000, 0, 255);
  113. else if (in_num == 2)
  114. return (u8) clamp_val((val * 15737 - 1205000) / 250000, 0, 255);
  115. else if (in_num == 3)
  116. return (u8) clamp_val((val * 10108 - 1205000) / 250000, 0, 255);
  117. else
  118. return (u8) clamp_val((val * 41714 - 12050000) / 2500000, 0,
  119. 255);
  120. }
  121. static inline long IN_FROM_REG(u8 val, int in_num)
  122. {
  123. /*
  124. * To avoid floating point, we multiply constants by 10 (100 for +12V).
  125. * We also multiply them by 1000 because we want 0.001V/bit for the
  126. * output value. Rounding is done.
  127. */
  128. if (in_num <= 1)
  129. return (long) ((250000 * val + 1330000 + 21024 / 2) / 21024);
  130. else if (in_num == 2)
  131. return (long) ((250000 * val + 1330000 + 15737 / 2) / 15737);
  132. else if (in_num == 3)
  133. return (long) ((250000 * val + 1330000 + 10108 / 2) / 10108);
  134. else
  135. return (long) ((2500000 * val + 13300000 + 41714 / 2) / 41714);
  136. }
  137. /********* FAN RPM CONVERSIONS ********/
  138. /*
  139. * Higher register values = slower fans (the fan's strobe gates a counter).
  140. * But this chip saturates back at 0, not at 255 like all the other chips.
  141. * So, 0 means 0 RPM
  142. */
  143. static inline u8 FAN_TO_REG(long rpm, int div)
  144. {
  145. if (rpm == 0)
  146. return 0;
  147. rpm = clamp_val(rpm, 1, 1000000);
  148. return clamp_val((1350000 + rpm * div / 2) / (rpm * div), 1, 255);
  149. }
  150. #define FAN_FROM_REG(val, div) ((val) == 0 ? 0 : (val) == 255 ? 0 : 1350000 / \
  151. ((val) * (div)))
  152. /******** TEMP CONVERSIONS (Bob Dougherty) *********/
  153. /*
  154. * linear fits from HWMon.cpp (Copyright 1998-2000 Jonathan Teh Soon Yew)
  155. * if(temp<169)
  156. * return double(temp)*0.427-32.08;
  157. * else if(temp>=169 && temp<=202)
  158. * return double(temp)*0.582-58.16;
  159. * else
  160. * return double(temp)*0.924-127.33;
  161. *
  162. * A fifth-order polynomial fits the unofficial data (provided by Alex van
  163. * Kaam <[email protected]>) a bit better. It also give more reasonable
  164. * numbers on my machine (ie. they agree with what my BIOS tells me).
  165. * Here's the fifth-order fit to the 8-bit data:
  166. * temp = 1.625093e-10*val^5 - 1.001632e-07*val^4 + 2.457653e-05*val^3 -
  167. * 2.967619e-03*val^2 + 2.175144e-01*val - 7.090067e+0.
  168. *
  169. * (2000-10-25- RFD: thanks to Uwe Andersen <[email protected]> for
  170. * finding my typos in this formula!)
  171. *
  172. * Alas, none of the elegant function-fit solutions will work because we
  173. * aren't allowed to use floating point in the kernel and doing it with
  174. * integers doesn't provide enough precision. So we'll do boring old
  175. * look-up table stuff. The unofficial data (see below) have effectively
  176. * 7-bit resolution (they are rounded to the nearest degree). I'm assuming
  177. * that the transfer function of the device is monotonic and smooth, so a
  178. * smooth function fit to the data will allow us to get better precision.
