mlxreg-fan.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620
  1. // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
  2. //
  3. // Copyright (c) 2018 Mellanox Technologies. All rights reserved.
  4. // Copyright (c) 2018 Vadim Pasternak <[email protected]>
  5. #include <linux/bitops.h>
  6. #include <linux/device.h>
  7. #include <linux/hwmon.h>
  8. #include <linux/module.h>
  9. #include <linux/platform_data/mlxreg.h>
  10. #include <linux/platform_device.h>
  11. #include <linux/regmap.h>
  12. #include <linux/thermal.h>
  13. #define MLXREG_FAN_MAX_TACHO 14
  14. #define MLXREG_FAN_MAX_PWM 4
  15. #define MLXREG_FAN_PWM_NOT_CONNECTED 0xff
  16. #define MLXREG_FAN_MAX_STATE 10
  17. #define MLXREG_FAN_MIN_DUTY 51 /* 20% */
  18. #define MLXREG_FAN_MAX_DUTY 255 /* 100% */
  19. #define MLXREG_FAN_SPEED_MIN_LEVEL 2 /* 20 percent */
  20. #define MLXREG_FAN_TACHO_SAMPLES_PER_PULSE_DEF 44
  21. #define MLXREG_FAN_TACHO_DIV_MIN 283
  22. #define MLXREG_FAN_TACHO_DIV_DEF (MLXREG_FAN_TACHO_DIV_MIN * 4)
  23. #define MLXREG_FAN_TACHO_DIV_SCALE_MAX 64
  24. /*
  25. * FAN datasheet defines the formula for RPM calculations as RPM = 15/t-high.
  26. * The logic in a programmable device measures the time t-high by sampling the
  27. * tachometer every t-sample (with the default value 11.32 uS) and increment
  28. * a counter (N) as long as the pulse has not change:
  29. * RPM = 15 / (t-sample * (K + Regval)), where:
  30. * Regval: is the value read from the programmable device register;
  31. * - 0xff - represents tachometer fault;
  32. * - 0xfe - represents tachometer minimum value , which is 4444 RPM;
  33. * - 0x00 - represents tachometer maximum value , which is 300000 RPM;
  34. * K: is 44 and it represents the minimum allowed samples per pulse;
  35. * N: is equal K + Regval;
  36. * In order to calculate RPM from the register value the following formula is
  37. * used: RPM = 15 / ((Regval + K) * 11.32) * 10^(-6)), which in the
  38. * default case is modified to:
  39. * RPM = 15000000 * 100 / ((Regval + 44) * 1132);
  40. * - for Regval 0x00, RPM will be 15000000 * 100 / (44 * 1132) = 30115;
  41. * - for Regval 0xfe, RPM will be 15000000 * 100 / ((254 + 44) * 1132) = 4446;
  42. * In common case the formula is modified to:
  43. * RPM = 15000000 * 100 / ((Regval + samples) * divider).
