common.c 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251
  1. // SPDX-License-Identifier: GPL-2.0+
  2. // Copyright IBM Corp 2019
  3. #include <linux/device.h>
  4. #include <linux/export.h>
  5. #include <linux/hwmon.h>
  6. #include <linux/hwmon-sysfs.h>
  7. #include <linux/jiffies.h>
  8. #include <linux/kernel.h>
  9. #include <linux/math64.h>
  10. #include <linux/module.h>
  11. #include <linux/mutex.h>
  12. #include <linux/property.h>
  13. #include <linux/sysfs.h>
  14. #include <asm/unaligned.h>
  15. #include "common.h"
  16. #define EXTN_FLAG_SENSOR_ID BIT(7)
  17. #define OCC_ERROR_COUNT_THRESHOLD 2 /* required by OCC spec */
  18. #define OCC_STATE_SAFE 4
  19. #define OCC_SAFE_TIMEOUT msecs_to_jiffies(60000) /* 1 min */
  20. #define OCC_UPDATE_FREQUENCY msecs_to_jiffies(1000)
  21. #define OCC_TEMP_SENSOR_FAULT 0xFF
  22. #define OCC_FRU_TYPE_VRM 3
  23. /* OCC sensor type and version definitions */
  24. struct temp_sensor_1 {
  25. u16 sensor_id;
  26. u16 value;
  27. } __packed;
  28. struct temp_sensor_2 {
  29. u32 sensor_id;
  30. u8 fru_type;
  31. u8 value;
  32. } __packed;
  33. struct temp_sensor_10 {
  34. u32 sensor_id;
  35. u8 fru_type;
  36. u8 value;
  37. u8 throttle;
  38. u8 reserved;
  39. } __packed;
  40. struct freq_sensor_1 {
  41. u16 sensor_id;
  42. u16 value;
  43. } __packed;
  44. struct freq_sensor_2 {
  45. u32 sensor_id;
  46. u16 value;
  47. } __packed;
  48. struct power_sensor_1 {
  49. u16 sensor_id;
  50. u32 update_tag;
  51. u32 accumulator;
  52. u16 value;
  53. } __packed;
  54. struct power_sensor_2 {
  55. u32 sensor_id;
  56. u8 function_id;
  57. u8 apss_channel;
  58. u16 reserved;
  59. u32 update_tag;
  60. u64 accumulator;
  61. u16 value;
  62. } __packed;
  63. struct power_sensor_data {
  64. u16 value;
  65. u32 update_tag;
  66. u64 accumulator;
  67. } __packed;
  68. struct power_sensor_data_and_time {
  69. u16 update_time;
  70. u16 value;
  71. u32 update_tag;
  72. u64 accumulator;
  73. } __packed;
  74. struct power_sensor_a0 {
  75. u32 sensor_id;
  76. struct power_sensor_data_and_time system;
  77. u32 reserved;
  78. struct power_sensor_data_and_time proc;
  79. struct power_sensor_data vdd;
  80. struct power_sensor_data vdn;
  81. } __packed;
  82. struct caps_sensor_2 {
  83. u16 cap;
  84. u16 system_power;
  85. u16 n_cap;
  86. u16 max;
  87. u16 min;
  88. u16 user;
  89. u8 user_source;
  90. } __packed;
  91. struct caps_sensor_3 {
  92. u16 cap;
  93. u16 system_power;
  94. u16 n_cap;
  95. u16 max;
  96. u16 hard_min;
  97. u16 soft_min;
  98. u16 user;
  99. u8 user_source;
  100. } __packed;
  101. struct extended_sensor {
  102. union {
  103. u8 name[4];
  104. u32 sensor_id;
  105. };
  106. u8 flags;
  107. u8 reserved;
  108. u8 data[6];
  109. } __packed;
  110. static int occ_poll(struct occ *occ)
  111. {
  112. int rc;
  113. u8 cmd[7];
  114. struct occ_poll_response_header *header;
  115. /* big endian */
  116. cmd[0] = 0; /* sequence number */
  117. cmd[1] = 0; /* cmd type */
  118. cmd[2] = 0; /* data length msb */
  119. cmd[3] = 1; /* data length lsb */
  120. cmd[4] = occ->poll_cmd_data; /* data */
  121. cmd[5] = 0; /* checksum msb */
  122. cmd[6] = 0; /* checksum lsb */
  123. /* mutex should already be locked if necessary */
  124. rc = occ->send_cmd(occ, cmd, sizeof(cmd), &occ->resp, sizeof(occ->resp));
  125. if (rc) {
  126. occ->last_error = rc;
  127. if (occ->error_count++ > OCC_ERROR_COUNT_THRESHOLD)
  128. occ->error = rc;
  129. goto done;
  130. }
  131. /* clear error since communication was successful */
  132. occ->error_count = 0;
  133. occ->last_error = 0;
  134. occ->error = 0;
  135. /* check for safe state */
  136. header = (struct occ_poll_response_header *)occ->resp.data;
  137. if (header->occ_state == OCC_STATE_SAFE) {
  138. if (occ->last_safe) {
  139. if (time_after(jiffies,
  140. occ->last_safe + OCC_SAFE_TIMEOUT))
  141. occ->error = -EHOSTDOWN;
  142. } else {
  143. occ->last_safe = jiffies;
  144. }
  145. } else {
