vc4_dsi.c 53 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (C) 2016 Broadcom
  4. */
  5. /**
  6. * DOC: VC4 DSI0/DSI1 module
  7. *
  8. * BCM2835 contains two DSI modules, DSI0 and DSI1. DSI0 is a
  9. * single-lane DSI controller, while DSI1 is a more modern 4-lane DSI
  10. * controller.
  11. *
  12. * Most Raspberry Pi boards expose DSI1 as their "DISPLAY" connector,
  13. * while the compute module brings both DSI0 and DSI1 out.
  14. *
  15. * This driver has been tested for DSI1 video-mode display only
  16. * currently, with most of the information necessary for DSI0
  17. * hopefully present.
  18. */
  19. #include <linux/clk-provider.h>
  20. #include <linux/clk.h>
  21. #include <linux/completion.h>
  22. #include <linux/component.h>
  23. #include <linux/dma-mapping.h>
  24. #include <linux/dmaengine.h>
  25. #include <linux/i2c.h>
  26. #include <linux/io.h>
  27. #include <linux/of_address.h>
  28. #include <linux/of_platform.h>
  29. #include <linux/pm_runtime.h>
  30. #include <drm/drm_atomic_helper.h>
  31. #include <drm/drm_bridge.h>
  32. #include <drm/drm_edid.h>
  33. #include <drm/drm_mipi_dsi.h>
  34. #include <drm/drm_of.h>
  35. #include <drm/drm_panel.h>
  36. #include <drm/drm_probe_helper.h>
  37. #include <drm/drm_simple_kms_helper.h>
  38. #include "vc4_drv.h"
  39. #include "vc4_regs.h"
  40. #define DSI_CMD_FIFO_DEPTH 16
  41. #define DSI_PIX_FIFO_DEPTH 256
  42. #define DSI_PIX_FIFO_WIDTH 4
  43. #define DSI0_CTRL 0x00
  44. /* Command packet control. */
  45. #define DSI0_TXPKT1C 0x04 /* AKA PKTC */
  46. #define DSI1_TXPKT1C 0x04
  47. # define DSI_TXPKT1C_TRIG_CMD_MASK VC4_MASK(31, 24)
  48. # define DSI_TXPKT1C_TRIG_CMD_SHIFT 24
  49. # define DSI_TXPKT1C_CMD_REPEAT_MASK VC4_MASK(23, 10)
  50. # define DSI_TXPKT1C_CMD_REPEAT_SHIFT 10
  51. # define DSI_TXPKT1C_DISPLAY_NO_MASK VC4_MASK(9, 8)
  52. # define DSI_TXPKT1C_DISPLAY_NO_SHIFT 8
  53. /* Short, trigger, BTA, or a long packet that fits all in CMDFIFO. */
  54. # define DSI_TXPKT1C_DISPLAY_NO_SHORT 0
  55. /* Primary display where cmdfifo provides part of the payload and
  56. * pixelvalve the rest.
  57. */
  58. # define DSI_TXPKT1C_DISPLAY_NO_PRIMARY 1
  59. /* Secondary display where cmdfifo provides part of the payload and
  60. * pixfifo the rest.
  61. */
  62. # define DSI_TXPKT1C_DISPLAY_NO_SECONDARY 2
  63. # define DSI_TXPKT1C_CMD_TX_TIME_MASK VC4_MASK(7, 6)
  64. # define DSI_TXPKT1C_CMD_TX_TIME_SHIFT 6
  65. # define DSI_TXPKT1C_CMD_CTRL_MASK VC4_MASK(5, 4)
  66. # define DSI_TXPKT1C_CMD_CTRL_SHIFT 4
  67. /* Command only. Uses TXPKT1H and DISPLAY_NO */
  68. # define DSI_TXPKT1C_CMD_CTRL_TX 0
  69. /* Command with BTA for either ack or read data. */
  70. # define DSI_TXPKT1C_CMD_CTRL_RX 1
  71. /* Trigger according to TRIG_CMD */
  72. # define DSI_TXPKT1C_CMD_CTRL_TRIG 2
  73. /* BTA alone for getting error status after a command, or a TE trigger
  74. * without a previous command.