  44. */
  45. #define MLXREG_FAN_GET_RPM(rval, d, s) (DIV_ROUND_CLOSEST(15000000 * 100, \
  46. ((rval) + (s)) * (d)))
  47. #define MLXREG_FAN_GET_FAULT(val, mask) ((val) == (mask))
  48. #define MLXREG_FAN_PWM_DUTY2STATE(duty) (DIV_ROUND_CLOSEST((duty) * \
  49. MLXREG_FAN_MAX_STATE, \
  50. MLXREG_FAN_MAX_DUTY))
  51. #define MLXREG_FAN_PWM_STATE2DUTY(stat) (DIV_ROUND_CLOSEST((stat) * \
  52. MLXREG_FAN_MAX_DUTY, \
  53. MLXREG_FAN_MAX_STATE))
  54. struct mlxreg_fan;
  55. /*
  56. * struct mlxreg_fan_tacho - tachometer data (internal use):
  57. *
  58. * @connected: indicates if tachometer is connected;
  59. * @reg: register offset;
  60. * @mask: fault mask;
  61. * @prsnt: present register offset;
  62. */
  63. struct mlxreg_fan_tacho {
  64. bool connected;
  65. u32 reg;
  66. u32 mask;
  67. u32 prsnt;
  68. };
  69. /*
  70. * struct mlxreg_fan_pwm - PWM data (internal use):
  71. *
  72. * @fan: private data;
  73. * @connected: indicates if PWM is connected;
  74. * @reg: register offset;
  75. * @cooling: cooling device levels;
  76. * @last_hwmon_state: last cooling state set by hwmon subsystem;
  77. * @last_thermal_state: last cooling state set by thermal subsystem;
  78. * @cdev: cooling device;
  79. */
  80. struct mlxreg_fan_pwm {
  81. struct mlxreg_fan *fan;
  82. bool connected;
  83. u32 reg;
  84. unsigned long last_hwmon_state;
  85. unsigned long last_thermal_state;
  86. struct thermal_cooling_device *cdev;
  87. };
  88. /*
  89. * struct mlxreg_fan - private data (internal use):
  90. *
  91. * @dev: basic device;
  92. * @regmap: register map of parent device;
  93. * @tacho: tachometer data;
  94. * @pwm: PWM data;
  95. * @tachos_per_drwr - number of tachometers per drawer;
  96. * @samples: minimum allowed samples per pulse;
  97. * @divider: divider value for tachometer RPM calculation;
  98. */
  99. struct mlxreg_fan {
  100. struct device *dev;
  101. void *regmap;
  102. struct mlxreg_core_platform_data *pdata;
  103. struct mlxreg_fan_tacho tacho[MLXREG_FAN_MAX_TACHO];
  104. struct mlxreg_fan_pwm pwm[MLXREG_FAN_MAX_PWM];
  105. int tachos_per_drwr;
  106. int samples;
  107. int divider;
  108. };
  109. static int mlxreg_fan_set_cur_state(struct thermal_cooling_device *cdev,
  110. unsigned long state);
  111. static int
  112. mlxreg_fan_read(struct device *dev, enum hwmon_sensor_types type, u32 attr,
  113. int channel, long *val)
  114. {
  115. struct mlxreg_fan *fan = dev_get_drvdata(dev);
  116. struct mlxreg_fan_tacho *tacho;
  117. struct mlxreg_fan_pwm *pwm;
  118. u32 regval;
  119. int err;
  120. switch (type) {
  121. case hwmon_fan:
  122. tacho = &fan->tacho[channel];
  123. switch (attr) {
  124. case hwmon_fan_input:
  125. /*
  126. * Check FAN presence: FAN related bit in presence register is one,
  127. * if FAN is physically connected, zero - otherwise.
  128. */
  129. if (tacho->prsnt && fan->tachos_per_drwr) {
  130. err = regmap_read(fan->regmap, tacho->prsnt, &regval);
  131. if (err)
  132. return err;
  133. /*
  134. * Map channel to presence bit - drawer can be equipped with
  135. * one or few FANs, while presence is indicated per drawer.