  146. occ->last_safe = 0;
  147. }
  148. done:
  149. occ_sysfs_poll_done(occ);
  150. return rc;
  151. }
  152. static int occ_set_user_power_cap(struct occ *occ, u16 user_power_cap)
  153. {
  154. int rc;
  155. u8 cmd[8];
  156. u8 resp[8];
  157. __be16 user_power_cap_be = cpu_to_be16(user_power_cap);
  158. cmd[0] = 0; /* sequence number */
  159. cmd[1] = 0x22; /* cmd type */
  160. cmd[2] = 0; /* data length msb */
  161. cmd[3] = 2; /* data length lsb */
  162. memcpy(&cmd[4], &user_power_cap_be, 2);
  163. cmd[6] = 0; /* checksum msb */
  164. cmd[7] = 0; /* checksum lsb */
  165. rc = mutex_lock_interruptible(&occ->lock);
  166. if (rc)
  167. return rc;
  168. rc = occ->send_cmd(occ, cmd, sizeof(cmd), resp, sizeof(resp));
  169. mutex_unlock(&occ->lock);
  170. return rc;
  171. }
  172. int occ_update_response(struct occ *occ)
  173. {
  174. int rc = mutex_lock_interruptible(&occ->lock);
  175. if (rc)
  176. return rc;
  177. /* limit the maximum rate of polling the OCC */
  178. if (time_after(jiffies, occ->next_update)) {
  179. rc = occ_poll(occ);
  180. occ->next_update = jiffies + OCC_UPDATE_FREQUENCY;
  181. } else {
  182. rc = occ->last_error;
  183. }
  184. mutex_unlock(&occ->lock);
  185. return rc;
  186. }
  187. static ssize_t occ_show_temp_1(struct device *dev,
  188. struct device_attribute *attr, char *buf)
  189. {
  190. int rc;
  191. u32 val = 0;
  192. struct temp_sensor_1 *temp;
  193. struct occ *occ = dev_get_drvdata(dev);
  194. struct occ_sensors *sensors = &occ->sensors;
  195. struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
  196. rc = occ_update_response(occ);
  197. if (rc)
  198. return rc;
  199. temp = ((struct temp_sensor_1 *)sensors->temp.data) + sattr->index;
  200. switch (sattr->nr) {
  201. case 0:
  202. val = get_unaligned_be16(&temp->sensor_id);
  203. break;
  204. case 1:
  205. /*
  206. * If a sensor reading has expired and couldn't be refreshed,
  207. * OCC returns 0xFFFF for that sensor.
  208. */
  209. if (temp->value == 0xFFFF)
  210. return -EREMOTEIO;
  211. val = get_unaligned_be16(&temp->value) * 1000;
  212. break;
  213. default:
  214. return -EINVAL;
  215. }
  216. return sysfs_emit(buf, "%u\n", val);
  217. }
  218. static ssize_t occ_show_temp_2(struct device *dev,
  219. struct device_attribute *attr, char *buf)
  220. {
  221. int rc;
  222. u32 val = 0;
  223. struct temp_sensor_2 *temp;
  224. struct occ *occ = dev_get_drvdata(dev);
  225. struct occ_sensors *sensors = &occ->sensors;
  226. struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
  227. rc = occ_update_response(occ);
  228. if (rc)
  229. return rc;
  230. temp = ((struct temp_sensor_2 *)sensors->temp.data) + sattr->index;
  231. switch (sattr->nr) {
  232. case 0:
  233. val = get_unaligned_be32(&temp->sensor_id);
  234. break;
  235. case 1:
  236. val = temp->value;
  237. if (val == OCC_TEMP_SENSOR_FAULT)
  238. return -EREMOTEIO;
  239. /*
  240. * VRM doesn't return temperature, only alarm bit. This
  241. * attribute maps to tempX_alarm instead of tempX_input for
  242. * VRM
  243. */
  244. if (temp->fru_type != OCC_FRU_TYPE_VRM) {
  245. /* sensor not ready */
  246. if (val == 0)
  247. return -EAGAIN;
  248. val *= 1000;
  249. }
  250. break;
  251. case 2:
  252. val = temp->fru_type;
  253. break;
  254. case 3:
  255. val = temp->value == OCC_TEMP_SENSOR_FAULT;
  256. break;
  257. default:
  258. return -EINVAL;
  259. }
  260. return sysfs_emit(buf, "%u\n", val);
  261. }
  262. static ssize_t occ_show_temp_10(struct device *dev,
  263. struct device_attribute *attr, char *buf)
  264. {
  265. int rc;
  266. u32 val = 0;
  267. struct temp_sensor_10 *temp;
  268. struct occ *occ = dev_get_drvdata(dev);
  269. struct occ_sensors *sensors = &occ->sensors;
  270. struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
  271. rc = occ_update_response(occ);
  272. if (rc)
  273. return rc;
  274. temp = ((struct temp_sensor_10 *)sensors->temp.data) + sattr->index;
  275. switch (sattr->nr) {
  276. case 0:
