adm1025.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572
  1. // SPDX-License-Identifier: GPL-2.0-or-later
  2. /*
  3. * adm1025.c
  4. *
  5. * Copyright (C) 2000 Chen-Yuan Wu <[email protected]>
  6. * Copyright (C) 2003-2009 Jean Delvare <[email protected]>
  7. *
  8. * The ADM1025 is a sensor chip made by Analog Devices. It reports up to 6
  9. * voltages (including its own power source) and up to two temperatures
  10. * (its own plus up to one external one). Voltages are scaled internally
  11. * (which is not the common way) with ratios such that the nominal value
  12. * of each voltage correspond to a register value of 192 (which means a
  13. * resolution of about 0.5% of the nominal value). Temperature values are
  14. * reported with a 1 deg resolution and a 3 deg accuracy. Complete
  15. * datasheet can be obtained from Analog's website at:
  16. * https://www.onsemi.com/PowerSolutions/product.do?id=ADM1025
  17. *
  18. * This driver also supports the ADM1025A, which differs from the ADM1025
  19. * only in that it has "open-drain VID inputs while the ADM1025 has
  20. * on-chip 100k pull-ups on the VID inputs". It doesn't make any
  21. * difference for us.
  22. *
  23. * This driver also supports the NE1619, a sensor chip made by Philips.
  24. * That chip is similar to the ADM1025A, with a few differences. The only
  25. * difference that matters to us is that the NE1619 has only two possible
  26. * addresses while the ADM1025A has a third one. Complete datasheet can be
  27. * obtained from Philips's website at:
  28. * http://www.semiconductors.philips.com/pip/NE1619DS.html
  29. *
  30. * Since the ADM1025 was the first chipset supported by this driver, most
  31. * comments will refer to this chipset, but are actually general and
  32. * concern all supported chipsets, unless mentioned otherwise.
  33. */
  34. #include <linux/module.h>
  35. #include <linux/init.h>
  36. #include <linux/slab.h>
  37. #include <linux/jiffies.h>
  38. #include <linux/i2c.h>
  39. #include <linux/hwmon.h>
  40. #include <linux/hwmon-sysfs.h>
  41. #include <linux/hwmon-vid.h>
  42. #include <linux/err.h>
  43. #include <linux/mutex.h>
  44. /*
  45. * Addresses to scan
  46. * ADM1025 and ADM1025A have three possible addresses: 0x2c, 0x2d and 0x2e.
  47. * NE1619 has two possible addresses: 0x2c and 0x2d.
  48. */
  49. static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
  50. enum chips { adm1025, ne1619 };
  51. /*
  52. * The ADM1025 registers
  53. */
  54. #define ADM1025_REG_MAN_ID 0x3E
  55. #define ADM1025_REG_CHIP_ID 0x3F
  56. #define ADM1025_REG_CONFIG 0x40
  57. #define ADM1025_REG_STATUS1 0x41
  58. #define ADM1025_REG_STATUS2 0x42
  59. #define ADM1025_REG_IN(nr) (0x20 + (nr))
  60. #define ADM1025_REG_IN_MAX(nr) (0x2B + (nr) * 2)
  61. #define ADM1025_REG_IN_MIN(nr) (0x2C + (nr) * 2)
  62. #define ADM1025_REG_TEMP(nr) (0x26 + (nr))
  63. #define ADM1025_REG_TEMP_HIGH(nr) (0x37 + (nr) * 2)
  64. #define ADM1025_REG_TEMP_LOW(nr) (0x38 + (nr) * 2)
  65. #define ADM1025_REG_VID 0x47
  66. #define ADM1025_REG_VID4 0x49
  67. /*
  68. * Conversions and various macros
  69. * The ADM1025 uses signed 8-bit values for temperatures.