  75. */
  76. # define DSI_TXPKT1C_CMD_CTRL_BTA 3
  77. # define DSI_TXPKT1C_CMD_MODE_LP BIT(3)
  78. # define DSI_TXPKT1C_CMD_TYPE_LONG BIT(2)
  79. # define DSI_TXPKT1C_CMD_TE_EN BIT(1)
  80. # define DSI_TXPKT1C_CMD_EN BIT(0)
  81. /* Command packet header. */
  82. #define DSI0_TXPKT1H 0x08 /* AKA PKTH */
  83. #define DSI1_TXPKT1H 0x08
  84. # define DSI_TXPKT1H_BC_CMDFIFO_MASK VC4_MASK(31, 24)
  85. # define DSI_TXPKT1H_BC_CMDFIFO_SHIFT 24
  86. # define DSI_TXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8)
  87. # define DSI_TXPKT1H_BC_PARAM_SHIFT 8
  88. # define DSI_TXPKT1H_BC_DT_MASK VC4_MASK(7, 0)
  89. # define DSI_TXPKT1H_BC_DT_SHIFT 0
  90. #define DSI0_RXPKT1H 0x0c /* AKA RX1_PKTH */
  91. #define DSI1_RXPKT1H 0x14
  92. # define DSI_RXPKT1H_CRC_ERR BIT(31)
  93. # define DSI_RXPKT1H_DET_ERR BIT(30)
  94. # define DSI_RXPKT1H_ECC_ERR BIT(29)
  95. # define DSI_RXPKT1H_COR_ERR BIT(28)
  96. # define DSI_RXPKT1H_INCOMP_PKT BIT(25)
  97. # define DSI_RXPKT1H_PKT_TYPE_LONG BIT(24)
  98. /* Byte count if DSI_RXPKT1H_PKT_TYPE_LONG */
  99. # define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8)
  100. # define DSI_RXPKT1H_BC_PARAM_SHIFT 8
  101. /* Short return bytes if !DSI_RXPKT1H_PKT_TYPE_LONG */
  102. # define DSI_RXPKT1H_SHORT_1_MASK VC4_MASK(23, 16)
  103. # define DSI_RXPKT1H_SHORT_1_SHIFT 16
  104. # define DSI_RXPKT1H_SHORT_0_MASK VC4_MASK(15, 8)
  105. # define DSI_RXPKT1H_SHORT_0_SHIFT 8
  106. # define DSI_RXPKT1H_DT_LP_CMD_MASK VC4_MASK(7, 0)
  107. # define DSI_RXPKT1H_DT_LP_CMD_SHIFT 0
  108. #define DSI0_RXPKT2H 0x10 /* AKA RX2_PKTH */
  109. #define DSI1_RXPKT2H 0x18
  110. # define DSI_RXPKT1H_DET_ERR BIT(30)
  111. # define DSI_RXPKT1H_ECC_ERR BIT(29)
  112. # define DSI_RXPKT1H_COR_ERR BIT(28)
  113. # define DSI_RXPKT1H_INCOMP_PKT BIT(25)
  114. # define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8)
  115. # define DSI_RXPKT1H_BC_PARAM_SHIFT 8
  116. # define DSI_RXPKT1H_DT_MASK VC4_MASK(7, 0)
  117. # define DSI_RXPKT1H_DT_SHIFT 0
  118. #define DSI0_TXPKT_CMD_FIFO 0x14 /* AKA CMD_DATAF */
  119. #define DSI1_TXPKT_CMD_FIFO 0x1c
  120. #define DSI0_DISP0_CTRL 0x18
  121. # define DSI_DISP0_PIX_CLK_DIV_MASK VC4_MASK(21, 13)
  122. # define DSI_DISP0_PIX_CLK_DIV_SHIFT 13
  123. # define DSI_DISP0_LP_STOP_CTRL_MASK VC4_MASK(12, 11)
  124. # define DSI_DISP0_LP_STOP_CTRL_SHIFT 11
  125. # define DSI_DISP0_LP_STOP_DISABLE 0
  126. # define DSI_DISP0_LP_STOP_PERLINE 1
  127. # define DSI_DISP0_LP_STOP_PERFRAME 2
  128. /* Transmit RGB pixels and null packets only during HACTIVE, instead
  129. * of going to LP-STOP.