  277. val = get_unaligned_be32(&temp->sensor_id);
  278. break;
  279. case 1:
  280. val = temp->value;
  281. if (val == OCC_TEMP_SENSOR_FAULT)
  282. return -EREMOTEIO;
  283. /* sensor not ready */
  284. if (val == 0)
  285. return -EAGAIN;
  286. val *= 1000;
  287. break;
  288. case 2:
  289. val = temp->fru_type;
  290. break;
  291. case 3:
  292. val = temp->value == OCC_TEMP_SENSOR_FAULT;
  293. break;
  294. case 4:
  295. val = temp->throttle * 1000;
  296. break;
  297. default:
  298. return -EINVAL;
  299. }
  300. return sysfs_emit(buf, "%u\n", val);
  301. }
  302. static ssize_t occ_show_freq_1(struct device *dev,
  303. struct device_attribute *attr, char *buf)
  304. {
  305. int rc;
  306. u16 val = 0;
  307. struct freq_sensor_1 *freq;
  308. struct occ *occ = dev_get_drvdata(dev);
  309. struct occ_sensors *sensors = &occ->sensors;
  310. struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
  311. rc = occ_update_response(occ);
  312. if (rc)
  313. return rc;
  314. freq = ((struct freq_sensor_1 *)sensors->freq.data) + sattr->index;
  315. switch (sattr->nr) {
  316. case 0:
  317. val = get_unaligned_be16(&freq->sensor_id);
  318. break;
  319. case 1:
  320. val = get_unaligned_be16(&freq->value);
  321. break;
  322. default:
  323. return -EINVAL;
  324. }
  325. return sysfs_emit(buf, "%u\n", val);
  326. }
  327. static ssize_t occ_show_freq_2(struct device *dev,
  328. struct device_attribute *attr, char *buf)
  329. {
  330. int rc;
  331. u32 val = 0;
  332. struct freq_sensor_2 *freq;
  333. struct occ *occ = dev_get_drvdata(dev);
  334. struct occ_sensors *sensors = &occ->sensors;
  335. struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
  336. rc = occ_update_response(occ);
  337. if (rc)
  338. return rc;
  339. freq = ((struct freq_sensor_2 *)sensors->freq.data) + sattr->index;
  340. switch (sattr->nr) {
  341. case 0:
  342. val = get_unaligned_be32(&freq->sensor_id);
  343. break;
  344. case 1:
  345. val = get_unaligned_be16(&freq->value);
  346. break;
  347. default:
  348. return -EINVAL;
  349. }
  350. return sysfs_emit(buf, "%u\n", val);
  351. }
  352. static ssize_t occ_show_power_1(struct device *dev,
  353. struct device_attribute *attr, char *buf)
  354. {
  355. int rc;
  356. u64 val = 0;
  357. struct power_sensor_1 *power;
  358. struct occ *occ = dev_get_drvdata(dev);
  359. struct occ_sensors *sensors = &occ->sensors;
  360. struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
  361. rc = occ_update_response(occ);
  362. if (rc)
  363. return rc;
  364. power = ((struct power_sensor_1 *)sensors->power.data) + sattr->index;
  365. switch (sattr->nr) {
  366. case 0:
  367. val = get_unaligned_be16(&power->sensor_id);
  368. break;
  369. case 1:
  370. val = get_unaligned_be32(&power->accumulator) /
  371. get_unaligned_be32(&power->update_tag);
  372. val *= 1000000ULL;
  373. break;
  374. case 2:
  375. val = (u64)get_unaligned_be32(&power->update_tag) *
  376. occ->powr_sample_time_us;
  377. break;
  378. case 3:
  379. val = get_unaligned_be16(&power->value) * 1000000ULL;
  380. break;
  381. default:
  382. return -EINVAL;
  383. }
  384. return sysfs_emit(buf, "%llu\n", val);
  385. }
  386. static u64 occ_get_powr_avg(u64 *accum, u32 *samples)
  387. {
  388. u64 divisor = get_unaligned_be32(samples);
  389. return (divisor == 0) ? 0 :
  390. div64_u64(get_unaligned_be64(accum) * 1000000ULL, divisor);
  391. }
  392. static ssize_t occ_show_power_2(struct device *dev,
  393. struct device_attribute *attr, char *buf)
  394. {
  395. int rc;
  396. u64 val = 0;
  397. struct power_sensor_2 *power;
  398. struct occ *occ = dev_get_drvdata(dev);
  399. struct occ_sensors *sensors = &occ->sensors;
  400. struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
  401. rc = occ_update_response(occ);
  402. if (rc)
  403. return rc;
  404. power = ((struct power_sensor_2 *)sensors->power.data) + sattr->index;
  405. switch (sattr->nr) {
  406. case 0:
  407. return sysfs_emit(buf, "%u_%u_%u\n",
  408. get_unaligned_be32(&power->sensor_id),
