lm85.c 49 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713
  1. // SPDX-License-Identifier: GPL-2.0-or-later
  2. /*
  3. * lm85.c - Part of lm_sensors, Linux kernel modules for hardware
  4. * monitoring
  5. * Copyright (c) 1998, 1999 Frodo Looijaard <frodol@dds.nl>
  6. * Copyright (c) 2002, 2003 Philip Pokorny <ppokorny@penguincomputing.com>
  7. * Copyright (c) 2003 Margit Schubert-While <margitsw@t-online.de>
  8. * Copyright (c) 2004 Justin Thiessen <jthiessen@penguincomputing.com>
  9. * Copyright (C) 2007--2014 Jean Delvare <jdelvare@suse.de>
  10. *
  11. * Chip details at <http://www.national.com/ds/LM/LM85.pdf>
  12. */
  13. #include <linux/module.h>
  14. #include <linux/of_device.h>
  15. #include <linux/init.h>
  16. #include <linux/slab.h>
  17. #include <linux/jiffies.h>
  18. #include <linux/i2c.h>
  19. #include <linux/hwmon.h>
  20. #include <linux/hwmon-vid.h>
  21. #include <linux/hwmon-sysfs.h>
  22. #include <linux/err.h>
  23. #include <linux/mutex.h>
  24. #include <linux/util_macros.h>
  25. /* Addresses to scan */
  26. static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
  27. enum chips {
  28. lm85, lm96000,
  29. adm1027, adt7463, adt7468,
  30. emc6d100, emc6d102, emc6d103, emc6d103s
  31. };
  32. /* The LM85 registers */
  33. #define LM85_REG_IN(nr) (0x20 + (nr))
  34. #define LM85_REG_IN_MIN(nr) (0x44 + (nr) * 2)
  35. #define LM85_REG_IN_MAX(nr) (0x45 + (nr) * 2)
  36. #define LM85_REG_TEMP(nr) (0x25 + (nr))
  37. #define LM85_REG_TEMP_MIN(nr) (0x4e + (nr) * 2)
  38. #define LM85_REG_TEMP_MAX(nr) (0x4f + (nr) * 2)
  39. /* Fan speeds are LSB, MSB (2 bytes) */
  40. #define LM85_REG_FAN(nr) (0x28 + (nr) * 2)
  41. #define LM85_REG_FAN_MIN(nr) (0x54 + (nr) * 2)
  42. #define LM85_REG_PWM(nr) (0x30 + (nr))
  43. #define LM85_REG_COMPANY 0x3e
  44. #define LM85_REG_VERSTEP 0x3f
  45. #define ADT7468_REG_CFG5 0x7c
  46. #define ADT7468_OFF64 (1 << 0)
  47. #define ADT7468_HFPWM (1 << 1)
  48. #define IS_ADT7468_OFF64(data) \
  49. ((data)->type == adt7468 && !((data)->cfg5 & ADT7468_OFF64))
  50. #define IS_ADT7468_HFPWM(data) \
  51. ((data)->type == adt7468 && !((data)->cfg5 & ADT7468_HFPWM))
  52. /* These are the recognized values for the above regs */
  53. #define LM85_COMPANY_NATIONAL 0x01
  54. #define LM85_COMPANY_ANALOG_DEV 0x41
  55. #define LM85_COMPANY_SMSC 0x5c
  56. #define LM85_VERSTEP_LM85C 0x60
  57. #define LM85_VERSTEP_LM85B 0x62
  58. #define LM85_VERSTEP_LM96000_1 0x68
  59. #define LM85_VERSTEP_LM96000_2 0x69
  60. #define LM85_VERSTEP_ADM1027 0x60
  61. #define LM85_VERSTEP_ADT7463 0x62
  62. #define LM85_VERSTEP_ADT7463C 0x6A
  63. #define LM85_VERSTEP_ADT7468_1 0x71
  64. #define LM85_VERSTEP_ADT7468_2 0x72
  65. #define LM85_VERSTEP_EMC6D100_A0 0x60
  66. #define LM85_VERSTEP_EMC6D100_A1 0x61
  67. #define LM85_VERSTEP_EMC6D102 0x65
  68. #define LM85_VERSTEP_EMC6D103_A0 0x68
  69. #define LM85_VERSTEP_EMC6D103_A1 0x69
  70. #define LM85_VERSTEP_EMC6D103S 0x6A /* Also known as EMC6D103:A2 */
  71. #define LM85_REG_CONFIG 0x40
  72. #define LM85_REG_ALARM1 0x41
  73. #define LM85_REG_ALARM2 0x42
  74. #define LM85_REG_VID 0x43
  75. /* Automated FAN control */
  76. #define LM85_REG_AFAN_CONFIG(nr) (0x5c + (nr))
  77. #define LM85_REG_AFAN_RANGE(nr) (0x5f + (nr))
  78. #define LM85_REG_AFAN_SPIKE1 0x62
  79. #define LM85_REG_AFAN_MINPWM(nr) (0x64 + (nr))
  80. #define LM85_REG_AFAN_LIMIT(nr) (0x67 + (nr))
  81. #define LM85_REG_AFAN_CRITICAL(nr) (0x6a + (nr))
  82. #define LM85_REG_AFAN_HYST1 0x6d
  83. #define LM85_REG_AFAN_HYST2 0x6e
  84. #define ADM1027_REG_EXTEND_ADC1 0x76
  85. #define ADM1027_REG_EXTEND_ADC2 0x77
  86. #define EMC6D100_REG_ALARM3 0x7d
  87. /* IN5, IN6 and IN7 */
  88. #define EMC6D100_REG_IN(nr) (0x70 + ((nr) - 5))
  89. #define EMC6D100_REG_IN_MIN(nr) (0x73 + ((nr) - 5) * 2)
  90. #define EMC6D100_REG_IN_MAX(nr) (0x74 + ((nr) - 5) * 2)
  91. #define EMC6D102_REG_EXTEND_ADC1 0x85
  92. #define EMC6D102_REG_EXTEND_ADC2 0x86
  93. #define EMC6D102_REG_EXTEND_ADC3 0x87
  94. #define EMC6D102_REG_EXTEND_ADC4 0x88
  95. /*
  96. * Conversions. Rounding and limit checking is only done on the TO_REG
  97. * variants. Note that you should be a bit careful with which arguments
  98. * these macros are called: arguments may be evaluated more than once.
  99. */
  100. /* IN are scaled according to built-in resistors */
  101. static const int lm85_scaling[] = { /* .001 Volts */
  102. 2500, 2250, 3300, 5000, 12000,
  103. 3300, 1500, 1800 /*EMC6D100*/
  104. };
  105. #define SCALE(val, from, to) (((val) * (to) + ((from) / 2)) / (from))
  106. #define INS_TO_REG(n, val) \
  107. SCALE(clamp_val(val, 0, 255 * lm85_scaling[n] / 192), \
  108. lm85_scaling[n], 192)
  109. #define INSEXT_FROM_REG(n, val, ext) \
  110. SCALE(((val) << 4) + (ext), 192 << 4, lm85_scaling[n])
  111. #define INS_FROM_REG(n, val) SCALE((val), 192, lm85_scaling[n])
  112. /* FAN speed is measured using 90kHz clock */
  113. static inline u16 FAN_TO_REG(unsigned long val)
  114. {
  115. if (!val)
  116. return 0xffff;
  117. return clamp_val(5400000 / val, 1, 0xfffe);
  118. }
  119. #define FAN_FROM_REG(val) ((val) == 0 ? -1 : (val) == 0xffff ? 0 : \
  120. 5400000 / (val))
  121. /* Temperature is reported in .001 degC increments */
  122. #define TEMP_TO_REG(val) \
  123. DIV_ROUND_CLOSEST(clamp_val((val), -127000, 127000), 1000)
  124. #define TEMPEXT_FROM_REG(val, ext) \
  125. SCALE(((val) << 4) + (ext), 16, 1000)
  126. #define TEMP_FROM_REG(val) ((val) * 1000)
  127. #define PWM_TO_REG(val) clamp_val(val, 0, 255)
  128. #define PWM_FROM_REG(val) (val)
  129. /*
  130. * ZONEs have the following parameters:
  131. * Limit (low) temp, 1. degC
  132. * Hysteresis (below limit), 1. degC (0-15)
  133. * Range of speed control, .1 degC (2-80)
  134. * Critical (high) temp, 1. degC
  135. *
  136. * FAN PWMs have the following parameters:
  137. * Reference Zone, 1, 2, 3, etc.
  138. * Spinup time, .05 sec
  139. * PWM value at limit/low temp, 1 count
  140. * PWM Frequency, 1. Hz
  141. * PWM is Min or OFF below limit, flag
  142. * Invert PWM output, flag
  143. *
  144. * Some chips filter the temp, others the fan.