  130. */
  131. # define DSI_DISP_HACTIVE_NULL BIT(10)
  132. /* Transmit blanking packet only during vblank, instead of allowing LP-STOP. */
  133. # define DSI_DISP_VBLP_CTRL BIT(9)
  134. /* Transmit blanking packet only during HFP, instead of allowing LP-STOP. */
  135. # define DSI_DISP_HFP_CTRL BIT(8)
  136. /* Transmit blanking packet only during HBP, instead of allowing LP-STOP. */
  137. # define DSI_DISP_HBP_CTRL BIT(7)
  138. # define DSI_DISP0_CHANNEL_MASK VC4_MASK(6, 5)
  139. # define DSI_DISP0_CHANNEL_SHIFT 5
  140. /* Enables end events for HSYNC/VSYNC, not just start events. */
  141. # define DSI_DISP0_ST_END BIT(4)
  142. # define DSI_DISP0_PFORMAT_MASK VC4_MASK(3, 2)
  143. # define DSI_DISP0_PFORMAT_SHIFT 2
  144. # define DSI_PFORMAT_RGB565 0
  145. # define DSI_PFORMAT_RGB666_PACKED 1
  146. # define DSI_PFORMAT_RGB666 2
  147. # define DSI_PFORMAT_RGB888 3
  148. /* Default is VIDEO mode. */
  149. # define DSI_DISP0_COMMAND_MODE BIT(1)
  150. # define DSI_DISP0_ENABLE BIT(0)
  151. #define DSI0_DISP1_CTRL 0x1c
  152. #define DSI1_DISP1_CTRL 0x2c
  153. /* Format of the data written to TXPKT_PIX_FIFO. */
  154. # define DSI_DISP1_PFORMAT_MASK VC4_MASK(2, 1)
  155. # define DSI_DISP1_PFORMAT_SHIFT 1
  156. # define DSI_DISP1_PFORMAT_16BIT 0
  157. # define DSI_DISP1_PFORMAT_24BIT 1
  158. # define DSI_DISP1_PFORMAT_32BIT_LE 2
  159. # define DSI_DISP1_PFORMAT_32BIT_BE 3
  160. /* DISP1 is always command mode. */
  161. # define DSI_DISP1_ENABLE BIT(0)
  162. #define DSI0_TXPKT_PIX_FIFO 0x20 /* AKA PIX_FIFO */
  163. #define DSI0_INT_STAT 0x24
  164. #define DSI0_INT_EN 0x28
  165. # define DSI0_INT_FIFO_ERR BIT(25)
  166. # define DSI0_INT_CMDC_DONE_MASK VC4_MASK(24, 23)
  167. # define DSI0_INT_CMDC_DONE_SHIFT 23
  168. # define DSI0_INT_CMDC_DONE_NO_REPEAT 1
  169. # define DSI0_INT_CMDC_DONE_REPEAT 3
  170. # define DSI0_INT_PHY_DIR_RTF BIT(22)
  171. # define DSI0_INT_PHY_D1_ULPS BIT(21)
  172. # define DSI0_INT_PHY_D1_STOP BIT(20)
  173. # define DSI0_INT_PHY_RXLPDT BIT(19)
  174. # define DSI0_INT_PHY_RXTRIG BIT(18)
  175. # define DSI0_INT_PHY_D0_ULPS BIT(17)
  176. # define DSI0_INT_PHY_D0_LPDT BIT(16)
  177. # define DSI0_INT_PHY_D0_FTR BIT(15)
  178. # define DSI0_INT_PHY_D0_STOP BIT(14)
  179. /* Signaled when the clock lane enters the given state. */
  180. # define DSI0_INT_PHY_CLK_ULPS BIT(13)
  181. # define DSI0_INT_PHY_CLK_HS BIT(12)
  182. # define DSI0_INT_PHY_CLK_FTR BIT(11)
  183. /* Signaled on timeouts */
  184. # define DSI0_INT_PR_TO BIT(10)
  185. # define DSI0_INT_TA_TO BIT(9)