  70. */
  71. static const int in_scale[6] = { 2500, 2250, 3300, 5000, 12000, 3300 };
  72. #define IN_FROM_REG(reg, scale) (((reg) * (scale) + 96) / 192)
  73. #define IN_TO_REG(val, scale) ((val) <= 0 ? 0 : \
  74. (val) >= (scale) * 255 / 192 ? 255 : \
  75. ((val) * 192 + (scale) / 2) / (scale))
  76. #define TEMP_FROM_REG(reg) ((reg) * 1000)
  77. #define TEMP_TO_REG(val) ((val) <= -127500 ? -128 : \
  78. (val) >= 126500 ? 127 : \
  79. (((val) < 0 ? (val) - 500 : \
  80. (val) + 500) / 1000))
  81. /*
  82. * Client data (each client gets its own)
  83. */
  84. struct adm1025_data {
  85. struct i2c_client *client;
  86. const struct attribute_group *groups[3];
  87. struct mutex update_lock;
  88. bool valid; /* false until following fields are valid */
  89. unsigned long last_updated; /* in jiffies */
  90. u8 in[6]; /* register value */
  91. u8 in_max[6]; /* register value */
  92. u8 in_min[6]; /* register value */
  93. s8 temp[2]; /* register value */
  94. s8 temp_min[2]; /* register value */
  95. s8 temp_max[2]; /* register value */
  96. u16 alarms; /* register values, combined */
  97. u8 vid; /* register values, combined */
  98. u8 vrm;
  99. };
  100. static struct adm1025_data *adm1025_update_device(struct device *dev)
  101. {
  102. struct adm1025_data *data = dev_get_drvdata(dev);
  103. struct i2c_client *client = data->client;
  104. mutex_lock(&data->update_lock);
  105. if (time_after(jiffies, data->last_updated + HZ * 2) || !data->valid) {
  106. int i;
  107. dev_dbg(&client->dev, "Updating data.\n");
  108. for (i = 0; i < 6; i++) {
  109. data->in[i] = i2c_smbus_read_byte_data(client,
  110. ADM1025_REG_IN(i));
  111. data->in_min[i] = i2c_smbus_read_byte_data(client,
  112. ADM1025_REG_IN_MIN(i));
  113. data->in_max[i] = i2c_smbus_read_byte_data(client,
  114. ADM1025_REG_IN_MAX(i));
  115. }
  116. for (i = 0; i < 2; i++) {
  117. data->temp[i] = i2c_smbus_read_byte_data(client,
  118. ADM1025_REG_TEMP(i));
  119. data->temp_min[i] = i2c_smbus_read_byte_data(client,
  120. ADM1025_REG_TEMP_LOW(i));
  121. data->temp_max[i] = i2c_smbus_read_byte_data(client,
  122. ADM1025_REG_TEMP_HIGH(i));
  123. }
  124. data->alarms = i2c_smbus_read_byte_data(client,
  125. ADM1025_REG_STATUS1)
  126. | (i2c_smbus_read_byte_data(client,
  127. ADM1025_REG_STATUS2) << 8);
  128. data->vid = (i2c_smbus_read_byte_data(client,
  129. ADM1025_REG_VID) & 0x0f)
  130. | ((i2c_smbus_read_byte_data(client,
  131. ADM1025_REG_VID4) & 0x01) << 4);
  132. data->last_updated = jiffies;
  133. data->valid = true;
  134. }
  135. mutex_unlock(&data->update_lock);
  136. return data;
  137. }
  138. /*
  139. * Sysfs stuff
  140. */
  141. static ssize_t
  142. in_show(struct device *dev, struct device_attribute *attr, char *buf)
  143. {
  144. int index = to_sensor_dev_attr(attr)->index;
  145. struct adm1025_data *data = adm1025_update_device(dev);
  146. return sprintf(buf, "%u\n", IN_FROM_REG(data->in[index],
  147. in_scale[index]));
  148. }
  149. static ssize_t
  150. in_min_show(struct device *dev, struct device_attribute *attr, char *buf)
  151. {
  152. int index = to_sensor_dev_attr(attr)->index;
  153. struct adm1025_data *data = adm1025_update_device(dev);
  154. return sprintf(buf, "%u\n", IN_FROM_REG(data->in_min[index],
  155. in_scale[index]));
  156. }
  157. static ssize_t