  179. * I used the 5th-order poly fit described above and solved for
  180. * VIA register values 0-255. I *10 before rounding, so we get tenth-degree
  181. * precision. (I could have done all 1024 values for our 10-bit readings,
  182. * but the function is very linear in the useful range (0-80 deg C), so
  183. * we'll just use linear interpolation for 10-bit readings.) So, temp_lut
  184. * is the temp at via register values 0-255:
  185. */
  186. static const s16 temp_lut[] = {
  187. -709, -688, -667, -646, -627, -607, -589, -570, -553, -536, -519,
  188. -503, -487, -471, -456, -442, -428, -414, -400, -387, -375,
  189. -362, -350, -339, -327, -316, -305, -295, -285, -275, -265,
  190. -255, -246, -237, -229, -220, -212, -204, -196, -188, -180,
  191. -173, -166, -159, -152, -145, -139, -132, -126, -120, -114,
  192. -108, -102, -96, -91, -85, -80, -74, -69, -64, -59, -54, -49,
  193. -44, -39, -34, -29, -25, -20, -15, -11, -6, -2, 3, 7, 12, 16,
  194. 20, 25, 29, 33, 37, 42, 46, 50, 54, 59, 63, 67, 71, 75, 79, 84,
  195. 88, 92, 96, 100, 104, 109, 113, 117, 121, 125, 130, 134, 138,
  196. 142, 146, 151, 155, 159, 163, 168, 172, 176, 181, 185, 189,
  197. 193, 198, 202, 206, 211, 215, 219, 224, 228, 232, 237, 241,
  198. 245, 250, 254, 259, 263, 267, 272, 276, 281, 285, 290, 294,
  199. 299, 303, 307, 312, 316, 321, 325, 330, 334, 339, 344, 348,
  200. 353, 357, 362, 366, 371, 376, 380, 385, 390, 395, 399, 404,
  201. 409, 414, 419, 423, 428, 433, 438, 443, 449, 454, 459, 464,
  202. 469, 475, 480, 486, 491, 497, 502, 508, 514, 520, 526, 532,
  203. 538, 544, 551, 557, 564, 571, 578, 584, 592, 599, 606, 614,
  204. 621, 629, 637, 645, 654, 662, 671, 680, 689, 698, 708, 718,
  205. 728, 738, 749, 759, 770, 782, 793, 805, 818, 830, 843, 856,
  206. 870, 883, 898, 912, 927, 943, 958, 975, 991, 1008, 1026, 1044,
  207. 1062, 1081, 1101, 1121, 1141, 1162, 1184, 1206, 1229, 1252,
  208. 1276, 1301, 1326, 1352, 1378, 1406, 1434, 1462
  209. };
  210. /*
  211. * the original LUT values from Alex van Kaam <[email protected]>
  212. * (for via register values 12-240):
  213. * {-50,-49,-47,-45,-43,-41,-39,-38,-37,-35,-34,-33,-32,-31,
  214. * -30,-29,-28,-27,-26,-25,-24,-24,-23,-22,-21,-20,-20,-19,-18,-17,-17,-16,-15,
  215. * -15,-14,-14,-13,-12,-12,-11,-11,-10,-9,-9,-8,-8,-7,-7,-6,-6,-5,-5,-4,-4,-3,
  216. * -3,-2,-2,-1,-1,0,0,1,1,1,3,3,3,4,4,4,5,5,5,6,6,7,7,8,8,9,9,9,10,10,11,11,12,
  217. * 12,12,13,13,13,14,14,15,15,16,16,16,17,17,18,18,19,19,20,20,21,21,21,22,22,
  218. * 22,23,23,24,24,25,25,26,26,26,27,27,27,28,28,29,29,30,30,30,31,31,32,32,33,
  219. * 33,34,34,35,35,35,36,36,37,37,38,38,39,39,40,40,41,41,42,42,43,43,44,44,45,
  220. * 45,46,46,47,48,48,49,49,50,51,51,52,52,53,53,54,55,55,56,57,57,58,59,59,60,
  221. * 61,62,62,63,64,65,66,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,83,84,
  222. * 85,86,88,89,91,92,94,96,97,99,101,103,105,107,109,110};
  223. *
  224. *
  225. * Here's the reverse LUT. I got it by doing a 6-th order poly fit (needed
  226. * an extra term for a good fit to these inverse data!) and then
  227. * solving for each temp value from -50 to 110 (the useable range for
  228. * this chip). Here's the fit:
  229. * viaRegVal = -1.160370e-10*val^6 +3.193693e-08*val^5 - 1.464447e-06*val^4
  230. * - 2.525453e-04*val^3 + 1.424593e-02*val^2 + 2.148941e+00*val +7.275808e+01)
  231. * Note that n=161:
  232. */
  233. static const u8 via_lut[] = {
  234. 12, 12, 13, 14, 14, 15, 16, 16, 17, 18, 18, 19, 20, 20, 21, 22, 23,
  235. 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 39, 40,
  236. 41, 43, 45, 46, 48, 49, 51, 53, 55, 57, 59, 60, 62, 64, 66,
  237. 69, 71, 73, 75, 77, 79, 82, 84, 86, 88, 91, 93, 95, 98, 100,
  238. 103, 105, 107, 110, 112, 115, 117, 119, 122, 124, 126, 129,
  239. 131, 134, 136, 138, 140, 143, 145, 147, 150, 152, 154, 156,
  240. 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180,
  241. 182, 183, 185, 187, 188, 190, 192, 193, 195, 196, 198, 199,
  242. 200, 202, 203, 205, 206, 207, 208, 209, 210, 211, 212, 213,
  243. 214, 215, 216, 217, 218, 219, 220, 221, 222, 222, 223, 224,
  244. 225, 226, 226, 227, 228, 228, 229, 230, 230, 231, 232, 232,
  245. 233, 233, 234, 235, 235, 236, 236, 237, 237, 238, 238, 239,
  246. 239, 240
  247. };
  248. /*
  249. * Converting temps to (8-bit) hyst and over registers
  250. * No interpolation here.