  136. */
  137. if (BIT(channel / fan->tachos_per_drwr) & regval) {
  138. /* FAN is not connected - return zero for FAN speed. */
  139. *val = 0;
  140. return 0;
  141. }
  142. }
  143. err = regmap_read(fan->regmap, tacho->reg, &regval);
  144. if (err)
  145. return err;
  146. if (MLXREG_FAN_GET_FAULT(regval, tacho->mask)) {
  147. /* FAN is broken - return zero for FAN speed. */
  148. *val = 0;
  149. return 0;
  150. }
  151. *val = MLXREG_FAN_GET_RPM(regval, fan->divider,
  152. fan->samples);
  153. break;
  154. case hwmon_fan_fault:
  155. err = regmap_read(fan->regmap, tacho->reg, &regval);
  156. if (err)
  157. return err;
  158. *val = MLXREG_FAN_GET_FAULT(regval, tacho->mask);
  159. break;
  160. default:
  161. return -EOPNOTSUPP;
  162. }
  163. break;
  164. case hwmon_pwm:
  165. pwm = &fan->pwm[channel];
  166. switch (attr) {
  167. case hwmon_pwm_input:
  168. err = regmap_read(fan->regmap, pwm->reg, &regval);
  169. if (err)
  170. return err;
  171. *val = regval;
  172. break;
  173. default:
  174. return -EOPNOTSUPP;
  175. }
  176. break;
  177. default:
  178. return -EOPNOTSUPP;
  179. }
  180. return 0;
  181. }
  182. static int
  183. mlxreg_fan_write(struct device *dev, enum hwmon_sensor_types type, u32 attr,
  184. int channel, long val)
  185. {
  186. struct mlxreg_fan *fan = dev_get_drvdata(dev);
  187. struct mlxreg_fan_pwm *pwm;
  188. switch (type) {
  189. case hwmon_pwm:
  190. switch (attr) {
  191. case hwmon_pwm_input:
  192. if (val < MLXREG_FAN_MIN_DUTY ||
  193. val > MLXREG_FAN_MAX_DUTY)
  194. return -EINVAL;
  195. pwm = &fan->pwm[channel];
  196. /* If thermal is configured - handle PWM limit setting. */
  197. if (IS_REACHABLE(CONFIG_THERMAL)) {
  198. pwm->last_hwmon_state = MLXREG_FAN_PWM_DUTY2STATE(val);
  199. /*
  200. * Update PWM only in case requested state is not less than the
  201. * last thermal state.
  202. */
  203. if (pwm->last_hwmon_state >= pwm->last_thermal_state)
  204. return mlxreg_fan_set_cur_state(pwm->cdev,
  205. pwm->last_hwmon_state);
  206. return 0;
  207. }
  208. return regmap_write(fan->regmap, pwm->reg, val);
  209. default:
  210. return -EOPNOTSUPP;
  211. }
  212. break;
  213. default:
  214. return -EOPNOTSUPP;
  215. }
  216. return -EOPNOTSUPP;
  217. }
  218. static umode_t
  219. mlxreg_fan_is_visible(const void *data, enum hwmon_sensor_types type, u32 attr,
  220. int channel)
  221. {
  222. switch (type) {
  223. case hwmon_fan:
  224. if (!(((struct mlxreg_fan *)data)->tacho[channel].connected))
  225. return 0;
  226. switch (attr) {
  227. case hwmon_fan_input:
  228. case hwmon_fan_fault:
  229. return 0444;
  230. default:
  231. break;
  232. }
  233. break;
  234. case hwmon_pwm:
  235. if (!(((struct mlxreg_fan *)data)->pwm[channel].connected))
  236. return 0;
  237. switch (attr) {
  238. case hwmon_pwm_input:
  239. return 0644;
  240. default:
  241. break;
  242. }
  243. break;
  244. default:
  245. break;
  246. }
  247. return 0;
  248. }
  249. static char *mlxreg_fan_name[] = {
  250. "mlxreg_fan",
  251. "mlxreg_fan1",
  252. "mlxreg_fan2",
  253. "mlxreg_fan3",
  254. };
  255. static const struct hwmon_channel_info *mlxreg_fan_hwmon_info[] = {
  256. HWMON_CHANNEL_INFO(fan,
  257. HWMON_F_INPUT | HWMON_F_FAULT,
  258. HWMON_F_INPUT | HWMON_F_FAULT,
  259. HWMON_F_INPUT | HWMON_F_FAULT,
  260. HWMON_F_INPUT | HWMON_F_FAULT,
  261. HWMON_F_INPUT | HWMON_F_FAULT,
  262. HWMON_F_INPUT | HWMON_F_FAULT,
  263. HWMON_F_INPUT | HWMON_F_FAULT,
  264. HWMON_F_INPUT | HWMON_F_FAULT,
  265. HWMON_F_INPUT | HWMON_F_FAULT,
  266. HWMON_F_INPUT | HWMON_F_FAULT,