  158. in_max_show(struct device *dev, struct device_attribute *attr, char *buf)
  159. {
  160. int index = to_sensor_dev_attr(attr)->index;
  161. struct adm1025_data *data = adm1025_update_device(dev);
  162. return sprintf(buf, "%u\n", IN_FROM_REG(data->in_max[index],
  163. in_scale[index]));
  164. }
  165. static ssize_t
  166. temp_show(struct device *dev, struct device_attribute *attr, char *buf)
  167. {
  168. int index = to_sensor_dev_attr(attr)->index;
  169. struct adm1025_data *data = adm1025_update_device(dev);
  170. return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp[index]));
  171. }
  172. static ssize_t
  173. temp_min_show(struct device *dev, struct device_attribute *attr, char *buf)
  174. {
  175. int index = to_sensor_dev_attr(attr)->index;
  176. struct adm1025_data *data = adm1025_update_device(dev);
  177. return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[index]));
  178. }
  179. static ssize_t
  180. temp_max_show(struct device *dev, struct device_attribute *attr, char *buf)
  181. {
  182. int index = to_sensor_dev_attr(attr)->index;
  183. struct adm1025_data *data = adm1025_update_device(dev);
  184. return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[index]));
  185. }
  186. static ssize_t in_min_store(struct device *dev, struct device_attribute *attr,
  187. const char *buf, size_t count)
  188. {
  189. int index = to_sensor_dev_attr(attr)->index;
  190. struct adm1025_data *data = dev_get_drvdata(dev);
  191. struct i2c_client *client = data->client;
  192. long val;
  193. int err;
  194. err = kstrtol(buf, 10, &val);
  195. if (err)
  196. return err;
  197. mutex_lock(&data->update_lock);
  198. data->in_min[index] = IN_TO_REG(val, in_scale[index]);
  199. i2c_smbus_write_byte_data(client, ADM1025_REG_IN_MIN(index),
  200. data->in_min[index]);
  201. mutex_unlock(&data->update_lock);
  202. return count;
  203. }
  204. static ssize_t in_max_store(struct device *dev, struct device_attribute *attr,
  205. const char *buf, size_t count)
  206. {
  207. int index = to_sensor_dev_attr(attr)->index;
  208. struct adm1025_data *data = dev_get_drvdata(dev);
  209. struct i2c_client *client = data->client;
  210. long val;
  211. int err;
  212. err = kstrtol(buf, 10, &val);
  213. if (err)
  214. return err;
  215. mutex_lock(&data->update_lock);
  216. data->in_max[index] = IN_TO_REG(val, in_scale[index]);
  217. i2c_smbus_write_byte_data(client, ADM1025_REG_IN_MAX(index),
  218. data->in_max[index]);
  219. mutex_unlock(&data->update_lock);
  220. return count;
  221. }
  222. static SENSOR_DEVICE_ATTR_RO(in0_input, in, 0);
  223. static SENSOR_DEVICE_ATTR_RW(in0_min, in_min, 0);
  224. static SENSOR_DEVICE_ATTR_RW(in0_max, in_max, 0);
  225. static SENSOR_DEVICE_ATTR_RO(in1_input, in, 1);
  226. static SENSOR_DEVICE_ATTR_RW(in1_min, in_min, 1);
  227. static SENSOR_DEVICE_ATTR_RW(in1_max, in_max, 1);
  228. static SENSOR_DEVICE_ATTR_RO(in2_input, in, 2);
  229. static SENSOR_DEVICE_ATTR_RW(in2_min, in_min, 2);
  230. static SENSOR_DEVICE_ATTR_RW(in2_max, in_max, 2);
  231. static SENSOR_DEVICE_ATTR_RO(in3_input, in, 3);
  232. static SENSOR_DEVICE_ATTR_RW(in3_min, in_min, 3);
  233. static SENSOR_DEVICE_ATTR_RW(in3_max, in_max, 3);
  234. static SENSOR_DEVICE_ATTR_RO(in4_input, in, 4);
  235. static SENSOR_DEVICE_ATTR_RW(in4_min, in_min, 4);