  251. * The +50 is because the temps start at -50
  252. */
  253. static inline u8 TEMP_TO_REG(long val)
  254. {
  255. return via_lut[val <= -50000 ? 0 : val >= 110000 ? 160 :
  256. (val < 0 ? val - 500 : val + 500) / 1000 + 50];
  257. }
  258. /* for 8-bit temperature hyst and over registers */
  259. #define TEMP_FROM_REG(val) ((long)temp_lut[val] * 100)
  260. /* for 10-bit temperature readings */
  261. static inline long TEMP_FROM_REG10(u16 val)
  262. {
  263. u16 eight_bits = val >> 2;
  264. u16 two_bits = val & 3;
  265. /* no interpolation for these */
  266. if (two_bits == 0 || eight_bits == 255)
  267. return TEMP_FROM_REG(eight_bits);
  268. /* do some linear interpolation */
  269. return (temp_lut[eight_bits] * (4 - two_bits) +
  270. temp_lut[eight_bits + 1] * two_bits) * 25;
  271. }
  272. #define DIV_FROM_REG(val) (1 << (val))
  273. #define DIV_TO_REG(val) ((val) == 8 ? 3 : (val) == 4 ? 2 : (val) == 1 ? 0 : 1)
  274. /*
  275. * For each registered chip, we need to keep some data in memory.
  276. * The structure is dynamically allocated.
  277. */
  278. struct via686a_data {
  279. unsigned short addr;
  280. const char *name;
  281. struct device *hwmon_dev;
  282. struct mutex update_lock;
  283. bool valid; /* true if following fields are valid */
  284. unsigned long last_updated; /* In jiffies */
  285. u8 in[5]; /* Register value */
  286. u8 in_max[5]; /* Register value */
  287. u8 in_min[5]; /* Register value */
  288. u8 fan[2]; /* Register value */
  289. u8 fan_min[2]; /* Register value */
  290. u16 temp[3]; /* Register value 10 bit */
  291. u8 temp_over[3]; /* Register value */
  292. u8 temp_hyst[3]; /* Register value */
  293. u8 fan_div[2]; /* Register encoding, shifted right */
  294. u16 alarms; /* Register encoding, combined */
  295. };
  296. static struct pci_dev *s_bridge; /* pointer to the (only) via686a */
  297. static inline int via686a_read_value(struct via686a_data *data, u8 reg)
  298. {
  299. return inb_p(data->addr + reg);
  300. }
  301. static inline void via686a_write_value(struct via686a_data *data, u8 reg,
  302. u8 value)
  303. {
  304. outb_p(value, data->addr + reg);
  305. }
  306. static void via686a_update_fan_div(struct via686a_data *data)
  307. {
  308. int reg = via686a_read_value(data, VIA686A_REG_FANDIV);
  309. data->fan_div[0] = (reg >> 4) & 0x03;
  310. data->fan_div[1] = reg >> 6;
  311. }
  312. static struct via686a_data *via686a_update_device(struct device *dev)
  313. {
  314. struct via686a_data *data = dev_get_drvdata(dev);
  315. int i;
  316. mutex_lock(&data->update_lock);
  317. if (time_after(jiffies, data->last_updated + HZ + HZ / 2)
  318. || !data->valid) {
  319. for (i = 0; i <= 4; i++) {
  320. data->in[i] =
  321. via686a_read_value(data, VIA686A_REG_IN(i));
  322. data->in_min[i] = via686a_read_value(data,
  323. VIA686A_REG_IN_MIN
  324. (i));
  325. data->in_max[i] =
  326. via686a_read_value(data, VIA686A_REG_IN_MAX(i));
  327. }
  328. for (i = 1; i <= 2; i++) {
  329. data->fan[i - 1] =
  330. via686a_read_value(data, VIA686A_REG_FAN(i));
  331. data->fan_min[i - 1] = via686a_read_value(data,
  332. VIA686A_REG_FAN_MIN(i));
  333. }
  334. for (i = 0; i <= 2; i++) {
  335. data->temp[i] = via686a_read_value(data,
  336. VIA686A_REG_TEMP[i]) << 2;
  337. data->temp_over[i] =
  338. via686a_read_value(data,
  339. VIA686A_REG_TEMP_OVER[i]);
  340. data->temp_hyst[i] =
  341. via686a_read_value(data,
  342. VIA686A_REG_TEMP_HYST[i]);
  343. }
  344. /*
  345. * add in lower 2 bits
  346. * temp1 uses bits 7-6 of VIA686A_REG_TEMP_LOW1
  347. * temp2 uses bits 5-4 of VIA686A_REG_TEMP_LOW23
  348. * temp3 uses bits 7-6 of VIA686A_REG_TEMP_LOW23
  349. */
  350. data->temp[0] |= (via686a_read_value(data,
  351. VIA686A_REG_TEMP_LOW1)
  352. & 0xc0) >> 6;
  353. data->temp[1] |=
  354. (via686a_read_value(data, VIA686A_REG_TEMP_LOW23) &