  267. HWMON_F_INPUT | HWMON_F_FAULT,
  268. HWMON_F_INPUT | HWMON_F_FAULT,
  269. HWMON_F_INPUT | HWMON_F_FAULT,
  270. HWMON_F_INPUT | HWMON_F_FAULT),
  271. HWMON_CHANNEL_INFO(pwm,
  272. HWMON_PWM_INPUT,
  273. HWMON_PWM_INPUT,
  274. HWMON_PWM_INPUT,
  275. HWMON_PWM_INPUT),
  276. NULL
  277. };
  278. static const struct hwmon_ops mlxreg_fan_hwmon_hwmon_ops = {
  279. .is_visible = mlxreg_fan_is_visible,
  280. .read = mlxreg_fan_read,
  281. .write = mlxreg_fan_write,
  282. };
  283. static const struct hwmon_chip_info mlxreg_fan_hwmon_chip_info = {
  284. .ops = &mlxreg_fan_hwmon_hwmon_ops,
  285. .info = mlxreg_fan_hwmon_info,
  286. };
  287. static int mlxreg_fan_get_max_state(struct thermal_cooling_device *cdev,
  288. unsigned long *state)
  289. {
  290. *state = MLXREG_FAN_MAX_STATE;
  291. return 0;
  292. }
  293. static int mlxreg_fan_get_cur_state(struct thermal_cooling_device *cdev,
  294. unsigned long *state)
  295. {
  296. struct mlxreg_fan_pwm *pwm = cdev->devdata;
  297. struct mlxreg_fan *fan = pwm->fan;
  298. u32 regval;
  299. int err;
  300. err = regmap_read(fan->regmap, pwm->reg, &regval);
  301. if (err) {
  302. dev_err(fan->dev, "Failed to query PWM duty\n");
  303. return err;
  304. }
  305. *state = MLXREG_FAN_PWM_DUTY2STATE(regval);
  306. return 0;
  307. }
  308. static int mlxreg_fan_set_cur_state(struct thermal_cooling_device *cdev,
  309. unsigned long state)
  310. {
  311. struct mlxreg_fan_pwm *pwm = cdev->devdata;
  312. struct mlxreg_fan *fan = pwm->fan;
  313. int err;
  314. if (state > MLXREG_FAN_MAX_STATE)
  315. return -EINVAL;
  316. /* Save thermal state. */
  317. pwm->last_thermal_state = state;
  318. state = max_t(unsigned long, state, pwm->last_hwmon_state);
  319. err = regmap_write(fan->regmap, pwm->reg,
  320. MLXREG_FAN_PWM_STATE2DUTY(state));
  321. if (err) {
  322. dev_err(fan->dev, "Failed to write PWM duty\n");
  323. return err;
  324. }
  325. return 0;
  326. }
  327. static const struct thermal_cooling_device_ops mlxreg_fan_cooling_ops = {
  328. .get_max_state = mlxreg_fan_get_max_state,
  329. .get_cur_state = mlxreg_fan_get_cur_state,
  330. .set_cur_state = mlxreg_fan_set_cur_state,
  331. };
  332. static int mlxreg_fan_connect_verify(struct mlxreg_fan *fan,
  333. struct mlxreg_core_data *data)
  334. {
  335. u32 regval;
  336. int err;
  337. err = regmap_read(fan->regmap, data->capability, &regval);
  338. if (err) {
  339. dev_err(fan->dev, "Failed to query capability register 0x%08x\n",
  340. data->capability);
  341. return err;
  342. }
  343. return !!(regval & data->bit);
  344. }
  345. static int mlxreg_pwm_connect_verify(struct mlxreg_fan *fan,
  346. struct mlxreg_core_data *data)
  347. {
  348. u32 regval;
  349. int err;
  350. err = regmap_read(fan->regmap, data->reg, &regval);
  351. if (err) {
  352. dev_err(fan->dev, "Failed to query pwm register 0x%08x\n",
  353. data->reg);
  354. return err;
  355. }
  356. return regval != MLXREG_FAN_PWM_NOT_CONNECTED;
  357. }
  358. static int mlxreg_fan_speed_divider_get(struct mlxreg_fan *fan,
  359. struct mlxreg_core_data *data)
  360. {
  361. u32 regval;
  362. int err;
  363. err = regmap_read(fan->regmap, data->capability, &regval);
  364. if (err) {
  365. dev_err(fan->dev, "Failed to query capability register 0x%08x\n",
  366. data->capability);
  367. return err;
  368. }
  369. /*
  370. * Set divider value according to the capability register, in case it
  371. * contains valid value. Otherwise use default value. The purpose of
  372. * this validation is to protect against the old hardware, in which
  373. * this register can return zero.