  145. * Filter constant (or disabled) .1 seconds
  146. */
  147. /* These are the zone temperature range encodings in .001 degree C */
  148. static const int lm85_range_map[] = {
  149. 2000, 2500, 3300, 4000, 5000, 6600, 8000, 10000,
  150. 13300, 16000, 20000, 26600, 32000, 40000, 53300, 80000
  151. };
  152. static int RANGE_TO_REG(long range)
  153. {
  154. return find_closest(range, lm85_range_map, ARRAY_SIZE(lm85_range_map));
  155. }
  156. #define RANGE_FROM_REG(val) lm85_range_map[(val) & 0x0f]
  157. /* These are the PWM frequency encodings */
  158. static const int lm85_freq_map[] = { /* 1 Hz */
  159. 10, 15, 23, 30, 38, 47, 61, 94
  160. };
  161. static const int lm96000_freq_map[] = { /* 1 Hz */
  162. 10, 15, 23, 30, 38, 47, 61, 94,
  163. 22500, 24000, 25700, 25700, 27700, 27700, 30000, 30000
  164. };
  165. static const int adm1027_freq_map[] = { /* 1 Hz */
  166. 11, 15, 22, 29, 35, 44, 59, 88
  167. };
  168. static int FREQ_TO_REG(const int *map,
  169. unsigned int map_size, unsigned long freq)
  170. {
  171. return find_closest(freq, map, map_size);
  172. }
  173. static int FREQ_FROM_REG(const int *map, unsigned int map_size, u8 reg)
  174. {
  175. return map[reg % map_size];
  176. }
  177. /*
  178. * Since we can't use strings, I'm abusing these numbers
  179. * to stand in for the following meanings:
  180. * 1 -- PWM responds to Zone 1
  181. * 2 -- PWM responds to Zone 2
  182. * 3 -- PWM responds to Zone 3
  183. * 23 -- PWM responds to the higher temp of Zone 2 or 3
  184. * 123 -- PWM responds to highest of Zone 1, 2, or 3
  185. * 0 -- PWM is always at 0% (ie, off)
  186. * -1 -- PWM is always at 100%
  187. * -2 -- PWM responds to manual control
  188. */
  189. static const int lm85_zone_map[] = { 1, 2, 3, -1, 0, 23, 123, -2 };
  190. #define ZONE_FROM_REG(val) lm85_zone_map[(val) >> 5]
  191. static int ZONE_TO_REG(int zone)
  192. {
  193. int i;
  194. for (i = 0; i <= 7; ++i)
  195. if (zone == lm85_zone_map[i])
  196. break;
  197. if (i > 7) /* Not found. */
  198. i = 3; /* Always 100% */
  199. return i << 5;
  200. }
  201. #define HYST_TO_REG(val) clamp_val(((val) + 500) / 1000, 0, 15)
  202. #define HYST_FROM_REG(val) ((val) * 1000)
  203. /*
  204. * Chip sampling rates
  205. *
  206. * Some sensors are not updated more frequently than once per second
  207. * so it doesn't make sense to read them more often than that.
  208. * We cache the results and return the saved data if the driver
  209. * is called again before a second has elapsed.
  210. *
  211. * Also, there is significant configuration data for this chip
  212. * given the automatic PWM fan control that is possible. There
  213. * are about 47 bytes of config data to only 22 bytes of actual
  214. * readings. So, we keep the config data up to date in the cache
  215. * when it is written and only sample it once every 1 *minute*
  216. */
  217. #define LM85_DATA_INTERVAL (HZ + HZ / 2)
  218. #define LM85_CONFIG_INTERVAL (1 * 60 * HZ)
  219. /*
  220. * LM85 can automatically adjust fan speeds based on temperature
  221. * This structure encapsulates an entire Zone config. There are
  222. * three zones (one for each temperature input) on the lm85
  223. */
  224. struct lm85_zone {
  225. s8 limit; /* Low temp limit */
  226. u8 hyst; /* Low limit hysteresis. (0-15) */
  227. u8 range; /* Temp range, encoded */
  228. s8 critical; /* "All fans ON" temp limit */
  229. u8 max_desired; /*
  230. * Actual "max" temperature specified. Preserved
  231. * to prevent "drift" as other autofan control
  232. * values change.
  233. */
  234. };
  235. struct lm85_autofan {
  236. u8 config; /* Register value */
  237. u8 min_pwm; /* Minimum PWM value, encoded */
  238. u8 min_off; /* Min PWM or OFF below "limit", flag */
  239. };
  240. /*
  241. * For each registered chip, we need to keep some data in memory.
  242. * The structure is dynamically allocated.
  243. */
  244. struct lm85_data {
  245. struct i2c_client *client;
  246. const struct attribute_group *groups[6];
  247. const int *freq_map;
  248. unsigned int freq_map_size;
  249. enum chips type;
  250. bool has_vid5; /* true if VID5 is configured for ADT7463 or ADT7468 */
  251. struct mutex update_lock;
  252. bool valid; /* true if following fields are valid */
  253. unsigned long last_reading; /* In jiffies */
  254. unsigned long last_config; /* In jiffies */
  255. u8 in[8]; /* Register value */
  256. u8 in_max[8]; /* Register value */
  257. u8 in_min[8]; /* Register value */
  258. s8 temp[3]; /* Register value */
  259. s8 temp_min[3]; /* Register value */
  260. s8 temp_max[3]; /* Register value */
  261. u16 fan[4]; /* Register value */
  262. u16 fan_min[4]; /* Register value */
  263. u8 pwm[3]; /* Register value */
  264. u8 pwm_freq[3]; /* Register encoding */
  265. u8 temp_ext[3]; /* Decoded values */
  266. u8 in_ext[8]; /* Decoded values */
  267. u8 vid; /* Register value */
  268. u8 vrm; /* VRM version */
  269. u32 alarms; /* Register encoding, combined */
  270. u8 cfg5; /* Config Register 5 on ADT7468 */
  271. struct lm85_autofan autofan[3];
  272. struct lm85_zone zone[3];
  273. };
  274. static int lm85_read_value(struct i2c_client *client, u8 reg)
  275. {
  276. int res;
  277. /* What size location is it? */
  278. switch (reg) {
  279. case LM85_REG_FAN(0): /* Read WORD data */
  280. case LM85_REG_FAN(1):
  281. case LM85_REG_FAN(2):
  282. case LM85_REG_FAN(3):
  283. case LM85_REG_FAN_MIN(0):
  284. case LM85_REG_FAN_MIN(1):
  285. case LM85_REG_FAN_MIN(2):
  286. case LM85_REG_FAN_MIN(3):
  287. case LM85_REG_ALARM1: /* Read both bytes at once */
  288. res = i2c_smbus_read_byte_data(client, reg) & 0xff;
  289. res |= i2c_smbus_read_byte_data(client, reg + 1) << 8;
  290. break;
  291. default: /* Read BYTE data */
  292. res = i2c_smbus_read_byte_data(client, reg);
  293. break;
  294. }
  295. return res;
  296. }
  297. static void lm85_write_value(struct i2c_client *client, u8 reg, int value)
  298. {
  299. switch (reg) {
  300. case LM85_REG_FAN(0): /* Write WORD data */
  301. case LM85_REG_FAN(1):
  302. case LM85_REG_FAN(2):
  303. case LM85_REG_FAN(3):
  304. case LM85_REG_FAN_MIN(0):
  305. case LM85_REG_FAN_MIN(1):
  306. case LM85_REG_FAN_MIN(2):
  307. case LM85_REG_FAN_MIN(3):
  308. /* NOTE: ALARM is read only, so not included here */
  309. i2c_smbus_write_byte_data(client, reg, value & 0xff);
  310. i2c_smbus_write_byte_data(client, reg + 1, value >> 8);
  311. break;
  312. default: /* Write BYTE data */
  313. i2c_smbus_write_byte_data(client, reg, value);
  314. break;
  315. }
  316. }
  317. static struct lm85_data *lm85_update_device(struct device *dev)
  318. {
  319. struct lm85_data *data = dev_get_drvdata(dev);
  320. struct i2c_client *client = data->client;
  321. int i;
  322. mutex_lock(&data->update_lock);
  323. if (!data->valid ||
  324. time_after(jiffies, data->last_reading + LM85_DATA_INTERVAL)) {
  325. /* Things that change quickly */
  326. dev_dbg(&client->dev, "Reading sensor values\n");
  327. /*
  328. * Have to read extended bits first to "freeze" the
  329. * more significant bits that are read later.
  330. * There are 2 additional resolution bits per channel and we
  331. * have room for 4, so we shift them to the left.
  332. */
  333. if (data->type == adm1027 || data->type == adt7463 ||
  334. data->type == adt7468) {
  335. int ext1 = lm85_read_value(client,
  336. ADM1027_REG_EXTEND_ADC1);
  337. int ext2 = lm85_read_value(client,
  338. ADM1027_REG_EXTEND_ADC2);
  339. int val = (ext1 << 8) + ext2;
  340. for (i = 0; i <= 4; i++)
  341. data->in_ext[i] =
  342. ((val >> (i * 2)) & 0x03) << 2;
  343. for (i = 0; i <= 2; i++)
  344. data->temp_ext[i] =
  345. (val >> ((i + 4) * 2)) & 0x0c;
  346. }
  347. data->vid = lm85_read_value(client, LM85_REG_VID);
  348. for (i = 0; i <= 3; ++i) {
  349. data->in[i] =
  350. lm85_read_value(client, LM85_REG_IN(i));
  351. data->fan[i] =
  352. lm85_read_value(client, LM85_REG_FAN(i));
  353. }
  354. if (!data->has_vid5)
  355. data->in[4] = lm85_read_value(client, LM85_REG_IN(4));
  356. if (data->type == adt7468)
  357. data->cfg5 = lm85_read_value(client, ADT7468_REG_CFG5);
  358. for (i = 0; i <= 2; ++i) {
  359. data->temp[i] =
  360. lm85_read_value(client, LM85_REG_TEMP(i));
  361. data->pwm[i] =
  362. lm85_read_value(client, LM85_REG_PWM(i));
  363. if (IS_ADT7468_OFF64(data))
  364. data->temp[i] -= 64;
  365. }
  366. data->alarms = lm85_read_value(client, LM85_REG_ALARM1);
  367. if (data->type == emc6d100) {
  368. /* Three more voltage sensors */
  369. for (i = 5; i <= 7; ++i) {
  370. data->in[i] = lm85_read_value(client,
  371. EMC6D100_REG_IN(i));
  372. }
  373. /* More alarm bits */
  374. data->alarms |= lm85_read_value(client,
  375. EMC6D100_REG_ALARM3) << 16;
  376. } else if (data->type == emc6d102 || data->type == emc6d103 ||
  377. data->type == emc6d103s) {
  378. /*
  379. * Have to read LSB bits after the MSB ones because
  380. * the reading of the MSB bits has frozen the
  381. * LSBs (backward from the ADM1027).