  409. power->function_id, power->apss_channel);
  410. case 1:
  411. val = occ_get_powr_avg(&power->accumulator,
  412. &power->update_tag);
  413. break;
  414. case 2:
  415. val = (u64)get_unaligned_be32(&power->update_tag) *
  416. occ->powr_sample_time_us;
  417. break;
  418. case 3:
  419. val = get_unaligned_be16(&power->value) * 1000000ULL;
  420. break;
  421. default:
  422. return -EINVAL;
  423. }
  424. return sysfs_emit(buf, "%llu\n", val);
  425. }
  426. static ssize_t occ_show_power_a0(struct device *dev,
  427. struct device_attribute *attr, char *buf)
  428. {
  429. int rc;
  430. u64 val = 0;
  431. struct power_sensor_a0 *power;
  432. struct occ *occ = dev_get_drvdata(dev);
  433. struct occ_sensors *sensors = &occ->sensors;
  434. struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
  435. rc = occ_update_response(occ);
  436. if (rc)
  437. return rc;
  438. power = ((struct power_sensor_a0 *)sensors->power.data) + sattr->index;
  439. switch (sattr->nr) {
  440. case 0:
  441. return sysfs_emit(buf, "%u_system\n",
  442. get_unaligned_be32(&power->sensor_id));
  443. case 1:
  444. val = occ_get_powr_avg(&power->system.accumulator,
  445. &power->system.update_tag);
  446. break;
  447. case 2:
  448. val = (u64)get_unaligned_be32(&power->system.update_tag) *
  449. occ->powr_sample_time_us;
  450. break;
  451. case 3:
  452. val = get_unaligned_be16(&power->system.value) * 1000000ULL;
  453. break;
  454. case 4:
  455. return sysfs_emit(buf, "%u_proc\n",
  456. get_unaligned_be32(&power->sensor_id));
  457. case 5:
  458. val = occ_get_powr_avg(&power->proc.accumulator,
  459. &power->proc.update_tag);
  460. break;
  461. case 6:
  462. val = (u64)get_unaligned_be32(&power->proc.update_tag) *
  463. occ->powr_sample_time_us;
  464. break;
  465. case 7:
  466. val = get_unaligned_be16(&power->proc.value) * 1000000ULL;
  467. break;
  468. case 8:
  469. return sysfs_emit(buf, "%u_vdd\n",
  470. get_unaligned_be32(&power->sensor_id));
  471. case 9:
  472. val = occ_get_powr_avg(&power->vdd.accumulator,
  473. &power->vdd.update_tag);
  474. break;
  475. case 10:
  476. val = (u64)get_unaligned_be32(&power->vdd.update_tag) *
  477. occ->powr_sample_time_us;
  478. break;
  479. case 11:
  480. val = get_unaligned_be16(&power->vdd.value) * 1000000ULL;
  481. break;
  482. case 12:
  483. return sysfs_emit(buf, "%u_vdn\n",
  484. get_unaligned_be32(&power->sensor_id));
  485. case 13:
  486. val = occ_get_powr_avg(&power->vdn.accumulator,
  487. &power->vdn.update_tag);
  488. break;
  489. case 14:
  490. val = (u64)get_unaligned_be32(&power->vdn.update_tag) *
  491. occ->powr_sample_time_us;
  492. break;
  493. case 15:
  494. val = get_unaligned_be16(&power->vdn.value) * 1000000ULL;
  495. break;
  496. default:
  497. return -EINVAL;
  498. }
  499. return sysfs_emit(buf, "%llu\n", val);
  500. }
  501. static ssize_t occ_show_caps_1_2(struct device *dev,
  502. struct device_attribute *attr, char *buf)
  503. {
  504. int rc;
  505. u64 val = 0;
  506. struct caps_sensor_2 *caps;
  507. struct occ *occ = dev_get_drvdata(dev);
  508. struct occ_sensors *sensors = &occ->sensors;
  509. struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
  510. rc = occ_update_response(occ);
  511. if (rc)
  512. return rc;
  513. caps = ((struct caps_sensor_2 *)sensors->caps.data) + sattr->index;
  514. switch (sattr->nr) {
  515. case 0:
  516. return sysfs_emit(buf, "system\n");
  517. case 1:
  518. val = get_unaligned_be16(&caps->cap) * 1000000ULL;
  519. break;
  520. case 2:
  521. val = get_unaligned_be16(&caps->system_power) * 1000000ULL;
  522. break;
  523. case 3:
  524. val = get_unaligned_be16(&caps->n_cap) * 1000000ULL;
  525. break;
  526. case 4:
  527. val = get_unaligned_be16(&caps->max) * 1000000ULL;
  528. break;
  529. case 5:
  530. val = get_unaligned_be16(&caps->min) * 1000000ULL;
  531. break;
  532. case 6:
  533. val = get_unaligned_be16(&caps->user) * 1000000ULL;
  534. break;
  535. case 7:
  536. if (occ->sensors.caps.version == 1)