  236. static SENSOR_DEVICE_ATTR_RW(in4_max, in_max, 4);
  237. static SENSOR_DEVICE_ATTR_RO(in5_input, in, 5);
  238. static SENSOR_DEVICE_ATTR_RW(in5_min, in_min, 5);
  239. static SENSOR_DEVICE_ATTR_RW(in5_max, in_max, 5);
  240. static ssize_t temp_min_store(struct device *dev,
  241. struct device_attribute *attr, const char *buf,
  242. size_t count)
  243. {
  244. int index = to_sensor_dev_attr(attr)->index;
  245. struct adm1025_data *data = dev_get_drvdata(dev);
  246. struct i2c_client *client = data->client;
  247. long val;
  248. int err;
  249. err = kstrtol(buf, 10, &val);
  250. if (err)
  251. return err;
  252. mutex_lock(&data->update_lock);
  253. data->temp_min[index] = TEMP_TO_REG(val);
  254. i2c_smbus_write_byte_data(client, ADM1025_REG_TEMP_LOW(index),
  255. data->temp_min[index]);
  256. mutex_unlock(&data->update_lock);
  257. return count;
  258. }
  259. static ssize_t temp_max_store(struct device *dev,
  260. struct device_attribute *attr, const char *buf,
  261. size_t count)
  262. {
  263. int index = to_sensor_dev_attr(attr)->index;
  264. struct adm1025_data *data = dev_get_drvdata(dev);
  265. struct i2c_client *client = data->client;
  266. long val;
  267. int err;
  268. err = kstrtol(buf, 10, &val);
  269. if (err)
  270. return err;
  271. mutex_lock(&data->update_lock);
  272. data->temp_max[index] = TEMP_TO_REG(val);
  273. i2c_smbus_write_byte_data(client, ADM1025_REG_TEMP_HIGH(index),
  274. data->temp_max[index]);
  275. mutex_unlock(&data->update_lock);
  276. return count;
  277. }
  278. static SENSOR_DEVICE_ATTR_RO(temp1_input, temp, 0);
  279. static SENSOR_DEVICE_ATTR_RW(temp1_min, temp_min, 0);
  280. static SENSOR_DEVICE_ATTR_RW(temp1_max, temp_max, 0);
  281. static SENSOR_DEVICE_ATTR_RO(temp2_input, temp, 1);
  282. static SENSOR_DEVICE_ATTR_RW(temp2_min, temp_min, 1);
  283. static SENSOR_DEVICE_ATTR_RW(temp2_max, temp_max, 1);
  284. static ssize_t
  285. alarms_show(struct device *dev, struct device_attribute *attr, char *buf)
  286. {
  287. struct adm1025_data *data = adm1025_update_device(dev);
  288. return sprintf(buf, "%u\n", data->alarms);
  289. }
  290. static DEVICE_ATTR_RO(alarms);
  291. static ssize_t
  292. alarm_show(struct device *dev, struct device_attribute *attr, char *buf)
  293. {
  294. int bitnr = to_sensor_dev_attr(attr)->index;
  295. struct adm1025_data *data = adm1025_update_device(dev);
  296. return sprintf(buf, "%u\n", (data->alarms >> bitnr) & 1);
  297. }
  298. static SENSOR_DEVICE_ATTR_RO(in0_alarm, alarm, 0);
  299. static SENSOR_DEVICE_ATTR_RO(in1_alarm, alarm, 1);
  300. static SENSOR_DEVICE_ATTR_RO(in2_alarm, alarm, 2);
  301. static SENSOR_DEVICE_ATTR_RO(in3_alarm, alarm, 3);
  302. static SENSOR_DEVICE_ATTR_RO(in4_alarm, alarm, 8);
  303. static SENSOR_DEVICE_ATTR_RO(in5_alarm, alarm, 9);
  304. static SENSOR_DEVICE_ATTR_RO(temp1_alarm, alarm, 5);
  305. static SENSOR_DEVICE_ATTR_RO(temp2_alarm, alarm, 4);
  306. static SENSOR_DEVICE_ATTR_RO(temp1_fault, alarm, 14);
  307. static ssize_t
  308. cpu0_vid_show(struct device *dev, struct device_attribute *attr, char *buf)
  309. {
  310. struct adm1025_data *data = adm1025_update_device(dev);
  311. return sprintf(buf, "%u\n", vid_from_reg(data->vid, data->vrm));
  312. }
  313. static DEVICE_ATTR_RO(cpu0_vid);
  314. static ssize_t