  186. # define DSI0_INT_LPRX_TO BIT(8)
  187. # define DSI0_INT_HSTX_TO BIT(7)
  188. /* Contention on a line when trying to drive the line low */
  189. # define DSI0_INT_ERR_CONT_LP1 BIT(6)
  190. # define DSI0_INT_ERR_CONT_LP0 BIT(5)
  191. /* Control error: incorrect line state sequence on data lane 0. */
  192. # define DSI0_INT_ERR_CONTROL BIT(4)
  193. # define DSI0_INT_ERR_SYNC_ESC BIT(3)
  194. # define DSI0_INT_RX2_PKT BIT(2)
  195. # define DSI0_INT_RX1_PKT BIT(1)
  196. # define DSI0_INT_CMD_PKT BIT(0)
  197. #define DSI0_INTERRUPTS_ALWAYS_ENABLED (DSI0_INT_ERR_SYNC_ESC | \
  198. DSI0_INT_ERR_CONTROL | \
  199. DSI0_INT_ERR_CONT_LP0 | \
  200. DSI0_INT_ERR_CONT_LP1 | \
  201. DSI0_INT_HSTX_TO | \
  202. DSI0_INT_LPRX_TO | \
  203. DSI0_INT_TA_TO | \
  204. DSI0_INT_PR_TO)
  205. # define DSI1_INT_PHY_D3_ULPS BIT(30)
  206. # define DSI1_INT_PHY_D3_STOP BIT(29)
  207. # define DSI1_INT_PHY_D2_ULPS BIT(28)
  208. # define DSI1_INT_PHY_D2_STOP BIT(27)
  209. # define DSI1_INT_PHY_D1_ULPS BIT(26)
  210. # define DSI1_INT_PHY_D1_STOP BIT(25)
  211. # define DSI1_INT_PHY_D0_ULPS BIT(24)
  212. # define DSI1_INT_PHY_D0_STOP BIT(23)
  213. # define DSI1_INT_FIFO_ERR BIT(22)
  214. # define DSI1_INT_PHY_DIR_RTF BIT(21)
  215. # define DSI1_INT_PHY_RXLPDT BIT(20)
  216. # define DSI1_INT_PHY_RXTRIG BIT(19)
  217. # define DSI1_INT_PHY_D0_LPDT BIT(18)
  218. # define DSI1_INT_PHY_DIR_FTR BIT(17)
  219. /* Signaled when the clock lane enters the given state. */
  220. # define DSI1_INT_PHY_CLOCK_ULPS BIT(16)
  221. # define DSI1_INT_PHY_CLOCK_HS BIT(15)
  222. # define DSI1_INT_PHY_CLOCK_STOP BIT(14)
  223. /* Signaled on timeouts */
  224. # define DSI1_INT_PR_TO BIT(13)
  225. # define DSI1_INT_TA_TO BIT(12)
  226. # define DSI1_INT_LPRX_TO BIT(11)
  227. # define DSI1_INT_HSTX_TO BIT(10)
  228. /* Contention on a line when trying to drive the line low */
  229. # define DSI1_INT_ERR_CONT_LP1 BIT(9)
  230. # define DSI1_INT_ERR_CONT_LP0 BIT(8)
  231. /* Control error: incorrect line state sequence on data lane 0. */
  232. # define DSI1_INT_ERR_CONTROL BIT(7)
  233. /* LPDT synchronization error (bits received not a multiple of 8. */
  234. # define DSI1_INT_ERR_SYNC_ESC BIT(6)
  235. /* Signaled after receiving an error packet from the display in
  236. * response to a read.
  237. */
  238. # define DSI1_INT_RXPKT2 BIT(5)
  239. /* Signaled after receiving a packet. The header and optional short
  240. * response will be in RXPKT1H, and a long response will be in the
  241. * RXPKT_FIFO.