  537. return -EINVAL;
  538. val = caps->user_source;
  539. break;
  540. default:
  541. return -EINVAL;
  542. }
  543. return sysfs_emit(buf, "%llu\n", val);
  544. }
  545. static ssize_t occ_show_caps_3(struct device *dev,
  546. struct device_attribute *attr, char *buf)
  547. {
  548. int rc;
  549. u64 val = 0;
  550. struct caps_sensor_3 *caps;
  551. struct occ *occ = dev_get_drvdata(dev);
  552. struct occ_sensors *sensors = &occ->sensors;
  553. struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
  554. rc = occ_update_response(occ);
  555. if (rc)
  556. return rc;
  557. caps = ((struct caps_sensor_3 *)sensors->caps.data) + sattr->index;
  558. switch (sattr->nr) {
  559. case 0:
  560. return sysfs_emit(buf, "system\n");
  561. case 1:
  562. val = get_unaligned_be16(&caps->cap) * 1000000ULL;
  563. break;
  564. case 2:
  565. val = get_unaligned_be16(&caps->system_power) * 1000000ULL;
  566. break;
  567. case 3:
  568. val = get_unaligned_be16(&caps->n_cap) * 1000000ULL;
  569. break;
  570. case 4:
  571. val = get_unaligned_be16(&caps->max) * 1000000ULL;
  572. break;
  573. case 5:
  574. val = get_unaligned_be16(&caps->hard_min) * 1000000ULL;
  575. break;
  576. case 6:
  577. val = get_unaligned_be16(&caps->user) * 1000000ULL;
  578. break;
  579. case 7:
  580. val = caps->user_source;
  581. break;
  582. case 8:
  583. val = get_unaligned_be16(&caps->soft_min) * 1000000ULL;
  584. break;
  585. default:
  586. return -EINVAL;
  587. }
  588. return sysfs_emit(buf, "%llu\n", val);
  589. }
  590. static ssize_t occ_store_caps_user(struct device *dev,
  591. struct device_attribute *attr,
  592. const char *buf, size_t count)
  593. {
  594. int rc;
  595. u16 user_power_cap;
  596. unsigned long long value;
  597. struct occ *occ = dev_get_drvdata(dev);
  598. rc = kstrtoull(buf, 0, &value);
  599. if (rc)
  600. return rc;
  601. user_power_cap = div64_u64(value, 1000000ULL); /* microwatt to watt */
  602. rc = occ_set_user_power_cap(occ, user_power_cap);
  603. if (rc)
  604. return rc;
  605. return count;
  606. }
  607. static ssize_t occ_show_extended(struct device *dev,
  608. struct device_attribute *attr, char *buf)
  609. {
  610. int rc;
  611. struct extended_sensor *extn;
  612. struct occ *occ = dev_get_drvdata(dev);
  613. struct occ_sensors *sensors = &occ->sensors;
  614. struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
  615. rc = occ_update_response(occ);
  616. if (rc)
  617. return rc;
  618. extn = ((struct extended_sensor *)sensors->extended.data) +
  619. sattr->index;
  620. switch (sattr->nr) {
  621. case 0:
  622. if (extn->flags & EXTN_FLAG_SENSOR_ID) {
  623. rc = sysfs_emit(buf, "%u",
  624. get_unaligned_be32(&extn->sensor_id));
  625. } else {
  626. rc = sysfs_emit(buf, "%4phN\n", extn->name);
  627. }
  628. break;
  629. case 1:
  630. rc = sysfs_emit(buf, "%02x\n", extn->flags);
  631. break;
  632. case 2:
  633. rc = sysfs_emit(buf, "%6phN\n", extn->data);
  634. break;
  635. default:
  636. return -EINVAL;
  637. }
  638. return rc;
  639. }
  640. /*
  641. * Some helper macros to make it easier to define an occ_attribute. Since these
  642. * are dynamically allocated, we shouldn't use the existing kernel macros which
  643. * stringify the name argument.
  644. */
  645. #define ATTR_OCC(_name, _mode, _show, _store) { \
  646. .attr = { \
  647. .name = _name, \
  648. .mode = VERIFY_OCTAL_PERMISSIONS(_mode), \
  649. }, \
  650. .show = _show, \
  651. .store = _store, \
  652. }
  653. #define SENSOR_ATTR_OCC(_name, _mode, _show, _store, _nr, _index) { \
  654. .dev_attr = ATTR_OCC(_name, _mode, _show, _store), \
  655. .index = _index, \
  656. .nr = _nr, \
  657. }
  658. #define OCC_INIT_ATTR(_name, _mode, _show, _store, _nr, _index) \
  659. ((struct sensor_device_attribute_2) \
  660. SENSOR_ATTR_OCC(_name, _mode, _show, _store, _nr, _index))
  661. /*
  662. * Allocate and instatiate sensor_device_attribute_2s. It's most efficient to
  663. * use our own instead of the built-in hwmon attribute types.