  315. vrm_show(struct device *dev, struct device_attribute *attr, char *buf)
  316. {
  317. struct adm1025_data *data = dev_get_drvdata(dev);
  318. return sprintf(buf, "%u\n", data->vrm);
  319. }
  320. static ssize_t vrm_store(struct device *dev, struct device_attribute *attr,
  321. const char *buf, size_t count)
  322. {
  323. struct adm1025_data *data = dev_get_drvdata(dev);
  324. unsigned long val;
  325. int err;
  326. err = kstrtoul(buf, 10, &val);
  327. if (err)
  328. return err;
  329. if (val > 255)
  330. return -EINVAL;
  331. data->vrm = val;
  332. return count;
  333. }
  334. static DEVICE_ATTR_RW(vrm);
  335. /*
  336. * Real code
  337. */
  338. static struct attribute *adm1025_attributes[] = {
  339. &sensor_dev_attr_in0_input.dev_attr.attr,
  340. &sensor_dev_attr_in1_input.dev_attr.attr,
  341. &sensor_dev_attr_in2_input.dev_attr.attr,
  342. &sensor_dev_attr_in3_input.dev_attr.attr,
  343. &sensor_dev_attr_in5_input.dev_attr.attr,
  344. &sensor_dev_attr_in0_min.dev_attr.attr,
  345. &sensor_dev_attr_in1_min.dev_attr.attr,
  346. &sensor_dev_attr_in2_min.dev_attr.attr,
  347. &sensor_dev_attr_in3_min.dev_attr.attr,
  348. &sensor_dev_attr_in5_min.dev_attr.attr,
  349. &sensor_dev_attr_in0_max.dev_attr.attr,
  350. &sensor_dev_attr_in1_max.dev_attr.attr,
  351. &sensor_dev_attr_in2_max.dev_attr.attr,
  352. &sensor_dev_attr_in3_max.dev_attr.attr,
  353. &sensor_dev_attr_in5_max.dev_attr.attr,
  354. &sensor_dev_attr_in0_alarm.dev_attr.attr,
  355. &sensor_dev_attr_in1_alarm.dev_attr.attr,
  356. &sensor_dev_attr_in2_alarm.dev_attr.attr,
  357. &sensor_dev_attr_in3_alarm.dev_attr.attr,
  358. &sensor_dev_attr_in5_alarm.dev_attr.attr,
  359. &sensor_dev_attr_temp1_input.dev_attr.attr,
  360. &sensor_dev_attr_temp2_input.dev_attr.attr,
  361. &sensor_dev_attr_temp1_min.dev_attr.attr,
  362. &sensor_dev_attr_temp2_min.dev_attr.attr,
  363. &sensor_dev_attr_temp1_max.dev_attr.attr,
  364. &sensor_dev_attr_temp2_max.dev_attr.attr,
  365. &sensor_dev_attr_temp1_alarm.dev_attr.attr,
  366. &sensor_dev_attr_temp2_alarm.dev_attr.attr,
  367. &sensor_dev_attr_temp1_fault.dev_attr.attr,
  368. &dev_attr_alarms.attr,
  369. &dev_attr_cpu0_vid.attr,
  370. &dev_attr_vrm.attr,
  371. NULL
  372. };
  373. static const struct attribute_group adm1025_group = {
  374. .attrs = adm1025_attributes,
  375. };
  376. static struct attribute *adm1025_attributes_in4[] = {
  377. &sensor_dev_attr_in4_input.dev_attr.attr,
  378. &sensor_dev_attr_in4_min.dev_attr.attr,
  379. &sensor_dev_attr_in4_max.dev_attr.attr,
  380. &sensor_dev_attr_in4_alarm.dev_attr.attr,
  381. NULL
  382. };
  383. static const struct attribute_group adm1025_group_in4 = {
  384. .attrs = adm1025_attributes_in4,
  385. };
  386. /* Return 0 if detection is successful, -ENODEV otherwise */
  387. static int adm1025_detect(struct i2c_client *client,
  388. struct i2c_board_info *info)
  389. {
  390. struct i2c_adapter *adapter = client->adapter;
  391. const char *name;
  392. u8 man_id, chip_id;
  393. if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
  394. return -ENODEV;
  395. /* Check for unused bits */
  396. if ((i2c_smbus_read_byte_data(client, ADM1025_REG_CONFIG) & 0x80)
  397. || (i2c_smbus_read_byte_data(client, ADM1025_REG_STATUS1) & 0xC0)
  398. || (i2c_smbus_read_byte_data(client, ADM1025_REG_STATUS2) & 0xBC)) {