  242. */
  243. # define DSI1_INT_RXPKT1 BIT(4)
  244. # define DSI1_INT_TXPKT2_DONE BIT(3)
  245. # define DSI1_INT_TXPKT2_END BIT(2)
  246. /* Signaled after all repeats of TXPKT1 are transferred. */
  247. # define DSI1_INT_TXPKT1_DONE BIT(1)
  248. /* Signaled after each TXPKT1 repeat is scheduled. */
  249. # define DSI1_INT_TXPKT1_END BIT(0)
  250. #define DSI1_INTERRUPTS_ALWAYS_ENABLED (DSI1_INT_ERR_SYNC_ESC | \
  251. DSI1_INT_ERR_CONTROL | \
  252. DSI1_INT_ERR_CONT_LP0 | \
  253. DSI1_INT_ERR_CONT_LP1 | \
  254. DSI1_INT_HSTX_TO | \
  255. DSI1_INT_LPRX_TO | \
  256. DSI1_INT_TA_TO | \
  257. DSI1_INT_PR_TO)
  258. #define DSI0_STAT 0x2c
  259. #define DSI0_HSTX_TO_CNT 0x30
  260. #define DSI0_LPRX_TO_CNT 0x34
  261. #define DSI0_TA_TO_CNT 0x38
  262. #define DSI0_PR_TO_CNT 0x3c
  263. #define DSI0_PHYC 0x40
  264. # define DSI1_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(25, 20)
  265. # define DSI1_PHYC_ESC_CLK_LPDT_SHIFT 20
  266. # define DSI1_PHYC_HS_CLK_CONTINUOUS BIT(18)
  267. # define DSI0_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(17, 12)
  268. # define DSI0_PHYC_ESC_CLK_LPDT_SHIFT 12
  269. # define DSI1_PHYC_CLANE_ULPS BIT(17)
  270. # define DSI1_PHYC_CLANE_ENABLE BIT(16)
  271. # define DSI_PHYC_DLANE3_ULPS BIT(13)
  272. # define DSI_PHYC_DLANE3_ENABLE BIT(12)
  273. # define DSI0_PHYC_HS_CLK_CONTINUOUS BIT(10)
  274. # define DSI0_PHYC_CLANE_ULPS BIT(9)
  275. # define DSI_PHYC_DLANE2_ULPS BIT(9)
  276. # define DSI0_PHYC_CLANE_ENABLE BIT(8)
  277. # define DSI_PHYC_DLANE2_ENABLE BIT(8)
  278. # define DSI_PHYC_DLANE1_ULPS BIT(5)
  279. # define DSI_PHYC_DLANE1_ENABLE BIT(4)
  280. # define DSI_PHYC_DLANE0_FORCE_STOP BIT(2)
  281. # define DSI_PHYC_DLANE0_ULPS BIT(1)
  282. # define DSI_PHYC_DLANE0_ENABLE BIT(0)
  283. #define DSI0_HS_CLT0 0x44
  284. #define DSI0_HS_CLT1 0x48
  285. #define DSI0_HS_CLT2 0x4c
  286. #define DSI0_HS_DLT3 0x50
  287. #define DSI0_HS_DLT4 0x54
  288. #define DSI0_HS_DLT5 0x58
  289. #define DSI0_HS_DLT6 0x5c
  290. #define DSI0_HS_DLT7 0x60
  291. #define DSI0_PHY_AFEC0 0x64
  292. # define DSI0_PHY_AFEC0_DDR2CLK_EN BIT(26)
  293. # define DSI0_PHY_AFEC0_DDRCLK_EN BIT(25)
  294. # define DSI0_PHY_AFEC0_LATCH_ULPS BIT(24)
  295. # define DSI1_PHY_AFEC0_IDR_DLANE3_MASK VC4_MASK(31, 29)
  296. # define DSI1_PHY_AFEC0_IDR_DLANE3_SHIFT 29
  297. # define DSI1_PHY_AFEC0_IDR_DLANE2_MASK VC4_MASK(28, 26)
  298. # define DSI1_PHY_AFEC0_IDR_DLANE2_SHIFT 26
  299. # define DSI1_PHY_AFEC0_IDR_DLANE1_MASK VC4_MASK(27, 23)
  300. # define DSI1_PHY_AFEC0_IDR_DLANE1_SHIFT 23