  374. */
  375. if (regval > 0 && regval <= MLXREG_FAN_TACHO_DIV_SCALE_MAX)
  376. fan->divider = regval * MLXREG_FAN_TACHO_DIV_MIN;
  377. return 0;
  378. }
  379. static int mlxreg_fan_config(struct mlxreg_fan *fan,
  380. struct mlxreg_core_platform_data *pdata)
  381. {
  382. int tacho_num = 0, tacho_avail = 0, pwm_num = 0, i;
  383. struct mlxreg_core_data *data = pdata->data;
  384. bool configured = false;
  385. int err;
  386. fan->samples = MLXREG_FAN_TACHO_SAMPLES_PER_PULSE_DEF;
  387. fan->divider = MLXREG_FAN_TACHO_DIV_DEF;
  388. for (i = 0; i < pdata->counter; i++, data++) {
  389. if (strnstr(data->label, "tacho", sizeof(data->label))) {
  390. if (tacho_num == MLXREG_FAN_MAX_TACHO) {
  391. dev_err(fan->dev, "too many tacho entries: %s\n",
  392. data->label);
  393. return -EINVAL;
  394. }
  395. if (data->capability) {
  396. err = mlxreg_fan_connect_verify(fan, data);
  397. if (err < 0)
  398. return err;
  399. else if (!err) {
  400. tacho_num++;
  401. continue;
  402. }
  403. }
  404. fan->tacho[tacho_num].reg = data->reg;
  405. fan->tacho[tacho_num].mask = data->mask;
  406. fan->tacho[tacho_num].prsnt = data->reg_prsnt;
  407. fan->tacho[tacho_num++].connected = true;
  408. tacho_avail++;
  409. } else if (strnstr(data->label, "pwm", sizeof(data->label))) {
  410. if (pwm_num == MLXREG_FAN_MAX_TACHO) {
  411. dev_err(fan->dev, "too many pwm entries: %s\n",
  412. data->label);
  413. return -EINVAL;
  414. }
  415. /* Validate if more then one PWM is connected. */
  416. if (pwm_num) {
  417. err = mlxreg_pwm_connect_verify(fan, data);
  418. if (err < 0)
  419. return err;
  420. else if (!err)
  421. continue;
  422. }
  423. fan->pwm[pwm_num].reg = data->reg;
  424. fan->pwm[pwm_num].connected = true;
  425. pwm_num++;
  426. } else if (strnstr(data->label, "conf", sizeof(data->label))) {
  427. if (configured) {
  428. dev_err(fan->dev, "duplicate conf entry: %s\n",
  429. data->label);
  430. return -EINVAL;
  431. }
  432. /* Validate that conf parameters are not zeros. */
  433. if (!data->mask && !data->bit && !data->capability) {
  434. dev_err(fan->dev, "invalid conf entry params: %s\n",
  435. data->label);
  436. return -EINVAL;
  437. }
  438. if (data->capability) {
  439. err = mlxreg_fan_speed_divider_get(fan, data);
  440. if (err)
  441. return err;
  442. } else {
  443. if (data->mask)
  444. fan->samples = data->mask;
  445. if (data->bit)
  446. fan->divider = data->bit;
  447. }
  448. configured = true;
  449. } else {
  450. dev_err(fan->dev, "invalid label: %s\n", data->label);
  451. return -EINVAL;
  452. }
  453. }
  454. if (pdata->capability) {
  455. int drwr_avail;
  456. u32 regval;