  355. 0x30) >> 4;
  356. data->temp[2] |=
  357. (via686a_read_value(data, VIA686A_REG_TEMP_LOW23) &
  358. 0xc0) >> 6;
  359. via686a_update_fan_div(data);
  360. data->alarms =
  361. via686a_read_value(data,
  362. VIA686A_REG_ALARM1) |
  363. (via686a_read_value(data, VIA686A_REG_ALARM2) << 8);
  364. data->last_updated = jiffies;
  365. data->valid = true;
  366. }
  367. mutex_unlock(&data->update_lock);
  368. return data;
  369. }
  370. /* following are the sysfs callback functions */
  371. /* 7 voltage sensors */
  372. static ssize_t in_show(struct device *dev, struct device_attribute *da,
  373. char *buf) {
  374. struct via686a_data *data = via686a_update_device(dev);
  375. struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
  376. int nr = attr->index;
  377. return sprintf(buf, "%ld\n", IN_FROM_REG(data->in[nr], nr));
  378. }
  379. static ssize_t in_min_show(struct device *dev, struct device_attribute *da,
  380. char *buf) {
  381. struct via686a_data *data = via686a_update_device(dev);
  382. struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
  383. int nr = attr->index;
  384. return sprintf(buf, "%ld\n", IN_FROM_REG(data->in_min[nr], nr));
  385. }
  386. static ssize_t in_max_show(struct device *dev, struct device_attribute *da,
  387. char *buf) {
  388. struct via686a_data *data = via686a_update_device(dev);
  389. struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
  390. int nr = attr->index;
  391. return sprintf(buf, "%ld\n", IN_FROM_REG(data->in_max[nr], nr));
  392. }
  393. static ssize_t in_min_store(struct device *dev, struct device_attribute *da,
  394. const char *buf, size_t count) {
  395. struct via686a_data *data = dev_get_drvdata(dev);
  396. struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
  397. int nr = attr->index;
  398. unsigned long val;
  399. int err;
  400. err = kstrtoul(buf, 10, &val);
  401. if (err)
  402. return err;
  403. mutex_lock(&data->update_lock);
  404. data->in_min[nr] = IN_TO_REG(val, nr);
  405. via686a_write_value(data, VIA686A_REG_IN_MIN(nr),
  406. data->in_min[nr]);
  407. mutex_unlock(&data->update_lock);
  408. return count;
  409. }
  410. static ssize_t in_max_store(struct device *dev, struct device_attribute *da,
  411. const char *buf, size_t count) {
  412. struct via686a_data *data = dev_get_drvdata(dev);
  413. struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
  414. int nr = attr->index;
  415. unsigned long val;
  416. int err;
  417. err = kstrtoul(buf, 10, &val);
  418. if (err)
  419. return err;
  420. mutex_lock(&data->update_lock);
  421. data->in_max[nr] = IN_TO_REG(val, nr);
  422. via686a_write_value(data, VIA686A_REG_IN_MAX(nr),
  423. data->in_max[nr]);
  424. mutex_unlock(&data->update_lock);
  425. return count;
  426. }
  427. static SENSOR_DEVICE_ATTR_RO(in0_input, in, 0);
  428. static SENSOR_DEVICE_ATTR_RW(in0_min, in_min, 0);
  429. static SENSOR_DEVICE_ATTR_RW(in0_max, in_max, 0);
  430. static SENSOR_DEVICE_ATTR_RO(in1_input, in, 1);
  431. static SENSOR_DEVICE_ATTR_RW(in1_min, in_min, 1);
  432. static SENSOR_DEVICE_ATTR_RW(in1_max, in_max, 1);
  433. static SENSOR_DEVICE_ATTR_RO(in2_input, in, 2);
  434. static SENSOR_DEVICE_ATTR_RW(in2_min, in_min, 2);
  435. static SENSOR_DEVICE_ATTR_RW(in2_max, in_max, 2);
  436. static SENSOR_DEVICE_ATTR_RO(in3_input, in, 3);
  437. static SENSOR_DEVICE_ATTR_RW(in3_min, in_min, 3);
  438. static SENSOR_DEVICE_ATTR_RW(in3_max, in_max, 3);
  439. static SENSOR_DEVICE_ATTR_RO(in4_input, in, 4);
  440. static SENSOR_DEVICE_ATTR_RW(in4_min, in_min, 4);
  441. static SENSOR_DEVICE_ATTR_RW(in4_max, in_max, 4);
  442. /* 3 temperatures */
  443. static ssize_t temp_show(struct device *dev, struct device_attribute *da,
  444. char *buf) {
  445. struct via686a_data *data = via686a_update_device(dev);