  382. */
  383. int ext1 = lm85_read_value(client,
  384. EMC6D102_REG_EXTEND_ADC1);
  385. int ext2 = lm85_read_value(client,
  386. EMC6D102_REG_EXTEND_ADC2);
  387. int ext3 = lm85_read_value(client,
  388. EMC6D102_REG_EXTEND_ADC3);
  389. int ext4 = lm85_read_value(client,
  390. EMC6D102_REG_EXTEND_ADC4);
  391. data->in_ext[0] = ext3 & 0x0f;
  392. data->in_ext[1] = ext4 & 0x0f;
  393. data->in_ext[2] = ext4 >> 4;
  394. data->in_ext[3] = ext3 >> 4;
  395. data->in_ext[4] = ext2 >> 4;
  396. data->temp_ext[0] = ext1 & 0x0f;
  397. data->temp_ext[1] = ext2 & 0x0f;
  398. data->temp_ext[2] = ext1 >> 4;
  399. }
  400. data->last_reading = jiffies;
  401. } /* last_reading */
  402. if (!data->valid ||
  403. time_after(jiffies, data->last_config + LM85_CONFIG_INTERVAL)) {
  404. /* Things that don't change often */
  405. dev_dbg(&client->dev, "Reading config values\n");
  406. for (i = 0; i <= 3; ++i) {
  407. data->in_min[i] =
  408. lm85_read_value(client, LM85_REG_IN_MIN(i));
  409. data->in_max[i] =
  410. lm85_read_value(client, LM85_REG_IN_MAX(i));
  411. data->fan_min[i] =
  412. lm85_read_value(client, LM85_REG_FAN_MIN(i));
  413. }
  414. if (!data->has_vid5) {
  415. data->in_min[4] = lm85_read_value(client,
  416. LM85_REG_IN_MIN(4));
  417. data->in_max[4] = lm85_read_value(client,
  418. LM85_REG_IN_MAX(4));
  419. }
  420. if (data->type == emc6d100) {
  421. for (i = 5; i <= 7; ++i) {
  422. data->in_min[i] = lm85_read_value(client,
  423. EMC6D100_REG_IN_MIN(i));
  424. data->in_max[i] = lm85_read_value(client,
  425. EMC6D100_REG_IN_MAX(i));
  426. }
  427. }
  428. for (i = 0; i <= 2; ++i) {
  429. int val;
  430. data->temp_min[i] =
  431. lm85_read_value(client, LM85_REG_TEMP_MIN(i));
  432. data->temp_max[i] =
  433. lm85_read_value(client, LM85_REG_TEMP_MAX(i));
  434. data->autofan[i].config =
  435. lm85_read_value(client, LM85_REG_AFAN_CONFIG(i));
  436. val = lm85_read_value(client, LM85_REG_AFAN_RANGE(i));
  437. data->pwm_freq[i] = val % data->freq_map_size;
  438. data->zone[i].range = val >> 4;
  439. data->autofan[i].min_pwm =
  440. lm85_read_value(client, LM85_REG_AFAN_MINPWM(i));
  441. data->zone[i].limit =
  442. lm85_read_value(client, LM85_REG_AFAN_LIMIT(i));
  443. data->zone[i].critical =
  444. lm85_read_value(client, LM85_REG_AFAN_CRITICAL(i));
  445. if (IS_ADT7468_OFF64(data)) {
  446. data->temp_min[i] -= 64;
  447. data->temp_max[i] -= 64;
  448. data->zone[i].limit -= 64;
  449. data->zone[i].critical -= 64;
  450. }
  451. }
  452. if (data->type != emc6d103s) {
  453. i = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
  454. data->autofan[0].min_off = (i & 0x20) != 0;
  455. data->autofan[1].min_off = (i & 0x40) != 0;
  456. data->autofan[2].min_off = (i & 0x80) != 0;
  457. i = lm85_read_value(client, LM85_REG_AFAN_HYST1);
  458. data->zone[0].hyst = i >> 4;
  459. data->zone[1].hyst = i & 0x0f;
  460. i = lm85_read_value(client, LM85_REG_AFAN_HYST2);
  461. data->zone[2].hyst = i >> 4;
  462. }
  463. data->last_config = jiffies;
  464. } /* last_config */
  465. data->valid = true;
  466. mutex_unlock(&data->update_lock);
  467. return data;
  468. }
  469. /* 4 Fans */
  470. static ssize_t fan_show(struct device *dev, struct device_attribute *attr,
  471. char *buf)
  472. {
  473. int nr = to_sensor_dev_attr(attr)->index;
  474. struct lm85_data *data = lm85_update_device(dev);
  475. return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr]));
  476. }
  477. static ssize_t fan_min_show(struct device *dev, struct device_attribute *attr,
  478. char *buf)
  479. {
  480. int nr = to_sensor_dev_attr(attr)->index;
  481. struct lm85_data *data = lm85_update_device(dev);
  482. return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr]));
  483. }
  484. static ssize_t fan_min_store(struct device *dev,
  485. struct device_attribute *attr, const char *buf,
  486. size_t count)
  487. {
  488. int nr = to_sensor_dev_attr(attr)->index;
  489. struct lm85_data *data = dev_get_drvdata(dev);
  490. struct i2c_client *client = data->client;
  491. unsigned long val;
  492. int err;
  493. err = kstrtoul(buf, 10, &val);
  494. if (err)
  495. return err;
  496. mutex_lock(&data->update_lock);
  497. data->fan_min[nr] = FAN_TO_REG(val);
  498. lm85_write_value(client, LM85_REG_FAN_MIN(nr), data->fan_min[nr]);
  499. mutex_unlock(&data->update_lock);
  500. return count;
  501. }
  502. static SENSOR_DEVICE_ATTR_RO(fan1_input, fan, 0);
  503. static SENSOR_DEVICE_ATTR_RW(fan1_min, fan_min, 0);
  504. static SENSOR_DEVICE_ATTR_RO(fan2_input, fan, 1);
  505. static SENSOR_DEVICE_ATTR_RW(fan2_min, fan_min, 1);
  506. static SENSOR_DEVICE_ATTR_RO(fan3_input, fan, 2);
  507. static SENSOR_DEVICE_ATTR_RW(fan3_min, fan_min, 2);
  508. static SENSOR_DEVICE_ATTR_RO(fan4_input, fan, 3);
  509. static SENSOR_DEVICE_ATTR_RW(fan4_min, fan_min, 3);
  510. /* vid, vrm, alarms */
  511. static ssize_t cpu0_vid_show(struct device *dev,
  512. struct device_attribute *attr, char *buf)
  513. {
  514. struct lm85_data *data = lm85_update_device(dev);
  515. int vid;
  516. if (data->has_vid5) {
  517. /* 6-pin VID (VRM 10) */
  518. vid = vid_from_reg(data->vid & 0x3f, data->vrm);
  519. } else {
  520. /* 5-pin VID (VRM 9) */
  521. vid = vid_from_reg(data->vid & 0x1f, data->vrm);
  522. }
  523. return sprintf(buf, "%d\n", vid);
  524. }
  525. static DEVICE_ATTR_RO(cpu0_vid);
  526. static ssize_t vrm_show(struct device *dev, struct device_attribute *attr,
  527. char *buf)
  528. {
  529. struct lm85_data *data = dev_get_drvdata(dev);
  530. return sprintf(buf, "%ld\n", (long) data->vrm);
  531. }
  532. static ssize_t vrm_store(struct device *dev, struct device_attribute *attr,
  533. const char *buf, size_t count)
  534. {
  535. struct lm85_data *data = dev_get_drvdata(dev);
  536. unsigned long val;
  537. int err;
  538. err = kstrtoul(buf, 10, &val);
  539. if (err)
  540. return err;
  541. if (val > 255)
  542. return -EINVAL;
  543. data->vrm = val;
  544. return count;
  545. }
  546. static DEVICE_ATTR_RW(vrm);
  547. static ssize_t alarms_show(struct device *dev, struct device_attribute *attr,
  548. char *buf)
  549. {
  550. struct lm85_data *data = lm85_update_device(dev);
  551. return sprintf(buf, "%u\n", data->alarms);
  552. }
  553. static DEVICE_ATTR_RO(alarms);
  554. static ssize_t alarm_show(struct device *dev, struct device_attribute *attr,
  555. char *buf)
  556. {
  557. int nr = to_sensor_dev_attr(attr)->index;
  558. struct lm85_data *data = lm85_update_device(dev);
  559. return sprintf(buf, "%u\n", (data->alarms >> nr) & 1);
  560. }
  561. static SENSOR_DEVICE_ATTR_RO(in0_alarm, alarm, 0);
  562. static SENSOR_DEVICE_ATTR_RO(in1_alarm, alarm, 1);
  563. static SENSOR_DEVICE_ATTR_RO(in2_alarm, alarm, 2);
  564. static SENSOR_DEVICE_ATTR_RO(in3_alarm, alarm, 3);
  565. static SENSOR_DEVICE_ATTR_RO(in4_alarm, alarm, 8);
  566. static SENSOR_DEVICE_ATTR_RO(in5_alarm, alarm, 18);
  567. static SENSOR_DEVICE_ATTR_RO(in6_alarm, alarm, 16);
  568. static SENSOR_DEVICE_ATTR_RO(in7_alarm, alarm, 17);