  301. # define DSI1_PHY_AFEC0_IDR_DLANE0_MASK VC4_MASK(22, 20)
  302. # define DSI1_PHY_AFEC0_IDR_DLANE0_SHIFT 20
  303. # define DSI1_PHY_AFEC0_IDR_CLANE_MASK VC4_MASK(19, 17)
  304. # define DSI1_PHY_AFEC0_IDR_CLANE_SHIFT 17
  305. # define DSI0_PHY_AFEC0_ACTRL_DLANE1_MASK VC4_MASK(23, 20)
  306. # define DSI0_PHY_AFEC0_ACTRL_DLANE1_SHIFT 20
  307. # define DSI0_PHY_AFEC0_ACTRL_DLANE0_MASK VC4_MASK(19, 16)
  308. # define DSI0_PHY_AFEC0_ACTRL_DLANE0_SHIFT 16
  309. # define DSI0_PHY_AFEC0_ACTRL_CLANE_MASK VC4_MASK(15, 12)
  310. # define DSI0_PHY_AFEC0_ACTRL_CLANE_SHIFT 12
  311. # define DSI1_PHY_AFEC0_DDR2CLK_EN BIT(16)
  312. # define DSI1_PHY_AFEC0_DDRCLK_EN BIT(15)
  313. # define DSI1_PHY_AFEC0_LATCH_ULPS BIT(14)
  314. # define DSI1_PHY_AFEC0_RESET BIT(13)
  315. # define DSI1_PHY_AFEC0_PD BIT(12)
  316. # define DSI0_PHY_AFEC0_RESET BIT(11)
  317. # define DSI1_PHY_AFEC0_PD_BG BIT(11)
  318. # define DSI0_PHY_AFEC0_PD BIT(10)
  319. # define DSI1_PHY_AFEC0_PD_DLANE1 BIT(10)
  320. # define DSI0_PHY_AFEC0_PD_BG BIT(9)
  321. # define DSI1_PHY_AFEC0_PD_DLANE2 BIT(9)
  322. # define DSI0_PHY_AFEC0_PD_DLANE1 BIT(8)
  323. # define DSI1_PHY_AFEC0_PD_DLANE3 BIT(8)
  324. # define DSI_PHY_AFEC0_PTATADJ_MASK VC4_MASK(7, 4)
  325. # define DSI_PHY_AFEC0_PTATADJ_SHIFT 4
  326. # define DSI_PHY_AFEC0_CTATADJ_MASK VC4_MASK(3, 0)
  327. # define DSI_PHY_AFEC0_CTATADJ_SHIFT 0
  328. #define DSI0_PHY_AFEC1 0x68
  329. # define DSI0_PHY_AFEC1_IDR_DLANE1_MASK VC4_MASK(10, 8)
  330. # define DSI0_PHY_AFEC1_IDR_DLANE1_SHIFT 8
  331. # define DSI0_PHY_AFEC1_IDR_DLANE0_MASK VC4_MASK(6, 4)
  332. # define DSI0_PHY_AFEC1_IDR_DLANE0_SHIFT 4
  333. # define DSI0_PHY_AFEC1_IDR_CLANE_MASK VC4_MASK(2, 0)
  334. # define DSI0_PHY_AFEC1_IDR_CLANE_SHIFT 0
  335. #define DSI0_TST_SEL 0x6c
  336. #define DSI0_TST_MON 0x70
  337. #define DSI0_ID 0x74
  338. # define DSI_ID_VALUE 0x00647369
  339. #define DSI1_CTRL 0x00
  340. # define DSI_CTRL_HS_CLKC_MASK VC4_MASK(15, 14)
  341. # define DSI_CTRL_HS_CLKC_SHIFT 14
  342. # define DSI_CTRL_HS_CLKC_BYTE 0
  343. # define DSI_CTRL_HS_CLKC_DDR2 1
  344. # define DSI_CTRL_HS_CLKC_DDR 2
  345. # define DSI_CTRL_RX_LPDT_EOT_DISABLE BIT(13)
  346. # define DSI_CTRL_LPDT_EOT_DISABLE BIT(12)
  347. # define DSI_CTRL_HSDT_EOT_DISABLE BIT(11)
  348. # define DSI_CTRL_SOFT_RESET_CFG BIT(10)
  349. # define DSI_CTRL_CAL_BYTE BIT(9)
  350. # define DSI_CTRL_INV_BYTE BIT(8)
  351. # define DSI_CTRL_CLR_LDF BIT(7)
  352. # define DSI0_CTRL_CLR_PBCF BIT(6)
  353. # define DSI1_CTRL_CLR_RXF BIT(6)