  446. struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
  447. int nr = attr->index;
  448. return sprintf(buf, "%ld\n", TEMP_FROM_REG10(data->temp[nr]));
  449. }
  450. static ssize_t temp_over_show(struct device *dev, struct device_attribute *da,
  451. char *buf) {
  452. struct via686a_data *data = via686a_update_device(dev);
  453. struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
  454. int nr = attr->index;
  455. return sprintf(buf, "%ld\n", TEMP_FROM_REG(data->temp_over[nr]));
  456. }
  457. static ssize_t temp_hyst_show(struct device *dev, struct device_attribute *da,
  458. char *buf) {
  459. struct via686a_data *data = via686a_update_device(dev);
  460. struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
  461. int nr = attr->index;
  462. return sprintf(buf, "%ld\n", TEMP_FROM_REG(data->temp_hyst[nr]));
  463. }
  464. static ssize_t temp_over_store(struct device *dev,
  465. struct device_attribute *da, const char *buf,
  466. size_t count) {
  467. struct via686a_data *data = dev_get_drvdata(dev);
  468. struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
  469. int nr = attr->index;
  470. long val;
  471. int err;
  472. err = kstrtol(buf, 10, &val);
  473. if (err)
  474. return err;
  475. mutex_lock(&data->update_lock);
  476. data->temp_over[nr] = TEMP_TO_REG(val);
  477. via686a_write_value(data, VIA686A_REG_TEMP_OVER[nr],
  478. data->temp_over[nr]);
  479. mutex_unlock(&data->update_lock);
  480. return count;
  481. }
  482. static ssize_t temp_hyst_store(struct device *dev,
  483. struct device_attribute *da, const char *buf,
  484. size_t count) {
  485. struct via686a_data *data = dev_get_drvdata(dev);
  486. struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
  487. int nr = attr->index;
  488. long val;
  489. int err;
  490. err = kstrtol(buf, 10, &val);
  491. if (err)
  492. return err;
  493. mutex_lock(&data->update_lock);
  494. data->temp_hyst[nr] = TEMP_TO_REG(val);
  495. via686a_write_value(data, VIA686A_REG_TEMP_HYST[nr],
  496. data->temp_hyst[nr]);
  497. mutex_unlock(&data->update_lock);
  498. return count;
  499. }
  500. static SENSOR_DEVICE_ATTR_RO(temp1_input, temp, 0);
  501. static SENSOR_DEVICE_ATTR_RW(temp1_max, temp_over, 0);
  502. static SENSOR_DEVICE_ATTR_RW(temp1_max_hyst, temp_hyst, 0);
  503. static SENSOR_DEVICE_ATTR_RO(temp2_input, temp, 1);
  504. static SENSOR_DEVICE_ATTR_RW(temp2_max, temp_over, 1);
  505. static SENSOR_DEVICE_ATTR_RW(temp2_max_hyst, temp_hyst, 1);
  506. static SENSOR_DEVICE_ATTR_RO(temp3_input, temp, 2);
  507. static SENSOR_DEVICE_ATTR_RW(temp3_max, temp_over, 2);
  508. static SENSOR_DEVICE_ATTR_RW(temp3_max_hyst, temp_hyst, 2);
  509. /* 2 Fans */
  510. static ssize_t fan_show(struct device *dev, struct device_attribute *da,
  511. char *buf) {
  512. struct via686a_data *data = via686a_update_device(dev);
  513. struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
  514. int nr = attr->index;
  515. return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr],
  516. DIV_FROM_REG(data->fan_div[nr])));
  517. }
  518. static ssize_t fan_min_show(struct device *dev, struct device_attribute *da,
  519. char *buf) {
  520. struct via686a_data *data = via686a_update_device(dev);
  521. struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
  522. int nr = attr->index;
  523. return sprintf(buf, "%d\n",
  524. FAN_FROM_REG(data->fan_min[nr],
  525. DIV_FROM_REG(data->fan_div[nr])));
  526. }
  527. static ssize_t fan_div_show(struct device *dev, struct device_attribute *da,
  528. char *buf) {
  529. struct via686a_data *data = via686a_update_device(dev);
  530. struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
  531. int nr = attr->index;
  532. return sprintf(buf, "%d\n", DIV_FROM_REG(data->fan_div[nr]));
  533. }
  534. static ssize_t fan_min_store(struct device *dev, struct device_attribute *da,