  457. /* Obtain the number of FAN drawers, supported by system. */
  458. err = regmap_read(fan->regmap, pdata->capability, &regval);
  459. if (err) {
  460. dev_err(fan->dev, "Failed to query capability register 0x%08x\n",
  461. pdata->capability);
  462. return err;
  463. }
  464. drwr_avail = hweight32(regval);
  465. if (!tacho_avail || !drwr_avail || tacho_avail < drwr_avail) {
  466. dev_err(fan->dev, "Configuration is invalid: drawers num %d tachos num %d\n",
  467. drwr_avail, tacho_avail);
  468. return -EINVAL;
  469. }
  470. /* Set the number of tachometers per one drawer. */
  471. fan->tachos_per_drwr = tacho_avail / drwr_avail;
  472. }
  473. return 0;
  474. }
  475. static int mlxreg_fan_cooling_config(struct device *dev, struct mlxreg_fan *fan)
  476. {
  477. int i;
  478. for (i = 0; i < MLXREG_FAN_MAX_PWM; i++) {
  479. struct mlxreg_fan_pwm *pwm = &fan->pwm[i];
  480. if (!pwm->connected)
  481. continue;
  482. pwm->fan = fan;
  483. pwm->cdev = devm_thermal_of_cooling_device_register(dev, NULL, mlxreg_fan_name[i],
  484. pwm, &mlxreg_fan_cooling_ops);
  485. if (IS_ERR(pwm->cdev)) {
  486. dev_err(dev, "Failed to register cooling device\n");
  487. return PTR_ERR(pwm->cdev);
  488. }
  489. /* Set minimal PWM speed. */
  490. pwm->last_hwmon_state = MLXREG_FAN_PWM_DUTY2STATE(MLXREG_FAN_MIN_DUTY);
  491. }
  492. return 0;
  493. }
  494. static int mlxreg_fan_probe(struct platform_device *pdev)
  495. {
  496. struct mlxreg_core_platform_data *pdata;
  497. struct device *dev = &pdev->dev;
  498. struct mlxreg_fan *fan;
  499. struct device *hwm;
  500. int err;
  501. pdata = dev_get_platdata(dev);
  502. if (!pdata) {
  503. dev_err(dev, "Failed to get platform data.\n");
  504. return -EINVAL;
  505. }
  506. fan = devm_kzalloc(dev, sizeof(*fan), GFP_KERNEL);
  507. if (!fan)
  508. return -ENOMEM;
  509. fan->dev = dev;
  510. fan->regmap = pdata->regmap;
  511. err = mlxreg_fan_config(fan, pdata);
  512. if (err)
  513. return err;
  514. hwm = devm_hwmon_device_register_with_info(dev, "mlxreg_fan",
  515. fan,
  516. &mlxreg_fan_hwmon_chip_info,
  517. NULL);
  518. if (IS_ERR(hwm)) {
  519. dev_err(dev, "Failed to register hwmon device\n");
  520. return PTR_ERR(hwm);
  521. }
  522. if (IS_REACHABLE(CONFIG_THERMAL))
  523. err = mlxreg_fan_cooling_config(dev, fan);
  524. return err;
  525. }
  526. static struct platform_driver mlxreg_fan_driver = {
  527. .driver = {
  528. .name = "mlxreg-fan",
  529. },
  530. .probe = mlxreg_fan_probe,
  531. };
  532. module_platform_driver(mlxreg_fan_driver);
  533. MODULE_AUTHOR("Vadim Pasternak <[email protected]>");
  534. MODULE_DESCRIPTION("Mellanox FAN driver");
  535. MODULE_LICENSE("GPL");
  536. MODULE_ALIAS("platform:mlxreg-fan");