  664. */
  665. static int occ_setup_sensor_attrs(struct occ *occ)
  666. {
  667. unsigned int i, s, num_attrs = 0;
  668. struct device *dev = occ->bus_dev;
  669. struct occ_sensors *sensors = &occ->sensors;
  670. struct occ_attribute *attr;
  671. struct temp_sensor_2 *temp;
  672. ssize_t (*show_temp)(struct device *, struct device_attribute *,
  673. char *) = occ_show_temp_1;
  674. ssize_t (*show_freq)(struct device *, struct device_attribute *,
  675. char *) = occ_show_freq_1;
  676. ssize_t (*show_power)(struct device *, struct device_attribute *,
  677. char *) = occ_show_power_1;
  678. ssize_t (*show_caps)(struct device *, struct device_attribute *,
  679. char *) = occ_show_caps_1_2;
  680. switch (sensors->temp.version) {
  681. case 1:
  682. num_attrs += (sensors->temp.num_sensors * 2);
  683. break;
  684. case 2:
  685. num_attrs += (sensors->temp.num_sensors * 4);
  686. show_temp = occ_show_temp_2;
  687. break;
  688. case 0x10:
  689. num_attrs += (sensors->temp.num_sensors * 5);
  690. show_temp = occ_show_temp_10;
  691. break;
  692. default:
  693. sensors->temp.num_sensors = 0;
  694. }
  695. switch (sensors->freq.version) {
  696. case 2:
  697. show_freq = occ_show_freq_2;
  698. fallthrough;
  699. case 1:
  700. num_attrs += (sensors->freq.num_sensors * 2);
  701. break;
  702. default:
  703. sensors->freq.num_sensors = 0;
  704. }
  705. switch (sensors->power.version) {
  706. case 2:
  707. show_power = occ_show_power_2;
  708. fallthrough;
  709. case 1:
  710. num_attrs += (sensors->power.num_sensors * 4);
  711. break;
  712. case 0xA0:
  713. num_attrs += (sensors->power.num_sensors * 16);
  714. show_power = occ_show_power_a0;
  715. break;
  716. default:
  717. sensors->power.num_sensors = 0;
  718. }
  719. switch (sensors->caps.version) {
  720. case 1:
  721. num_attrs += (sensors->caps.num_sensors * 7);
  722. break;
  723. case 2:
  724. num_attrs += (sensors->caps.num_sensors * 8);
  725. break;
  726. case 3:
  727. show_caps = occ_show_caps_3;
  728. num_attrs += (sensors->caps.num_sensors * 9);
  729. break;
  730. default:
  731. sensors->caps.num_sensors = 0;
  732. }
  733. switch (sensors->extended.version) {
  734. case 1:
  735. num_attrs += (sensors->extended.num_sensors * 3);
  736. break;
  737. default:
  738. sensors->extended.num_sensors = 0;
  739. }
  740. occ->attrs = devm_kzalloc(dev, sizeof(*occ->attrs) * num_attrs,
  741. GFP_KERNEL);
  742. if (!occ->attrs)
  743. return -ENOMEM;
  744. /* null-terminated list */
  745. occ->group.attrs = devm_kzalloc(dev, sizeof(*occ->group.attrs) *
  746. num_attrs + 1, GFP_KERNEL);
  747. if (!occ->group.attrs)
  748. return -ENOMEM;
  749. attr = occ->attrs;
  750. for (i = 0; i < sensors->temp.num_sensors; ++i) {
  751. s = i + 1;
  752. temp = ((struct temp_sensor_2 *)sensors->temp.data) + i;
  753. snprintf(attr->name, sizeof(attr->name), "temp%d_label", s);
  754. attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_temp, NULL,
  755. 0, i);
  756. attr++;
  757. if (sensors->temp.version == 2 &&
  758. temp->fru_type == OCC_FRU_TYPE_VRM) {
  759. snprintf(attr->name, sizeof(attr->name),
  760. "temp%d_alarm", s);
  761. } else {
  762. snprintf(attr->name, sizeof(attr->name),
  763. "temp%d_input", s);
  764. }
  765. attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_temp, NULL,
  766. 1, i);
  767. attr++;
  768. if (sensors->temp.version > 1) {
  769. snprintf(attr->name, sizeof(attr->name),
  770. "temp%d_fru_type", s);
  771. attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
  772. show_temp, NULL, 2, i);
  773. attr++;
  774. snprintf(attr->name, sizeof(attr->name),
  775. "temp%d_fault", s);
  776. attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
  777. show_temp, NULL, 3, i);
  778. attr++;
  779. if (sensors->temp.version == 0x10) {
  780. snprintf(attr->name, sizeof(attr->name),
  781. "temp%d_max", s);
  782. attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
  783. show_temp, NULL,
  784. 4, i);
  785. attr++;
  786. }
  787. }
  788. }
  789. for (i = 0; i < sensors->freq.num_sensors; ++i) {
  790. s = i + 1;
  791. snprintf(attr->name, sizeof(attr->name), "freq%d_label", s);
  792. attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_freq, NULL,
  793. 0, i);
  794. attr++;
  795. snprintf(attr->name, sizeof(attr->name), "freq%d_input", s);
  796. attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_freq, NULL,
  797. 1, i);
  798. attr++;
  799. }
  800. if (sensors->power.version == 0xA0) {
  801. /*
  802. * Special case for many-attribute power sensor. Split it into
  803. * a sensor number per power type, emulating several sensors.