  569. static SENSOR_DEVICE_ATTR_RO(temp1_alarm, alarm, 4);
  570. static SENSOR_DEVICE_ATTR_RO(temp1_fault, alarm, 14);
  571. static SENSOR_DEVICE_ATTR_RO(temp2_alarm, alarm, 5);
  572. static SENSOR_DEVICE_ATTR_RO(temp3_alarm, alarm, 6);
  573. static SENSOR_DEVICE_ATTR_RO(temp3_fault, alarm, 15);
  574. static SENSOR_DEVICE_ATTR_RO(fan1_alarm, alarm, 10);
  575. static SENSOR_DEVICE_ATTR_RO(fan2_alarm, alarm, 11);
  576. static SENSOR_DEVICE_ATTR_RO(fan3_alarm, alarm, 12);
  577. static SENSOR_DEVICE_ATTR_RO(fan4_alarm, alarm, 13);
  578. /* pwm */
  579. static ssize_t pwm_show(struct device *dev, struct device_attribute *attr,
  580. char *buf)
  581. {
  582. int nr = to_sensor_dev_attr(attr)->index;
  583. struct lm85_data *data = lm85_update_device(dev);
  584. return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr]));
  585. }
  586. static ssize_t pwm_store(struct device *dev, struct device_attribute *attr,
  587. const char *buf, size_t count)
  588. {
  589. int nr = to_sensor_dev_attr(attr)->index;
  590. struct lm85_data *data = dev_get_drvdata(dev);
  591. struct i2c_client *client = data->client;
  592. unsigned long val;
  593. int err;
  594. err = kstrtoul(buf, 10, &val);
  595. if (err)
  596. return err;
  597. mutex_lock(&data->update_lock);
  598. data->pwm[nr] = PWM_TO_REG(val);
  599. lm85_write_value(client, LM85_REG_PWM(nr), data->pwm[nr]);
  600. mutex_unlock(&data->update_lock);
  601. return count;
  602. }
  603. static ssize_t pwm_enable_show(struct device *dev,
  604. struct device_attribute *attr, char *buf)
  605. {
  606. int nr = to_sensor_dev_attr(attr)->index;
  607. struct lm85_data *data = lm85_update_device(dev);
  608. int pwm_zone, enable;
  609. pwm_zone = ZONE_FROM_REG(data->autofan[nr].config);
  610. switch (pwm_zone) {
  611. case -1: /* PWM is always at 100% */
  612. enable = 0;
  613. break;
  614. case 0: /* PWM is always at 0% */
  615. case -2: /* PWM responds to manual control */
  616. enable = 1;
  617. break;
  618. default: /* PWM in automatic mode */
  619. enable = 2;
  620. }
  621. return sprintf(buf, "%d\n", enable);
  622. }
  623. static ssize_t pwm_enable_store(struct device *dev,
  624. struct device_attribute *attr,
  625. const char *buf, size_t count)
  626. {
  627. int nr = to_sensor_dev_attr(attr)->index;
  628. struct lm85_data *data = dev_get_drvdata(dev);
  629. struct i2c_client *client = data->client;
  630. u8 config;
  631. unsigned long val;
  632. int err;
  633. err = kstrtoul(buf, 10, &val);
  634. if (err)
  635. return err;
  636. switch (val) {
  637. case 0:
  638. config = 3;
  639. break;
  640. case 1:
  641. config = 7;
  642. break;
  643. case 2:
  644. /*
  645. * Here we have to choose arbitrarily one of the 5 possible
  646. * configurations; I go for the safest
  647. */
  648. config = 6;
  649. break;
  650. default:
  651. return -EINVAL;
  652. }
  653. mutex_lock(&data->update_lock);
  654. data->autofan[nr].config = lm85_read_value(client,
  655. LM85_REG_AFAN_CONFIG(nr));
  656. data->autofan[nr].config = (data->autofan[nr].config & ~0xe0)
  657. | (config << 5);
  658. lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
  659. data->autofan[nr].config);
  660. mutex_unlock(&data->update_lock);
  661. return count;
  662. }
  663. static ssize_t pwm_freq_show(struct device *dev,
  664. struct device_attribute *attr, char *buf)
  665. {
  666. int nr = to_sensor_dev_attr(attr)->index;
  667. struct lm85_data *data = lm85_update_device(dev);
  668. int freq;
  669. if (IS_ADT7468_HFPWM(data))
  670. freq = 22500;
  671. else
  672. freq = FREQ_FROM_REG(data->freq_map, data->freq_map_size,
  673. data->pwm_freq[nr]);
  674. return sprintf(buf, "%d\n", freq);
  675. }
  676. static ssize_t pwm_freq_store(struct device *dev,
  677. struct device_attribute *attr, const char *buf,
  678. size_t count)
  679. {
  680. int nr = to_sensor_dev_attr(attr)->index;
  681. struct lm85_data *data = dev_get_drvdata(dev);
  682. struct i2c_client *client = data->client;
  683. unsigned long val;
  684. int err;
  685. err = kstrtoul(buf, 10, &val);
  686. if (err)
  687. return err;
  688. mutex_lock(&data->update_lock);
  689. /*
  690. * The ADT7468 has a special high-frequency PWM output mode,
  691. * where all PWM outputs are driven by a 22.5 kHz clock.
  692. * This might confuse the user, but there's not much we can do.
  693. */
  694. if (data->type == adt7468 && val >= 11300) { /* High freq. mode */
  695. data->cfg5 &= ~ADT7468_HFPWM;
  696. lm85_write_value(client, ADT7468_REG_CFG5, data->cfg5);
  697. } else { /* Low freq. mode */
  698. data->pwm_freq[nr] = FREQ_TO_REG(data->freq_map,
  699. data->freq_map_size, val);
  700. lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
  701. (data->zone[nr].range << 4)
  702. | data->pwm_freq[nr]);
  703. if (data->type == adt7468) {
  704. data->cfg5 |= ADT7468_HFPWM;
  705. lm85_write_value(client, ADT7468_REG_CFG5, data->cfg5);
  706. }
  707. }
  708. mutex_unlock(&data->update_lock);
  709. return count;
  710. }
  711. static SENSOR_DEVICE_ATTR_RW(pwm1, pwm, 0);
  712. static SENSOR_DEVICE_ATTR_RW(pwm1_enable, pwm_enable, 0);
  713. static SENSOR_DEVICE_ATTR_RW(pwm1_freq, pwm_freq, 0);
  714. static SENSOR_DEVICE_ATTR_RW(pwm2, pwm, 1);
  715. static SENSOR_DEVICE_ATTR_RW(pwm2_enable, pwm_enable, 1);
  716. static SENSOR_DEVICE_ATTR_RW(pwm2_freq, pwm_freq, 1);
  717. static SENSOR_DEVICE_ATTR_RW(pwm3, pwm, 2);
  718. static SENSOR_DEVICE_ATTR_RW(pwm3_enable, pwm_enable, 2);
  719. static SENSOR_DEVICE_ATTR_RW(pwm3_freq, pwm_freq, 2);
  720. /* Voltages */
  721. static ssize_t in_show(struct device *dev, struct device_attribute *attr,
  722. char *buf)
  723. {
  724. int nr = to_sensor_dev_attr(attr)->index;
  725. struct lm85_data *data = lm85_update_device(dev);
  726. return sprintf(buf, "%d\n", INSEXT_FROM_REG(nr, data->in[nr],
  727. data->in_ext[nr]));
  728. }
  729. static ssize_t in_min_show(struct device *dev, struct device_attribute *attr,
  730. char *buf)
  731. {
  732. int nr = to_sensor_dev_attr(attr)->index;
  733. struct lm85_data *data = lm85_update_device(dev);
  734. return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_min[nr]));
  735. }
  736. static ssize_t in_min_store(struct device *dev, struct device_attribute *attr,
  737. const char *buf, size_t count)
  738. {
  739. int nr = to_sensor_dev_attr(attr)->index;
  740. struct lm85_data *data = dev_get_drvdata(dev);
  741. struct i2c_client *client = data->client;
  742. long val;
  743. int err;
  744. err = kstrtol(buf, 10, &val);
  745. if (err)
  746. return err;
  747. mutex_lock(&data->update_lock);
  748. data->in_min[nr] = INS_TO_REG(nr, val);
  749. lm85_write_value(client, LM85_REG_IN_MIN(nr), data->in_min[nr]);
  750. mutex_unlock(&data->update_lock);
  751. return count;
  752. }
  753. static ssize_t in_max_show(struct device *dev, struct device_attribute *attr,
  754. char *buf)
  755. {
  756. int nr = to_sensor_dev_attr(attr)->index;
  757. struct lm85_data *data = lm85_update_device(dev);