  354. # define DSI0_CTRL_CLR_CPBCF BIT(5)
  355. # define DSI1_CTRL_CLR_PDF BIT(5)
  356. # define DSI0_CTRL_CLR_PDF BIT(4)
  357. # define DSI1_CTRL_CLR_CDF BIT(4)
  358. # define DSI0_CTRL_CLR_CDF BIT(3)
  359. # define DSI0_CTRL_CTRL2 BIT(2)
  360. # define DSI1_CTRL_DISABLE_DISP_CRCC BIT(2)
  361. # define DSI0_CTRL_CTRL1 BIT(1)
  362. # define DSI1_CTRL_DISABLE_DISP_ECCC BIT(1)
  363. # define DSI0_CTRL_CTRL0 BIT(0)
  364. # define DSI1_CTRL_EN BIT(0)
  365. # define DSI0_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \
  366. DSI0_CTRL_CLR_PBCF | \
  367. DSI0_CTRL_CLR_CPBCF | \
  368. DSI0_CTRL_CLR_PDF | \
  369. DSI0_CTRL_CLR_CDF)
  370. # define DSI1_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \
  371. DSI1_CTRL_CLR_RXF | \
  372. DSI1_CTRL_CLR_PDF | \
  373. DSI1_CTRL_CLR_CDF)
  374. #define DSI1_TXPKT2C 0x0c
  375. #define DSI1_TXPKT2H 0x10
  376. #define DSI1_TXPKT_PIX_FIFO 0x20
  377. #define DSI1_RXPKT_FIFO 0x24
  378. #define DSI1_DISP0_CTRL 0x28
  379. #define DSI1_INT_STAT 0x30
  380. #define DSI1_INT_EN 0x34
  381. /* State reporting bits. These mostly behave like INT_STAT, where
  382. * writing a 1 clears the bit.
  383. */
  384. #define DSI1_STAT 0x38
  385. # define DSI1_STAT_PHY_D3_ULPS BIT(31)
  386. # define DSI1_STAT_PHY_D3_STOP BIT(30)
  387. # define DSI1_STAT_PHY_D2_ULPS BIT(29)
  388. # define DSI1_STAT_PHY_D2_STOP BIT(28)
  389. # define DSI1_STAT_PHY_D1_ULPS BIT(27)
  390. # define DSI1_STAT_PHY_D1_STOP BIT(26)
  391. # define DSI1_STAT_PHY_D0_ULPS BIT(25)
  392. # define DSI1_STAT_PHY_D0_STOP BIT(24)
  393. # define DSI1_STAT_FIFO_ERR BIT(23)
  394. # define DSI1_STAT_PHY_RXLPDT BIT(22)
  395. # define DSI1_STAT_PHY_RXTRIG BIT(21)
  396. # define DSI1_STAT_PHY_D0_LPDT BIT(20)
  397. /* Set when in forward direction */
  398. # define DSI1_STAT_PHY_DIR BIT(19)
  399. # define DSI1_STAT_PHY_CLOCK_ULPS BIT(18)
  400. # define DSI1_STAT_PHY_CLOCK_HS BIT(17)
  401. # define DSI1_STAT_PHY_CLOCK_STOP BIT(16)
  402. # define DSI1_STAT_PR_TO BIT(15)
  403. # define DSI1_STAT_TA_TO BIT(14)
  404. # define DSI1_STAT_LPRX_TO BIT(13)
  405. # define DSI1_STAT_HSTX_TO BIT(12)
  406. # define DSI1_STAT_ERR_CONT_LP1 BIT(11)
  407. # define DSI1_STAT_ERR_CONT_LP0 BIT(10)
  408. # define DSI1_STAT_ERR_CONTROL BIT(9)
  409. # define DSI1_STAT_ERR_SYNC_ESC BIT(8)
  410. # define DSI1_STAT_RXPKT2 BIT(7)
  411. # define DSI1_STAT_RXPKT1 BIT(6)
  412. # define DSI1_STAT_TXPKT2_BUSY BIT(5)
  413. # define DSI1_STAT_TXPKT2_DONE BIT(4)
  414. # define DSI1_STAT_TXPKT2_END BIT(3)
  415. # define DSI1_STAT_TXPKT1_BUSY BIT(2)