  399. dev_dbg(&adapter->dev, "ADM1025 detection failed at 0x%02x\n",
  400. client->addr);
  401. return -ENODEV;
  402. }
  403. /* Identification */
  404. chip_id = i2c_smbus_read_byte_data(client, ADM1025_REG_CHIP_ID);
  405. if ((chip_id & 0xF0) != 0x20)
  406. return -ENODEV;
  407. man_id = i2c_smbus_read_byte_data(client, ADM1025_REG_MAN_ID);
  408. if (man_id == 0x41)
  409. name = "adm1025";
  410. else if (man_id == 0xA1 && client->addr != 0x2E)
  411. name = "ne1619";
  412. else
  413. return -ENODEV;
  414. strscpy(info->type, name, I2C_NAME_SIZE);
  415. return 0;
  416. }
  417. static void adm1025_init_client(struct i2c_client *client)
  418. {
  419. u8 reg;
  420. struct adm1025_data *data = i2c_get_clientdata(client);
  421. int i;
  422. data->vrm = vid_which_vrm();
  423. /*
  424. * Set high limits
  425. * Usually we avoid setting limits on driver init, but it happens
  426. * that the ADM1025 comes with stupid default limits (all registers
  427. * set to 0). In case the chip has not gone through any limit
  428. * setting yet, we better set the high limits to the max so that
  429. * no alarm triggers.
  430. */
  431. for (i = 0; i < 6; i++) {
  432. reg = i2c_smbus_read_byte_data(client,
  433. ADM1025_REG_IN_MAX(i));
  434. if (reg == 0)
  435. i2c_smbus_write_byte_data(client,
  436. ADM1025_REG_IN_MAX(i),
  437. 0xFF);
  438. }
  439. for (i = 0; i < 2; i++) {
  440. reg = i2c_smbus_read_byte_data(client,
  441. ADM1025_REG_TEMP_HIGH(i));
  442. if (reg == 0)
  443. i2c_smbus_write_byte_data(client,
  444. ADM1025_REG_TEMP_HIGH(i),
  445. 0x7F);
  446. }
  447. /*
  448. * Start the conversions
  449. */
  450. reg = i2c_smbus_read_byte_data(client, ADM1025_REG_CONFIG);
  451. if (!(reg & 0x01))
  452. i2c_smbus_write_byte_data(client, ADM1025_REG_CONFIG,
  453. (reg&0x7E)|0x01);
  454. }
  455. static int adm1025_probe(struct i2c_client *client)
  456. {
  457. struct device *dev = &client->dev;
  458. struct device *hwmon_dev;
  459. struct adm1025_data *data;
  460. u8 config;
  461. data = devm_kzalloc(dev, sizeof(struct adm1025_data), GFP_KERNEL);
  462. if (!data)
  463. return -ENOMEM;
  464. i2c_set_clientdata(client, data);
  465. data->client = client;
  466. mutex_init(&data->update_lock);
  467. /* Initialize the ADM1025 chip */
  468. adm1025_init_client(client);
  469. /* sysfs hooks */
  470. data->groups[0] = &adm1025_group;
  471. /* Pin 11 is either in4 (+12V) or VID4 */
  472. config = i2c_smbus_read_byte_data(client, ADM1025_REG_CONFIG);
  473. if (!(config & 0x20))
  474. data->groups[1] = &adm1025_group_in4;
  475. hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
  476. data, data->groups);
  477. return PTR_ERR_OR_ZERO(hwmon_dev);
  478. }
  479. static const struct i2c_device_id adm1025_id[] = {
  480. { "adm1025", adm1025 },
  481. { "ne1619", ne1619 },
  482. { }
  483. };
  484. MODULE_DEVICE_TABLE(i2c, adm1025_id);
  485. static struct i2c_driver adm1025_driver = {
  486. .class = I2C_CLASS_HWMON,
  487. .driver = {
  488. .name = "adm1025",
  489. },
  490. .probe_new = adm1025_probe,
  491. .id_table = adm1025_id,
  492. .detect = adm1025_detect,
  493. .address_list = normal_i2c,
  494. };
  495. module_i2c_driver(adm1025_driver);
  496. MODULE_AUTHOR("Jean Delvare <[email protected]>");
  497. MODULE_DESCRIPTION("ADM1025 driver");
  498. MODULE_LICENSE("GPL");