  758. return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_max[nr]));
  759. }
  760. static ssize_t in_max_store(struct device *dev, struct device_attribute *attr,
  761. const char *buf, size_t count)
  762. {
  763. int nr = to_sensor_dev_attr(attr)->index;
  764. struct lm85_data *data = dev_get_drvdata(dev);
  765. struct i2c_client *client = data->client;
  766. long val;
  767. int err;
  768. err = kstrtol(buf, 10, &val);
  769. if (err)
  770. return err;
  771. mutex_lock(&data->update_lock);
  772. data->in_max[nr] = INS_TO_REG(nr, val);
  773. lm85_write_value(client, LM85_REG_IN_MAX(nr), data->in_max[nr]);
  774. mutex_unlock(&data->update_lock);
  775. return count;
  776. }
  777. static SENSOR_DEVICE_ATTR_RO(in0_input, in, 0);
  778. static SENSOR_DEVICE_ATTR_RW(in0_min, in_min, 0);
  779. static SENSOR_DEVICE_ATTR_RW(in0_max, in_max, 0);
  780. static SENSOR_DEVICE_ATTR_RO(in1_input, in, 1);
  781. static SENSOR_DEVICE_ATTR_RW(in1_min, in_min, 1);
  782. static SENSOR_DEVICE_ATTR_RW(in1_max, in_max, 1);
  783. static SENSOR_DEVICE_ATTR_RO(in2_input, in, 2);
  784. static SENSOR_DEVICE_ATTR_RW(in2_min, in_min, 2);
  785. static SENSOR_DEVICE_ATTR_RW(in2_max, in_max, 2);
  786. static SENSOR_DEVICE_ATTR_RO(in3_input, in, 3);
  787. static SENSOR_DEVICE_ATTR_RW(in3_min, in_min, 3);
  788. static SENSOR_DEVICE_ATTR_RW(in3_max, in_max, 3);
  789. static SENSOR_DEVICE_ATTR_RO(in4_input, in, 4);
  790. static SENSOR_DEVICE_ATTR_RW(in4_min, in_min, 4);
  791. static SENSOR_DEVICE_ATTR_RW(in4_max, in_max, 4);
  792. static SENSOR_DEVICE_ATTR_RO(in5_input, in, 5);
  793. static SENSOR_DEVICE_ATTR_RW(in5_min, in_min, 5);
  794. static SENSOR_DEVICE_ATTR_RW(in5_max, in_max, 5);
  795. static SENSOR_DEVICE_ATTR_RO(in6_input, in, 6);
  796. static SENSOR_DEVICE_ATTR_RW(in6_min, in_min, 6);
  797. static SENSOR_DEVICE_ATTR_RW(in6_max, in_max, 6);
  798. static SENSOR_DEVICE_ATTR_RO(in7_input, in, 7);
  799. static SENSOR_DEVICE_ATTR_RW(in7_min, in_min, 7);
  800. static SENSOR_DEVICE_ATTR_RW(in7_max, in_max, 7);
  801. /* Temps */
  802. static ssize_t temp_show(struct device *dev, struct device_attribute *attr,
  803. char *buf)
  804. {
  805. int nr = to_sensor_dev_attr(attr)->index;
  806. struct lm85_data *data = lm85_update_device(dev);
  807. return sprintf(buf, "%d\n", TEMPEXT_FROM_REG(data->temp[nr],
  808. data->temp_ext[nr]));
  809. }
  810. static ssize_t temp_min_show(struct device *dev,
  811. struct device_attribute *attr, char *buf)
  812. {
  813. int nr = to_sensor_dev_attr(attr)->index;
  814. struct lm85_data *data = lm85_update_device(dev);
  815. return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr]));
  816. }
  817. static ssize_t temp_min_store(struct device *dev,
  818. struct device_attribute *attr, const char *buf,
  819. size_t count)
  820. {
  821. int nr = to_sensor_dev_attr(attr)->index;
  822. struct lm85_data *data = dev_get_drvdata(dev);
  823. struct i2c_client *client = data->client;
  824. long val;
  825. int err;
  826. err = kstrtol(buf, 10, &val);
  827. if (err)
  828. return err;
  829. if (IS_ADT7468_OFF64(data))
  830. val += 64;
  831. mutex_lock(&data->update_lock);
  832. data->temp_min[nr] = TEMP_TO_REG(val);
  833. lm85_write_value(client, LM85_REG_TEMP_MIN(nr), data->temp_min[nr]);
  834. mutex_unlock(&data->update_lock);
  835. return count;
  836. }
  837. static ssize_t temp_max_show(struct device *dev,
  838. struct device_attribute *attr, char *buf)
  839. {
  840. int nr = to_sensor_dev_attr(attr)->index;
  841. struct lm85_data *data = lm85_update_device(dev);
  842. return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr]));
  843. }
  844. static ssize_t temp_max_store(struct device *dev,
  845. struct device_attribute *attr, const char *buf,
  846. size_t count)
  847. {
  848. int nr = to_sensor_dev_attr(attr)->index;
  849. struct lm85_data *data = dev_get_drvdata(dev);
  850. struct i2c_client *client = data->client;
  851. long val;
  852. int err;
  853. err = kstrtol(buf, 10, &val);
  854. if (err)
  855. return err;
  856. if (IS_ADT7468_OFF64(data))
  857. val += 64;
  858. mutex_lock(&data->update_lock);
  859. data->temp_max[nr] = TEMP_TO_REG(val);
  860. lm85_write_value(client, LM85_REG_TEMP_MAX(nr), data->temp_max[nr]);
  861. mutex_unlock(&data->update_lock);
  862. return count;
  863. }
  864. static SENSOR_DEVICE_ATTR_RO(temp1_input, temp, 0);
  865. static SENSOR_DEVICE_ATTR_RW(temp1_min, temp_min, 0);
  866. static SENSOR_DEVICE_ATTR_RW(temp1_max, temp_max, 0);
  867. static SENSOR_DEVICE_ATTR_RO(temp2_input, temp, 1);
  868. static SENSOR_DEVICE_ATTR_RW(temp2_min, temp_min, 1);
  869. static SENSOR_DEVICE_ATTR_RW(temp2_max, temp_max, 1);
  870. static SENSOR_DEVICE_ATTR_RO(temp3_input, temp, 2);
  871. static SENSOR_DEVICE_ATTR_RW(temp3_min, temp_min, 2);
  872. static SENSOR_DEVICE_ATTR_RW(temp3_max, temp_max, 2);
  873. /* Automatic PWM control */
  874. static ssize_t pwm_auto_channels_show(struct device *dev,
  875. struct device_attribute *attr,
  876. char *buf)
  877. {
  878. int nr = to_sensor_dev_attr(attr)->index;
  879. struct lm85_data *data = lm85_update_device(dev);
  880. return sprintf(buf, "%d\n", ZONE_FROM_REG(data->autofan[nr].config));
  881. }
  882. static ssize_t pwm_auto_channels_store(struct device *dev,
  883. struct device_attribute *attr,
  884. const char *buf, size_t count)
  885. {
  886. int nr = to_sensor_dev_attr(attr)->index;
  887. struct lm85_data *data = dev_get_drvdata(dev);
  888. struct i2c_client *client = data->client;
  889. long val;
  890. int err;
  891. err = kstrtol(buf, 10, &val);
  892. if (err)
  893. return err;
  894. mutex_lock(&data->update_lock);
  895. data->autofan[nr].config = (data->autofan[nr].config & (~0xe0))
  896. | ZONE_TO_REG(val);
  897. lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
  898. data->autofan[nr].config);
  899. mutex_unlock(&data->update_lock);
  900. return count;
  901. }
  902. static ssize_t pwm_auto_pwm_min_show(struct device *dev,
  903. struct device_attribute *attr, char *buf)
  904. {
  905. int nr = to_sensor_dev_attr(attr)->index;
  906. struct lm85_data *data = lm85_update_device(dev);
  907. return sprintf(buf, "%d\n", PWM_FROM_REG(data->autofan[nr].min_pwm));
  908. }
  909. static ssize_t pwm_auto_pwm_min_store(struct device *dev,
  910. struct device_attribute *attr,
  911. const char *buf, size_t count)
  912. {
  913. int nr = to_sensor_dev_attr(attr)->index;
  914. struct lm85_data *data = dev_get_drvdata(dev);
  915. struct i2c_client *client = data->client;
  916. unsigned long val;
  917. int err;
  918. err = kstrtoul(buf, 10, &val);
  919. if (err)
  920. return err;
  921. mutex_lock(&data->update_lock);
  922. data->autofan[nr].min_pwm = PWM_TO_REG(val);
  923. lm85_write_value(client, LM85_REG_AFAN_MINPWM(nr),
  924. data->autofan[nr].min_pwm);
  925. mutex_unlock(&data->update_lock);
  926. return count;
  927. }
  928. static ssize_t pwm_auto_pwm_minctl_show(struct device *dev,
  929. struct device_attribute *attr,