  535. const char *buf, size_t count) {
  536. struct via686a_data *data = dev_get_drvdata(dev);
  537. struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
  538. int nr = attr->index;
  539. unsigned long val;
  540. int err;
  541. err = kstrtoul(buf, 10, &val);
  542. if (err)
  543. return err;
  544. mutex_lock(&data->update_lock);
  545. data->fan_min[nr] = FAN_TO_REG(val, DIV_FROM_REG(data->fan_div[nr]));
  546. via686a_write_value(data, VIA686A_REG_FAN_MIN(nr+1), data->fan_min[nr]);
  547. mutex_unlock(&data->update_lock);
  548. return count;
  549. }
  550. static ssize_t fan_div_store(struct device *dev, struct device_attribute *da,
  551. const char *buf, size_t count) {
  552. struct via686a_data *data = dev_get_drvdata(dev);
  553. struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
  554. int nr = attr->index;
  555. int old;
  556. unsigned long val;
  557. int err;
  558. err = kstrtoul(buf, 10, &val);
  559. if (err)
  560. return err;
  561. mutex_lock(&data->update_lock);
  562. old = via686a_read_value(data, VIA686A_REG_FANDIV);
  563. data->fan_div[nr] = DIV_TO_REG(val);
  564. old = (old & 0x0f) | (data->fan_div[1] << 6) | (data->fan_div[0] << 4);
  565. via686a_write_value(data, VIA686A_REG_FANDIV, old);
  566. mutex_unlock(&data->update_lock);
  567. return count;
  568. }
  569. static SENSOR_DEVICE_ATTR_RO(fan1_input, fan, 0);
  570. static SENSOR_DEVICE_ATTR_RW(fan1_min, fan_min, 0);
  571. static SENSOR_DEVICE_ATTR_RW(fan1_div, fan_div, 0);
  572. static SENSOR_DEVICE_ATTR_RO(fan2_input, fan, 1);
  573. static SENSOR_DEVICE_ATTR_RW(fan2_min, fan_min, 1);
  574. static SENSOR_DEVICE_ATTR_RW(fan2_div, fan_div, 1);
  575. /* Alarms */
  576. static ssize_t alarms_show(struct device *dev, struct device_attribute *attr,
  577. char *buf)
  578. {
  579. struct via686a_data *data = via686a_update_device(dev);
  580. return sprintf(buf, "%u\n", data->alarms);
  581. }
  582. static DEVICE_ATTR_RO(alarms);
  583. static ssize_t alarm_show(struct device *dev, struct device_attribute *attr,
  584. char *buf)
  585. {
  586. int bitnr = to_sensor_dev_attr(attr)->index;
  587. struct via686a_data *data = via686a_update_device(dev);
  588. return sprintf(buf, "%u\n", (data->alarms >> bitnr) & 1);
  589. }
  590. static SENSOR_DEVICE_ATTR_RO(in0_alarm, alarm, 0);
  591. static SENSOR_DEVICE_ATTR_RO(in1_alarm, alarm, 1);
  592. static SENSOR_DEVICE_ATTR_RO(in2_alarm, alarm, 2);
  593. static SENSOR_DEVICE_ATTR_RO(in3_alarm, alarm, 3);
  594. static SENSOR_DEVICE_ATTR_RO(in4_alarm, alarm, 8);
  595. static SENSOR_DEVICE_ATTR_RO(temp1_alarm, alarm, 4);
  596. static SENSOR_DEVICE_ATTR_RO(temp2_alarm, alarm, 11);
  597. static SENSOR_DEVICE_ATTR_RO(temp3_alarm, alarm, 15);
  598. static SENSOR_DEVICE_ATTR_RO(fan1_alarm, alarm, 6);
  599. static SENSOR_DEVICE_ATTR_RO(fan2_alarm, alarm, 7);
  600. static ssize_t name_show(struct device *dev, struct device_attribute
  601. *devattr, char *buf)
  602. {
  603. struct via686a_data *data = dev_get_drvdata(dev);
  604. return sprintf(buf, "%s\n", data->name);
  605. }
  606. static DEVICE_ATTR_RO(name);
  607. static struct attribute *via686a_attributes[] = {
  608. &sensor_dev_attr_in0_input.dev_attr.attr,
  609. &sensor_dev_attr_in1_input.dev_attr.attr,
  610. &sensor_dev_attr_in2_input.dev_attr.attr,
  611. &sensor_dev_attr_in3_input.dev_attr.attr,
  612. &sensor_dev_attr_in4_input.dev_attr.attr,
  613. &sensor_dev_attr_in0_min.dev_attr.attr,
  614. &sensor_dev_attr_in1_min.dev_attr.attr,
  615. &sensor_dev_attr_in2_min.dev_attr.attr,
  616. &sensor_dev_attr_in3_min.dev_attr.attr,
  617. &sensor_dev_attr_in4_min.dev_attr.attr,
  618. &sensor_dev_attr_in0_max.dev_attr.attr,
  619. &sensor_dev_attr_in1_max.dev_attr.attr,
  620. &sensor_dev_attr_in2_max.dev_attr.attr,
  621. &sensor_dev_attr_in3_max.dev_attr.attr,
  622. &sensor_dev_attr_in4_max.dev_attr.attr,