  804. */
  805. for (i = 0; i < sensors->power.num_sensors; ++i) {
  806. unsigned int j;
  807. unsigned int nr = 0;
  808. s = (i * 4) + 1;
  809. for (j = 0; j < 4; ++j) {
  810. snprintf(attr->name, sizeof(attr->name),
  811. "power%d_label", s);
  812. attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
  813. show_power, NULL,
  814. nr++, i);
  815. attr++;
  816. snprintf(attr->name, sizeof(attr->name),
  817. "power%d_average", s);
  818. attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
  819. show_power, NULL,
  820. nr++, i);
  821. attr++;
  822. snprintf(attr->name, sizeof(attr->name),
  823. "power%d_average_interval", s);
  824. attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
  825. show_power, NULL,
  826. nr++, i);
  827. attr++;
  828. snprintf(attr->name, sizeof(attr->name),
  829. "power%d_input", s);
  830. attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
  831. show_power, NULL,
  832. nr++, i);
  833. attr++;
  834. s++;
  835. }
  836. }
  837. s = (sensors->power.num_sensors * 4) + 1;
  838. } else {
  839. for (i = 0; i < sensors->power.num_sensors; ++i) {
  840. s = i + 1;
  841. snprintf(attr->name, sizeof(attr->name),
  842. "power%d_label", s);
  843. attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
  844. show_power, NULL, 0, i);
  845. attr++;
  846. snprintf(attr->name, sizeof(attr->name),
  847. "power%d_average", s);
  848. attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
  849. show_power, NULL, 1, i);
  850. attr++;
  851. snprintf(attr->name, sizeof(attr->name),
  852. "power%d_average_interval", s);
  853. attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
  854. show_power, NULL, 2, i);
  855. attr++;
  856. snprintf(attr->name, sizeof(attr->name),
  857. "power%d_input", s);
  858. attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
  859. show_power, NULL, 3, i);
  860. attr++;
  861. }
  862. s = sensors->power.num_sensors + 1;
  863. }
  864. if (sensors->caps.num_sensors >= 1) {
  865. snprintf(attr->name, sizeof(attr->name), "power%d_label", s);
  866. attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
  867. 0, 0);
  868. attr++;
  869. snprintf(attr->name, sizeof(attr->name), "power%d_cap", s);
  870. attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
  871. 1, 0);
  872. attr++;
  873. snprintf(attr->name, sizeof(attr->name), "power%d_input", s);
  874. attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
  875. 2, 0);
  876. attr++;
  877. snprintf(attr->name, sizeof(attr->name),
  878. "power%d_cap_not_redundant", s);
  879. attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
  880. 3, 0);
  881. attr++;
  882. snprintf(attr->name, sizeof(attr->name), "power%d_cap_max", s);
  883. attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
  884. 4, 0);
  885. attr++;
  886. snprintf(attr->name, sizeof(attr->name), "power%d_cap_min", s);
  887. attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
  888. 5, 0);
  889. attr++;
  890. snprintf(attr->name, sizeof(attr->name), "power%d_cap_user",
  891. s);
  892. attr->sensor = OCC_INIT_ATTR(attr->name, 0644, show_caps,
  893. occ_store_caps_user, 6, 0);
  894. attr++;
  895. if (sensors->caps.version > 1) {
  896. snprintf(attr->name, sizeof(attr->name),
  897. "power%d_cap_user_source", s);
  898. attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
  899. show_caps, NULL, 7, 0);
  900. attr++;
  901. if (sensors->caps.version > 2) {
  902. snprintf(attr->name, sizeof(attr->name),
  903. "power%d_cap_min_soft", s);
  904. attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
  905. show_caps, NULL,
  906. 8, 0);
  907. attr++;
  908. }
  909. }
  910. }
  911. for (i = 0; i < sensors->extended.num_sensors; ++i) {
  912. s = i + 1;
  913. snprintf(attr->name, sizeof(attr->name), "extn%d_label", s);
  914. attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
  915. occ_show_extended, NULL, 0, i);
  916. attr++;
  917. snprintf(attr->name, sizeof(attr->name), "extn%d_flags", s);
  918. attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
  919. occ_show_extended, NULL, 1, i);
  920. attr++;
  921. snprintf(attr->name, sizeof(attr->name), "extn%d_input", s);
  922. attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
  923. occ_show_extended, NULL, 2, i);
  924. attr++;
  925. }
  926. /* put the sensors in the group */
  927. for (i = 0; i < num_attrs; ++i) {
  928. sysfs_attr_init(&occ->attrs[i].sensor.dev_attr.attr);
  929. occ->group.attrs[i] = &occ->attrs[i].sensor.dev_attr.attr;
  930. }
  931. return 0;
  932. }