  930. char *buf)
  931. {
  932. int nr = to_sensor_dev_attr(attr)->index;
  933. struct lm85_data *data = lm85_update_device(dev);
  934. return sprintf(buf, "%d\n", data->autofan[nr].min_off);
  935. }
  936. static ssize_t pwm_auto_pwm_minctl_store(struct device *dev,
  937. struct device_attribute *attr,
  938. const char *buf, size_t count)
  939. {
  940. int nr = to_sensor_dev_attr(attr)->index;
  941. struct lm85_data *data = dev_get_drvdata(dev);
  942. struct i2c_client *client = data->client;
  943. u8 tmp;
  944. long val;
  945. int err;
  946. err = kstrtol(buf, 10, &val);
  947. if (err)
  948. return err;
  949. mutex_lock(&data->update_lock);
  950. data->autofan[nr].min_off = val;
  951. tmp = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
  952. tmp &= ~(0x20 << nr);
  953. if (data->autofan[nr].min_off)
  954. tmp |= 0x20 << nr;
  955. lm85_write_value(client, LM85_REG_AFAN_SPIKE1, tmp);
  956. mutex_unlock(&data->update_lock);
  957. return count;
  958. }
  959. static SENSOR_DEVICE_ATTR_RW(pwm1_auto_channels, pwm_auto_channels, 0);
  960. static SENSOR_DEVICE_ATTR_RW(pwm1_auto_pwm_min, pwm_auto_pwm_min, 0);
  961. static SENSOR_DEVICE_ATTR_RW(pwm1_auto_pwm_minctl, pwm_auto_pwm_minctl, 0);
  962. static SENSOR_DEVICE_ATTR_RW(pwm2_auto_channels, pwm_auto_channels, 1);
  963. static SENSOR_DEVICE_ATTR_RW(pwm2_auto_pwm_min, pwm_auto_pwm_min, 1);
  964. static SENSOR_DEVICE_ATTR_RW(pwm2_auto_pwm_minctl, pwm_auto_pwm_minctl, 1);
  965. static SENSOR_DEVICE_ATTR_RW(pwm3_auto_channels, pwm_auto_channels, 2);
  966. static SENSOR_DEVICE_ATTR_RW(pwm3_auto_pwm_min, pwm_auto_pwm_min, 2);
  967. static SENSOR_DEVICE_ATTR_RW(pwm3_auto_pwm_minctl, pwm_auto_pwm_minctl, 2);
  968. /* Temperature settings for automatic PWM control */
  969. static ssize_t temp_auto_temp_off_show(struct device *dev,
  970. struct device_attribute *attr,
  971. char *buf)
  972. {
  973. int nr = to_sensor_dev_attr(attr)->index;
  974. struct lm85_data *data = lm85_update_device(dev);
  975. return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) -
  976. HYST_FROM_REG(data->zone[nr].hyst));
  977. }
  978. static ssize_t temp_auto_temp_off_store(struct device *dev,
  979. struct device_attribute *attr,
  980. const char *buf, size_t count)
  981. {
  982. int nr = to_sensor_dev_attr(attr)->index;
  983. struct lm85_data *data = dev_get_drvdata(dev);
  984. struct i2c_client *client = data->client;
  985. int min;
  986. long val;
  987. int err;
  988. err = kstrtol(buf, 10, &val);
  989. if (err)
  990. return err;
  991. mutex_lock(&data->update_lock);
  992. min = TEMP_FROM_REG(data->zone[nr].limit);
  993. data->zone[nr].hyst = HYST_TO_REG(min - val);
  994. if (nr == 0 || nr == 1) {
  995. lm85_write_value(client, LM85_REG_AFAN_HYST1,
  996. (data->zone[0].hyst << 4)
  997. | data->zone[1].hyst);
  998. } else {
  999. lm85_write_value(client, LM85_REG_AFAN_HYST2,
  1000. (data->zone[2].hyst << 4));
  1001. }
  1002. mutex_unlock(&data->update_lock);
  1003. return count;
  1004. }
  1005. static ssize_t temp_auto_temp_min_show(struct device *dev,
  1006. struct device_attribute *attr,
  1007. char *buf)
  1008. {
  1009. int nr = to_sensor_dev_attr(attr)->index;
  1010. struct lm85_data *data = lm85_update_device(dev);
  1011. return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit));
  1012. }
  1013. static ssize_t temp_auto_temp_min_store(struct device *dev,
  1014. struct device_attribute *attr,
  1015. const char *buf, size_t count)
  1016. {
  1017. int nr = to_sensor_dev_attr(attr)->index;
  1018. struct lm85_data *data = dev_get_drvdata(dev);
  1019. struct i2c_client *client = data->client;
  1020. long val;
  1021. int err;
  1022. err = kstrtol(buf, 10, &val);
  1023. if (err)
  1024. return err;
  1025. mutex_lock(&data->update_lock);
  1026. data->zone[nr].limit = TEMP_TO_REG(val);
  1027. lm85_write_value(client, LM85_REG_AFAN_LIMIT(nr),
  1028. data->zone[nr].limit);
  1029. /* Update temp_auto_max and temp_auto_range */
  1030. data->zone[nr].range = RANGE_TO_REG(
  1031. TEMP_FROM_REG(data->zone[nr].max_desired) -
  1032. TEMP_FROM_REG(data->zone[nr].limit));
  1033. lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
  1034. ((data->zone[nr].range & 0x0f) << 4)
  1035. | data->pwm_freq[nr]);
  1036. mutex_unlock(&data->update_lock);
  1037. return count;
  1038. }
  1039. static ssize_t temp_auto_temp_max_show(struct device *dev,
  1040. struct device_attribute *attr,
  1041. char *buf)
  1042. {
  1043. int nr = to_sensor_dev_attr(attr)->index;
  1044. struct lm85_data *data = lm85_update_device(dev);
  1045. return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) +
  1046. RANGE_FROM_REG(data->zone[nr].range));
  1047. }
  1048. static ssize_t temp_auto_temp_max_store(struct device *dev,
  1049. struct device_attribute *attr,
  1050. const char *buf, size_t count)
  1051. {
  1052. int nr = to_sensor_dev_attr(attr)->index;
  1053. struct lm85_data *data = dev_get_drvdata(dev);
  1054. struct i2c_client *client = data->client;
  1055. int min;
  1056. long val;
  1057. int err;
  1058. err = kstrtol(buf, 10, &val);
  1059. if (err)
  1060. return err;
  1061. mutex_lock(&data->update_lock);
  1062. min = TEMP_FROM_REG(data->zone[nr].limit);
  1063. data->zone[nr].max_desired = TEMP_TO_REG(val);
  1064. data->zone[nr].range = RANGE_TO_REG(
  1065. val - min);
  1066. lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
  1067. ((data->zone[nr].range & 0x0f) << 4)
  1068. | data->pwm_freq[nr]);
  1069. mutex_unlock(&data->update_lock);
  1070. return count;
  1071. }
  1072. static ssize_t temp_auto_temp_crit_show(struct device *dev,
  1073. struct device_attribute *attr,
  1074. char *buf)
  1075. {
  1076. int nr = to_sensor_dev_attr(attr)->index;
  1077. struct lm85_data *data = lm85_update_device(dev);
  1078. return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].critical));
  1079. }
  1080. static ssize_t temp_auto_temp_crit_store(struct device *dev,
  1081. struct device_attribute *attr,
  1082. const char *buf, size_t count)
  1083. {
  1084. int nr = to_sensor_dev_attr(attr)->index;
  1085. struct lm85_data *data = dev_get_drvdata(dev);
  1086. struct i2c_client *client = data->client;
  1087. long val;
  1088. int err;
  1089. err = kstrtol(buf, 10, &val);
  1090. if (err)
  1091. return err;
  1092. mutex_lock(&data->update_lock);
  1093. data->zone[nr].critical = TEMP_TO_REG(val);
  1094. lm85_write_value(client, LM85_REG_AFAN_CRITICAL(nr),
  1095. data->zone[nr].critical);
  1096. mutex_unlock(&data->update_lock);
  1097. return count;
  1098. }
  1099. static SENSOR_DEVICE_ATTR_RW(temp1_auto_temp_off, temp_auto_temp_off, 0);
  1100. static SENSOR_DEVICE_ATTR_RW(temp1_auto_temp_min, temp_auto_temp_min, 0);
  1101. static SENSOR_DEVICE_ATTR_RW(temp1_auto_temp_max, temp_auto_temp_max, 0);
  1102. static SENSOR_DEVICE_ATTR_RW(temp1_auto_temp_crit, temp_auto_temp_crit, 0);
  1103. static SENSOR_DEVICE_ATTR_RW(temp2_auto_temp_off, temp_auto_temp_off, 1);