  623. &sensor_dev_attr_in0_alarm.dev_attr.attr,
  624. &sensor_dev_attr_in1_alarm.dev_attr.attr,
  625. &sensor_dev_attr_in2_alarm.dev_attr.attr,
  626. &sensor_dev_attr_in3_alarm.dev_attr.attr,
  627. &sensor_dev_attr_in4_alarm.dev_attr.attr,
  628. &sensor_dev_attr_temp1_input.dev_attr.attr,
  629. &sensor_dev_attr_temp2_input.dev_attr.attr,
  630. &sensor_dev_attr_temp3_input.dev_attr.attr,
  631. &sensor_dev_attr_temp1_max.dev_attr.attr,
  632. &sensor_dev_attr_temp2_max.dev_attr.attr,
  633. &sensor_dev_attr_temp3_max.dev_attr.attr,
  634. &sensor_dev_attr_temp1_max_hyst.dev_attr.attr,
  635. &sensor_dev_attr_temp2_max_hyst.dev_attr.attr,
  636. &sensor_dev_attr_temp3_max_hyst.dev_attr.attr,
  637. &sensor_dev_attr_temp1_alarm.dev_attr.attr,
  638. &sensor_dev_attr_temp2_alarm.dev_attr.attr,
  639. &sensor_dev_attr_temp3_alarm.dev_attr.attr,
  640. &sensor_dev_attr_fan1_input.dev_attr.attr,
  641. &sensor_dev_attr_fan2_input.dev_attr.attr,
  642. &sensor_dev_attr_fan1_min.dev_attr.attr,
  643. &sensor_dev_attr_fan2_min.dev_attr.attr,
  644. &sensor_dev_attr_fan1_div.dev_attr.attr,
  645. &sensor_dev_attr_fan2_div.dev_attr.attr,
  646. &sensor_dev_attr_fan1_alarm.dev_attr.attr,
  647. &sensor_dev_attr_fan2_alarm.dev_attr.attr,
  648. &dev_attr_alarms.attr,
  649. &dev_attr_name.attr,
  650. NULL
  651. };
  652. static const struct attribute_group via686a_group = {
  653. .attrs = via686a_attributes,
  654. };
  655. static void via686a_init_device(struct via686a_data *data)
  656. {
  657. u8 reg;
  658. /* Start monitoring */
  659. reg = via686a_read_value(data, VIA686A_REG_CONFIG);
  660. via686a_write_value(data, VIA686A_REG_CONFIG, (reg | 0x01) & 0x7F);
  661. /* Configure temp interrupt mode for continuous-interrupt operation */
  662. reg = via686a_read_value(data, VIA686A_REG_TEMP_MODE);
  663. via686a_write_value(data, VIA686A_REG_TEMP_MODE,
  664. (reg & ~VIA686A_TEMP_MODE_MASK)
  665. | VIA686A_TEMP_MODE_CONTINUOUS);
  666. /* Pre-read fan clock divisor values */
  667. via686a_update_fan_div(data);
  668. }
  669. /* This is called when the module is loaded */
  670. static int via686a_probe(struct platform_device *pdev)
  671. {
  672. struct via686a_data *data;
  673. struct resource *res;
  674. int err;
  675. /* Reserve the ISA region */
  676. res = platform_get_resource(pdev, IORESOURCE_IO, 0);
  677. if (!devm_request_region(&pdev->dev, res->start, VIA686A_EXTENT,
  678. DRIVER_NAME)) {
  679. dev_err(&pdev->dev, "Region 0x%lx-0x%lx already in use!\n",
  680. (unsigned long)res->start, (unsigned long)res->end);
  681. return -ENODEV;
  682. }
  683. data = devm_kzalloc(&pdev->dev, sizeof(struct via686a_data),
  684. GFP_KERNEL);
  685. if (!data)
  686. return -ENOMEM;
  687. platform_set_drvdata(pdev, data);
  688. data->addr = res->start;
  689. data->name = DRIVER_NAME;
  690. mutex_init(&data->update_lock);
  691. /* Initialize the VIA686A chip */
  692. via686a_init_device(data);
  693. /* Register sysfs hooks */
  694. err = sysfs_create_group(&pdev->dev.kobj, &via686a_group);
  695. if (err)
  696. return err;
  697. data->hwmon_dev = hwmon_device_register(&pdev->dev);
  698. if (IS_ERR(data->hwmon_dev)) {
  699. err = PTR_ERR(data->hwmon_dev);
  700. goto exit_remove_files;
  701. }
  702. return 0;
  703. exit_remove_files:
  704. sysfs_remove_group(&pdev->dev.kobj, &via686a_group);
  705. return err;
  706. }
  707. static int via686a_remove(struct platform_device *pdev)
  708. {
  709. struct via686a_data *data = platform_get_drvdata(pdev);
  710. hwmon_device_unregister(data->hwmon_dev);
  711. sysfs_remove_group(&pdev->dev.kobj, &via686a_group);
  712. return 0;
  713. }
  714. static struct platform_driver via686a_driver = {
  715. .driver = {
  716. .name = DRIVER_NAME,
  717. },
  718. .probe = via686a_probe,
  719. .remove = via686a_remove,
  720. };