  933. /* only need to do this once at startup, as OCC won't change sensors on us */
  934. static void occ_parse_poll_response(struct occ *occ)
  935. {
  936. unsigned int i, old_offset, offset = 0, size = 0;
  937. struct occ_sensor *sensor;
  938. struct occ_sensors *sensors = &occ->sensors;
  939. struct occ_response *resp = &occ->resp;
  940. struct occ_poll_response *poll =
  941. (struct occ_poll_response *)&resp->data[0];
  942. struct occ_poll_response_header *header = &poll->header;
  943. struct occ_sensor_data_block *block = &poll->block;
  944. dev_info(occ->bus_dev, "OCC found, code level: %.16s\n",
  945. header->occ_code_level);
  946. for (i = 0; i < header->num_sensor_data_blocks; ++i) {
  947. block = (struct occ_sensor_data_block *)((u8 *)block + offset);
  948. old_offset = offset;
  949. offset = (block->header.num_sensors *
  950. block->header.sensor_length) + sizeof(block->header);
  951. size += offset;
  952. /* validate all the length/size fields */
  953. if ((size + sizeof(*header)) >= OCC_RESP_DATA_BYTES) {
  954. dev_warn(occ->bus_dev, "exceeded response buffer\n");
  955. return;
  956. }
  957. dev_dbg(occ->bus_dev, " %04x..%04x: %.4s (%d sensors)\n",
  958. old_offset, offset - 1, block->header.eye_catcher,
  959. block->header.num_sensors);
  960. /* match sensor block type */
  961. if (strncmp(block->header.eye_catcher, "TEMP", 4) == 0)
  962. sensor = &sensors->temp;
  963. else if (strncmp(block->header.eye_catcher, "FREQ", 4) == 0)
  964. sensor = &sensors->freq;
  965. else if (strncmp(block->header.eye_catcher, "POWR", 4) == 0)
  966. sensor = &sensors->power;
  967. else if (strncmp(block->header.eye_catcher, "CAPS", 4) == 0)
  968. sensor = &sensors->caps;
  969. else if (strncmp(block->header.eye_catcher, "EXTN", 4) == 0)
  970. sensor = &sensors->extended;
  971. else {
  972. dev_warn(occ->bus_dev, "sensor not supported %.4s\n",
  973. block->header.eye_catcher);
  974. continue;
  975. }
  976. sensor->num_sensors = block->header.num_sensors;
  977. sensor->version = block->header.sensor_format;
  978. sensor->data = &block->data;
  979. }
  980. dev_dbg(occ->bus_dev, "Max resp size: %u+%zd=%zd\n", size,
  981. sizeof(*header), size + sizeof(*header));
  982. }
  983. int occ_active(struct occ *occ, bool active)
  984. {
  985. int rc = mutex_lock_interruptible(&occ->lock);
  986. if (rc)
  987. return rc;
  988. if (active) {
  989. if (occ->active) {
  990. rc = -EALREADY;
  991. goto unlock;
  992. }
  993. occ->error_count = 0;
  994. occ->last_safe = 0;
  995. rc = occ_poll(occ);
  996. if (rc < 0) {
  997. dev_err(occ->bus_dev,
  998. "failed to get OCC poll response=%02x: %d\n",
  999. occ->resp.return_status, rc);
  1000. goto unlock;
  1001. }
  1002. occ->active = true;
  1003. occ->next_update = jiffies + OCC_UPDATE_FREQUENCY;
  1004. occ_parse_poll_response(occ);
  1005. rc = occ_setup_sensor_attrs(occ);
  1006. if (rc) {
  1007. dev_err(occ->bus_dev,
  1008. "failed to setup sensor attrs: %d\n", rc);
  1009. goto unlock;
  1010. }
  1011. occ->hwmon = hwmon_device_register_with_groups(occ->bus_dev,
  1012. "occ", occ,
  1013. occ->groups);
  1014. if (IS_ERR(occ->hwmon)) {
  1015. rc = PTR_ERR(occ->hwmon);
  1016. occ->hwmon = NULL;
  1017. dev_err(occ->bus_dev,
  1018. "failed to register hwmon device: %d\n", rc);
  1019. goto unlock;
  1020. }
  1021. } else {
  1022. if (!occ->active) {
  1023. rc = -EALREADY;
  1024. goto unlock;
  1025. }
  1026. if (occ->hwmon)
  1027. hwmon_device_unregister(occ->hwmon);
  1028. occ->active = false;
  1029. occ->hwmon = NULL;
  1030. }
  1031. unlock:
  1032. mutex_unlock(&occ->lock);
  1033. return rc;
  1034. }
  1035. int occ_setup(struct occ *occ)
  1036. {
  1037. int rc;
  1038. mutex_init(&occ->lock);
  1039. occ->groups[0] = &occ->group;
  1040. rc = occ_setup_sysfs(occ);
  1041. if (rc) {
  1042. dev_err(occ->bus_dev, "failed to setup sysfs: %d\n", rc);
  1043. return rc;
  1044. }
  1045. if (!device_property_read_bool(occ->bus_dev, "ibm,no-poll-on-init")) {
  1046. rc = occ_active(occ, true);
  1047. if (rc)
  1048. occ_shutdown_sysfs(occ);
  1049. }
  1050. return rc;
  1051. }
  1052. EXPORT_SYMBOL_GPL(occ_setup);
  1053. void occ_shutdown(struct occ *occ)
  1054. {
  1055. mutex_lock(&occ->lock);
  1056. occ_shutdown_sysfs(occ);
  1057. if (occ->hwmon)
  1058. hwmon_device_unregister(occ->hwmon);
  1059. occ->hwmon = NULL;
  1060. mutex_unlock(&occ->lock);
  1061. }
  1062. EXPORT_SYMBOL_GPL(occ_shutdown);
  1063. MODULE_AUTHOR("Eddie James <[email protected]>");
  1064. MODULE_DESCRIPTION("Common OCC hwmon code");
  1065. MODULE_LICENSE("GPL");