  1104. static SENSOR_DEVICE_ATTR_RW(temp2_auto_temp_min, temp_auto_temp_min, 1);
  1105. static SENSOR_DEVICE_ATTR_RW(temp2_auto_temp_max, temp_auto_temp_max, 1);
  1106. static SENSOR_DEVICE_ATTR_RW(temp2_auto_temp_crit, temp_auto_temp_crit, 1);
  1107. static SENSOR_DEVICE_ATTR_RW(temp3_auto_temp_off, temp_auto_temp_off, 2);
  1108. static SENSOR_DEVICE_ATTR_RW(temp3_auto_temp_min, temp_auto_temp_min, 2);
  1109. static SENSOR_DEVICE_ATTR_RW(temp3_auto_temp_max, temp_auto_temp_max, 2);
  1110. static SENSOR_DEVICE_ATTR_RW(temp3_auto_temp_crit, temp_auto_temp_crit, 2);
  1111. static struct attribute *lm85_attributes[] = {
  1112. &sensor_dev_attr_fan1_input.dev_attr.attr,
  1113. &sensor_dev_attr_fan2_input.dev_attr.attr,
  1114. &sensor_dev_attr_fan3_input.dev_attr.attr,
  1115. &sensor_dev_attr_fan4_input.dev_attr.attr,
  1116. &sensor_dev_attr_fan1_min.dev_attr.attr,
  1117. &sensor_dev_attr_fan2_min.dev_attr.attr,
  1118. &sensor_dev_attr_fan3_min.dev_attr.attr,
  1119. &sensor_dev_attr_fan4_min.dev_attr.attr,
  1120. &sensor_dev_attr_fan1_alarm.dev_attr.attr,
  1121. &sensor_dev_attr_fan2_alarm.dev_attr.attr,
  1122. &sensor_dev_attr_fan3_alarm.dev_attr.attr,
  1123. &sensor_dev_attr_fan4_alarm.dev_attr.attr,
  1124. &sensor_dev_attr_pwm1.dev_attr.attr,
  1125. &sensor_dev_attr_pwm2.dev_attr.attr,
  1126. &sensor_dev_attr_pwm3.dev_attr.attr,
  1127. &sensor_dev_attr_pwm1_enable.dev_attr.attr,
  1128. &sensor_dev_attr_pwm2_enable.dev_attr.attr,
  1129. &sensor_dev_attr_pwm3_enable.dev_attr.attr,
  1130. &sensor_dev_attr_pwm1_freq.dev_attr.attr,
  1131. &sensor_dev_attr_pwm2_freq.dev_attr.attr,
  1132. &sensor_dev_attr_pwm3_freq.dev_attr.attr,
  1133. &sensor_dev_attr_in0_input.dev_attr.attr,
  1134. &sensor_dev_attr_in1_input.dev_attr.attr,
  1135. &sensor_dev_attr_in2_input.dev_attr.attr,
  1136. &sensor_dev_attr_in3_input.dev_attr.attr,
  1137. &sensor_dev_attr_in0_min.dev_attr.attr,
  1138. &sensor_dev_attr_in1_min.dev_attr.attr,
  1139. &sensor_dev_attr_in2_min.dev_attr.attr,
  1140. &sensor_dev_attr_in3_min.dev_attr.attr,
  1141. &sensor_dev_attr_in0_max.dev_attr.attr,
  1142. &sensor_dev_attr_in1_max.dev_attr.attr,
  1143. &sensor_dev_attr_in2_max.dev_attr.attr,
  1144. &sensor_dev_attr_in3_max.dev_attr.attr,
  1145. &sensor_dev_attr_in0_alarm.dev_attr.attr,
  1146. &sensor_dev_attr_in1_alarm.dev_attr.attr,
  1147. &sensor_dev_attr_in2_alarm.dev_attr.attr,
  1148. &sensor_dev_attr_in3_alarm.dev_attr.attr,
  1149. &sensor_dev_attr_temp1_input.dev_attr.attr,
  1150. &sensor_dev_attr_temp2_input.dev_attr.attr,
  1151. &sensor_dev_attr_temp3_input.dev_attr.attr,
  1152. &sensor_dev_attr_temp1_min.dev_attr.attr,
  1153. &sensor_dev_attr_temp2_min.dev_attr.attr,
  1154. &sensor_dev_attr_temp3_min.dev_attr.attr,
  1155. &sensor_dev_attr_temp1_max.dev_attr.attr,
  1156. &sensor_dev_attr_temp2_max.dev_attr.attr,
  1157. &sensor_dev_attr_temp3_max.dev_attr.attr,
  1158. &sensor_dev_attr_temp1_alarm.dev_attr.attr,
  1159. &sensor_dev_attr_temp2_alarm.dev_attr.attr,
  1160. &sensor_dev_attr_temp3_alarm.dev_attr.attr,
  1161. &sensor_dev_attr_temp1_fault.dev_attr.attr,
  1162. &sensor_dev_attr_temp3_fault.dev_attr.attr,
  1163. &sensor_dev_attr_pwm1_auto_channels.dev_attr.attr,
  1164. &sensor_dev_attr_pwm2_auto_channels.dev_attr.attr,
  1165. &sensor_dev_attr_pwm3_auto_channels.dev_attr.attr,
  1166. &sensor_dev_attr_pwm1_auto_pwm_min.dev_attr.attr,
  1167. &sensor_dev_attr_pwm2_auto_pwm_min.dev_attr.attr,
  1168. &sensor_dev_attr_pwm3_auto_pwm_min.dev_attr.attr,
  1169. &sensor_dev_attr_temp1_auto_temp_min.dev_attr.attr,
  1170. &sensor_dev_attr_temp2_auto_temp_min.dev_attr.attr,
  1171. &sensor_dev_attr_temp3_auto_temp_min.dev_attr.attr,
  1172. &sensor_dev_attr_temp1_auto_temp_max.dev_attr.attr,
  1173. &sensor_dev_attr_temp2_auto_temp_max.dev_attr.attr,
  1174. &sensor_dev_attr_temp3_auto_temp_max.dev_attr.attr,
  1175. &sensor_dev_attr_temp1_auto_temp_crit.dev_attr.attr,
  1176. &sensor_dev_attr_temp2_auto_temp_crit.dev_attr.attr,
  1177. &sensor_dev_attr_temp3_auto_temp_crit.dev_attr.attr,
  1178. &dev_attr_vrm.attr,
  1179. &dev_attr_cpu0_vid.attr,
  1180. &dev_attr_alarms.attr,
  1181. NULL
  1182. };
  1183. static const struct attribute_group lm85_group = {
  1184. .attrs = lm85_attributes,
  1185. };
  1186. static struct attribute *lm85_attributes_minctl[] = {
  1187. &sensor_dev_attr_pwm1_auto_pwm_minctl.dev_attr.attr,
  1188. &sensor_dev_attr_pwm2_auto_pwm_minctl.dev_attr.attr,
  1189. &sensor_dev_attr_pwm3_auto_pwm_minctl.dev_attr.attr,
  1190. NULL
  1191. };
  1192. static const struct attribute_group lm85_group_minctl = {
  1193. .attrs = lm85_attributes_minctl,
  1194. };
  1195. static struct attribute *lm85_attributes_temp_off[] = {
  1196. &sensor_dev_attr_temp1_auto_temp_off.dev_attr.attr,
  1197. &sensor_dev_attr_temp2_auto_temp_off.dev_attr.attr,
  1198. &sensor_dev_attr_temp3_auto_temp_off.dev_attr.attr,
  1199. NULL
  1200. };
  1201. static const struct attribute_group lm85_group_temp_off = {
  1202. .attrs = lm85_attributes_temp_off,
  1203. };
  1204. static struct attribute *lm85_attributes_in4[] = {
  1205. &sensor_dev_attr_in4_input.dev_attr.attr,
  1206. &sensor_dev_attr_in4_min.dev_attr.attr,
  1207. &sensor_dev_attr_in4_max.dev_attr.attr,
  1208. &sensor_dev_attr_in4_alarm.dev_attr.attr,
  1209. NULL
  1210. };
  1211. static const struct attribute_group lm85_group_in4 = {
  1212. .attrs = lm85_attributes_in4,
  1213. };
  1214. static struct attribute *lm85_attributes_in567[] = {
  1215. &sensor_dev_attr_in5_input.dev_attr.attr,
  1216. &sensor_dev_attr_in6_input.dev_attr.attr,
  1217. &sensor_dev_attr_in7_input.dev_attr.attr,
  1218. &sensor_dev_attr_in5_min.dev_attr.attr,
  1219. &sensor_dev_attr_in6_min.dev_attr.attr,
  1220. &sensor_dev_attr_in7_min.dev_attr.attr,
  1221. &sensor_dev_attr_in5_max.dev_attr.attr,
  1222. &sensor_dev_attr_in6_max.dev_attr.attr,
  1223. &sensor_dev_attr_in7_max.dev_attr.attr,
  1224. &sensor_dev_attr_in5_alarm.dev_attr.attr,
  1225. &sensor_dev_attr_in6_alarm.dev_attr.attr,
  1226. &sensor_dev_attr_in7_alarm.dev_attr.attr,
  1227. NULL
  1228. };
  1229. static const struct attribute_group lm85_group_in567 = {
  1230. .attrs = lm85_attributes_in567,
  1231. };
  1232. static void lm85_init_client(struct i2c_client *client)
  1233. {
  1234. int value;
  1235. /* Start monitoring if needed */
  1236. value = lm85_read_value(client, LM85_REG_CONFIG);
  1237. if (!(value & 0x01)) {
  1238. dev_info(&client->dev, "Starting monitoring\n");
  1239. lm85_write_value(client, LM85_REG_CONFIG, value | 0x01);
  1240. }
  1241. /* Warn about unusual configuration bits */
  1242. if (value & 0x02)
  1243. dev_warn(&client->dev, "Device configuration is locked\n");
  1244. if (!(value & 0x04))
  1245. dev_warn(&client->dev, "Device is not ready\n");
  1246. }
  1247. static int lm85_is_fake(struct i2c_client *client)
  1248. {
  1249. /*
  1250. * Differenciate between real LM96000 and Winbond WPCD377I. The latter
  1251. * emulate the former except that it has no hardware monitoring function
  1252. * so the readings are always 0.