  721. static const struct pci_device_id via686a_pci_ids[] = {
  722. { PCI_DEVICE(PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_82C686_4) },
  723. { }
  724. };
  725. MODULE_DEVICE_TABLE(pci, via686a_pci_ids);
  726. static int via686a_device_add(unsigned short address)
  727. {
  728. struct resource res = {
  729. .start = address,
  730. .end = address + VIA686A_EXTENT - 1,
  731. .name = DRIVER_NAME,
  732. .flags = IORESOURCE_IO,
  733. };
  734. int err;
  735. err = acpi_check_resource_conflict(&res);
  736. if (err)
  737. goto exit;
  738. pdev = platform_device_alloc(DRIVER_NAME, address);
  739. if (!pdev) {
  740. err = -ENOMEM;
  741. pr_err("Device allocation failed\n");
  742. goto exit;
  743. }
  744. err = platform_device_add_resources(pdev, &res, 1);
  745. if (err) {
  746. pr_err("Device resource addition failed (%d)\n", err);
  747. goto exit_device_put;
  748. }
  749. err = platform_device_add(pdev);
  750. if (err) {
  751. pr_err("Device addition failed (%d)\n", err);
  752. goto exit_device_put;
  753. }
  754. return 0;
  755. exit_device_put:
  756. platform_device_put(pdev);
  757. exit:
  758. return err;
  759. }
  760. static int via686a_pci_probe(struct pci_dev *dev,
  761. const struct pci_device_id *id)
  762. {
  763. u16 address, val;
  764. if (force_addr) {
  765. address = force_addr & ~(VIA686A_EXTENT - 1);
  766. dev_warn(&dev->dev, "Forcing ISA address 0x%x\n", address);
  767. if (PCIBIOS_SUCCESSFUL !=
  768. pci_write_config_word(dev, VIA686A_BASE_REG, address | 1))
  769. return -ENODEV;
  770. }
  771. if (PCIBIOS_SUCCESSFUL !=
  772. pci_read_config_word(dev, VIA686A_BASE_REG, &val))
  773. return -ENODEV;
  774. address = val & ~(VIA686A_EXTENT - 1);
  775. if (address == 0) {
  776. dev_err(&dev->dev,
  777. "base address not set - upgrade BIOS or use force_addr=0xaddr\n");
  778. return -ENODEV;
  779. }
  780. if (PCIBIOS_SUCCESSFUL !=
  781. pci_read_config_word(dev, VIA686A_ENABLE_REG, &val))
  782. return -ENODEV;
  783. if (!(val & 0x0001)) {
  784. if (!force_addr) {
  785. dev_warn(&dev->dev,
  786. "Sensors disabled, enable with force_addr=0x%x\n",
  787. address);
  788. return -ENODEV;
  789. }
  790. dev_warn(&dev->dev, "Enabling sensors\n");
  791. if (PCIBIOS_SUCCESSFUL !=
  792. pci_write_config_word(dev, VIA686A_ENABLE_REG,
  793. val | 0x0001))
  794. return -ENODEV;
  795. }
  796. if (platform_driver_register(&via686a_driver))
  797. goto exit;
  798. /* Sets global pdev as a side effect */
  799. if (via686a_device_add(address))
  800. goto exit_unregister;
  801. /*
  802. * Always return failure here. This is to allow other drivers to bind
  803. * to this pci device. We don't really want to have control over the
  804. * pci device, we only wanted to read as few register values from it.
  805. */
  806. s_bridge = pci_dev_get(dev);
  807. return -ENODEV;
  808. exit_unregister:
  809. platform_driver_unregister(&via686a_driver);
  810. exit:
  811. return -ENODEV;
  812. }
  813. static struct pci_driver via686a_pci_driver = {
  814. .name = DRIVER_NAME,
  815. .id_table = via686a_pci_ids,
  816. .probe = via686a_pci_probe,
  817. };
  818. static int __init sm_via686a_init(void)
  819. {
  820. return pci_register_driver(&via686a_pci_driver);
  821. }
  822. static void __exit sm_via686a_exit(void)
  823. {
  824. pci_unregister_driver(&via686a_pci_driver);
  825. if (s_bridge != NULL) {
  826. platform_device_unregister(pdev);
  827. platform_driver_unregister(&via686a_driver);
  828. pci_dev_put(s_bridge);
  829. s_bridge = NULL;
  830. }
  831. }
  832. MODULE_AUTHOR("Kyösti Mälkki <[email protected]>, "
  833. "Mark Studebaker <[email protected]> "
  834. "and Bob Dougherty <[email protected]>");
  835. MODULE_DESCRIPTION("VIA 686A Sensor device");
  836. MODULE_LICENSE("GPL");
  837. module_init(sm_via686a_init);
  838. module_exit(sm_via686a_exit);