  1253. */
  1254. int i;
  1255. u8 in_temp, fan;
  1256. for (i = 0; i < 8; i++) {
  1257. in_temp = i2c_smbus_read_byte_data(client, 0x20 + i);
  1258. fan = i2c_smbus_read_byte_data(client, 0x28 + i);
  1259. if (in_temp != 0x00 || fan != 0xff)
  1260. return 0;
  1261. }
  1262. return 1;
  1263. }
  1264. /* Return 0 if detection is successful, -ENODEV otherwise */
  1265. static int lm85_detect(struct i2c_client *client, struct i2c_board_info *info)
  1266. {
  1267. struct i2c_adapter *adapter = client->adapter;
  1268. int address = client->addr;
  1269. const char *type_name = NULL;
  1270. int company, verstep;
  1271. if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) {
  1272. /* We need to be able to do byte I/O */
  1273. return -ENODEV;
  1274. }
  1275. /* Determine the chip type */
  1276. company = lm85_read_value(client, LM85_REG_COMPANY);
  1277. verstep = lm85_read_value(client, LM85_REG_VERSTEP);
  1278. dev_dbg(&adapter->dev,
  1279. "Detecting device at 0x%02x with COMPANY: 0x%02x and VERSTEP: 0x%02x\n",
  1280. address, company, verstep);
  1281. if (company == LM85_COMPANY_NATIONAL) {
  1282. switch (verstep) {
  1283. case LM85_VERSTEP_LM85C:
  1284. type_name = "lm85c";
  1285. break;
  1286. case LM85_VERSTEP_LM85B:
  1287. type_name = "lm85b";
  1288. break;
  1289. case LM85_VERSTEP_LM96000_1:
  1290. case LM85_VERSTEP_LM96000_2:
  1291. /* Check for Winbond WPCD377I */
  1292. if (lm85_is_fake(client)) {
  1293. dev_dbg(&adapter->dev,
  1294. "Found Winbond WPCD377I, ignoring\n");
  1295. return -ENODEV;
  1296. }
  1297. type_name = "lm96000";
  1298. break;
  1299. }
  1300. } else if (company == LM85_COMPANY_ANALOG_DEV) {
  1301. switch (verstep) {
  1302. case LM85_VERSTEP_ADM1027:
  1303. type_name = "adm1027";
  1304. break;
  1305. case LM85_VERSTEP_ADT7463:
  1306. case LM85_VERSTEP_ADT7463C:
  1307. type_name = "adt7463";
  1308. break;
  1309. case LM85_VERSTEP_ADT7468_1:
  1310. case LM85_VERSTEP_ADT7468_2:
  1311. type_name = "adt7468";
  1312. break;
  1313. }
  1314. } else if (company == LM85_COMPANY_SMSC) {
  1315. switch (verstep) {
  1316. case LM85_VERSTEP_EMC6D100_A0:
  1317. case LM85_VERSTEP_EMC6D100_A1:
  1318. /* Note: we can't tell a '100 from a '101 */
  1319. type_name = "emc6d100";
  1320. break;
  1321. case LM85_VERSTEP_EMC6D102:
  1322. type_name = "emc6d102";
  1323. break;
  1324. case LM85_VERSTEP_EMC6D103_A0:
  1325. case LM85_VERSTEP_EMC6D103_A1:
  1326. type_name = "emc6d103";
  1327. break;
  1328. case LM85_VERSTEP_EMC6D103S:
  1329. type_name = "emc6d103s";
  1330. break;
  1331. }
  1332. }
  1333. if (!type_name)
  1334. return -ENODEV;
  1335. strscpy(info->type, type_name, I2C_NAME_SIZE);
  1336. return 0;
  1337. }
  1338. static const struct i2c_device_id lm85_id[];
  1339. static int lm85_probe(struct i2c_client *client)
  1340. {
  1341. struct device *dev = &client->dev;
  1342. struct device *hwmon_dev;
  1343. struct lm85_data *data;
  1344. int idx = 0;
  1345. data = devm_kzalloc(dev, sizeof(struct lm85_data), GFP_KERNEL);
  1346. if (!data)
  1347. return -ENOMEM;
  1348. data->client = client;
  1349. if (client->dev.of_node)
  1350. data->type = (enum chips)of_device_get_match_data(&client->dev);
  1351. else
  1352. data->type = i2c_match_id(lm85_id, client)->driver_data;
  1353. mutex_init(&data->update_lock);
  1354. /* Fill in the chip specific driver values */
  1355. switch (data->type) {
  1356. case adm1027:
  1357. case adt7463:
  1358. case adt7468:
  1359. case emc6d100:
  1360. case emc6d102:
  1361. case emc6d103:
  1362. case emc6d103s:
  1363. data->freq_map = adm1027_freq_map;
  1364. data->freq_map_size = ARRAY_SIZE(adm1027_freq_map);
  1365. break;
  1366. case lm96000:
  1367. data->freq_map = lm96000_freq_map;
  1368. data->freq_map_size = ARRAY_SIZE(lm96000_freq_map);
  1369. break;
  1370. default:
  1371. data->freq_map = lm85_freq_map;
  1372. data->freq_map_size = ARRAY_SIZE(lm85_freq_map);
  1373. }
  1374. /* Set the VRM version */
  1375. data->vrm = vid_which_vrm();
  1376. /* Initialize the LM85 chip */
  1377. lm85_init_client(client);
  1378. /* sysfs hooks */
  1379. data->groups[idx++] = &lm85_group;
  1380. /* minctl and temp_off exist on all chips except emc6d103s */
  1381. if (data->type != emc6d103s) {
  1382. data->groups[idx++] = &lm85_group_minctl;
  1383. data->groups[idx++] = &lm85_group_temp_off;
  1384. }
  1385. /*
  1386. * The ADT7463/68 have an optional VRM 10 mode where pin 21 is used
  1387. * as a sixth digital VID input rather than an analog input.
  1388. */
  1389. if (data->type == adt7463 || data->type == adt7468) {
  1390. u8 vid = lm85_read_value(client, LM85_REG_VID);
  1391. if (vid & 0x80)
  1392. data->has_vid5 = true;
  1393. }
  1394. if (!data->has_vid5)
  1395. data->groups[idx++] = &lm85_group_in4;
  1396. /* The EMC6D100 has 3 additional voltage inputs */
  1397. if (data->type == emc6d100)
  1398. data->groups[idx++] = &lm85_group_in567;
  1399. hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
  1400. data, data->groups);
  1401. return PTR_ERR_OR_ZERO(hwmon_dev);
  1402. }
  1403. static const struct i2c_device_id lm85_id[] = {
  1404. { "adm1027", adm1027 },
  1405. { "adt7463", adt7463 },
  1406. { "adt7468", adt7468 },
  1407. { "lm85", lm85 },
  1408. { "lm85b", lm85 },
  1409. { "lm85c", lm85 },
  1410. { "lm96000", lm96000 },
  1411. { "emc6d100", emc6d100 },
  1412. { "emc6d101", emc6d100 },
  1413. { "emc6d102", emc6d102 },
  1414. { "emc6d103", emc6d103 },
  1415. { "emc6d103s", emc6d103s },
  1416. { }
  1417. };
  1418. MODULE_DEVICE_TABLE(i2c, lm85_id);
  1419. static const struct of_device_id __maybe_unused lm85_of_match[] = {
  1420. {
  1421. .compatible = "adi,adm1027",
  1422. .data = (void *)adm1027
  1423. },
  1424. {
  1425. .compatible = "adi,adt7463",
  1426. .data = (void *)adt7463
  1427. },
  1428. {
  1429. .compatible = "adi,adt7468",
  1430. .data = (void *)adt7468
  1431. },
  1432. {
  1433. .compatible = "national,lm85",
  1434. .data = (void *)lm85
  1435. },
  1436. {
  1437. .compatible = "national,lm85b",
  1438. .data = (void *)lm85
  1439. },
  1440. {
  1441. .compatible = "national,lm85c",
  1442. .data = (void *)lm85
  1443. },
  1444. {
  1445. .compatible = "ti,lm96000",
  1446. .data = (void *)lm96000
  1447. },
  1448. {
  1449. .compatible = "smsc,emc6d100",
  1450. .data = (void *)emc6d100
  1451. },
  1452. {
  1453. .compatible = "smsc,emc6d101",
  1454. .data = (void *)emc6d100
  1455. },
  1456. {
  1457. .compatible = "smsc,emc6d102",
  1458. .data = (void *)emc6d102
  1459. },
  1460. {
  1461. .compatible = "smsc,emc6d103",
  1462. .data = (void *)emc6d103
  1463. },
  1464. {
  1465. .compatible = "smsc,emc6d103s",
  1466. .data = (void *)emc6d103s
  1467. },
  1468. { },
  1469. };
  1470. MODULE_DEVICE_TABLE(of, lm85_of_match);
  1471. static struct i2c_driver lm85_driver = {
  1472. .class = I2C_CLASS_HWMON,
  1473. .driver = {
  1474. .name = "lm85",
  1475. .of_match_table = of_match_ptr(lm85_of_match),
  1476. },
  1477. .probe_new = lm85_probe,
  1478. .id_table = lm85_id,
  1479. .detect = lm85_detect,
  1480. .address_list = normal_i2c,
  1481. };
  1482. module_i2c_driver(lm85_driver);
  1483. MODULE_LICENSE("GPL");
  1484. MODULE_AUTHOR("Philip Pokorny <ppokorny@penguincomputing.com>, "
  1485. "Margit Schubert-While <margitsw@t-online.de>, "
  1486. "Justin Thiessen <jthiessen@penguincomputing.com>");
  1487. MODULE_DESCRIPTION("LM85-B, LM85-C driver");