  416. # define DSI1_STAT_TXPKT1_DONE BIT(1)
  417. # define DSI1_STAT_TXPKT1_END BIT(0)
  418. #define DSI1_HSTX_TO_CNT 0x3c
  419. #define DSI1_LPRX_TO_CNT 0x40
  420. #define DSI1_TA_TO_CNT 0x44
  421. #define DSI1_PR_TO_CNT 0x48
  422. #define DSI1_PHYC 0x4c
  423. #define DSI1_HS_CLT0 0x50
  424. # define DSI_HS_CLT0_CZERO_MASK VC4_MASK(26, 18)
  425. # define DSI_HS_CLT0_CZERO_SHIFT 18
  426. # define DSI_HS_CLT0_CPRE_MASK VC4_MASK(17, 9)
  427. # define DSI_HS_CLT0_CPRE_SHIFT 9
  428. # define DSI_HS_CLT0_CPREP_MASK VC4_MASK(8, 0)
  429. # define DSI_HS_CLT0_CPREP_SHIFT 0
  430. #define DSI1_HS_CLT1 0x54
  431. # define DSI_HS_CLT1_CTRAIL_MASK VC4_MASK(17, 9)
  432. # define DSI_HS_CLT1_CTRAIL_SHIFT 9
  433. # define DSI_HS_CLT1_CPOST_MASK VC4_MASK(8, 0)
  434. # define DSI_HS_CLT1_CPOST_SHIFT 0
  435. #define DSI1_HS_CLT2 0x58
  436. # define DSI_HS_CLT2_WUP_MASK VC4_MASK(23, 0)
  437. # define DSI_HS_CLT2_WUP_SHIFT 0
  438. #define DSI1_HS_DLT3 0x5c
  439. # define DSI_HS_DLT3_EXIT_MASK VC4_MASK(26, 18)
  440. # define DSI_HS_DLT3_EXIT_SHIFT 18
  441. # define DSI_HS_DLT3_ZERO_MASK VC4_MASK(17, 9)
  442. # define DSI_HS_DLT3_ZERO_SHIFT 9
  443. # define DSI_HS_DLT3_PRE_MASK VC4_MASK(8, 0)
  444. # define DSI_HS_DLT3_PRE_SHIFT 0
  445. #define DSI1_HS_DLT4 0x60
  446. # define DSI_HS_DLT4_ANLAT_MASK VC4_MASK(22, 18)
  447. # define DSI_HS_DLT4_ANLAT_SHIFT 18
  448. # define DSI_HS_DLT4_TRAIL_MASK VC4_MASK(17, 9)
  449. # define DSI_HS_DLT4_TRAIL_SHIFT 9
  450. # define DSI_HS_DLT4_LPX_MASK VC4_MASK(8, 0)
  451. # define DSI_HS_DLT4_LPX_SHIFT 0
  452. #define DSI1_HS_DLT5 0x64
  453. # define DSI_HS_DLT5_INIT_MASK VC4_MASK(23, 0)
  454. # define DSI_HS_DLT5_INIT_SHIFT 0
  455. #define DSI1_HS_DLT6 0x68
  456. # define DSI_HS_DLT6_TA_GET_MASK VC4_MASK(31, 24)
  457. # define DSI_HS_DLT6_TA_GET_SHIFT 24
  458. # define DSI_HS_DLT6_TA_SURE_MASK VC4_MASK(23, 16)
  459. # define DSI_HS_DLT6_TA_SURE_SHIFT 16
  460. # define DSI_HS_DLT6_TA_GO_MASK VC4_MASK(15, 8)
  461. # define DSI_HS_DLT6_TA_GO_SHIFT 8
  462. # define DSI_HS_DLT6_LP_LPX_MASK VC4_MASK(7, 0)
  463. # define DSI_HS_DLT6_LP_LPX_SHIFT 0
  464. #define DSI1_HS_DLT7 0x6c
  465. # define DSI_HS_DLT7_LP_WUP_MASK VC4_MASK(23, 0)
  466. # define DSI_HS_DLT7_LP_WUP_SHIFT 0
  467. #define DSI1_PHY_AFEC0 0x70
  468. #define DSI1_PHY_AFEC1 0x74
  469. # define DSI1_PHY_AFEC1_ACTRL_DLANE3_MASK VC4_MASK(19, 16)
  470. # define DSI1_PHY_AFEC1_ACTRL_DLANE3_SHIFT 16
  471. # define DSI1_PHY_AFEC1_ACTRL_DLANE2_MASK VC4_MASK(15, 12)
  472. # define DSI1_PHY_AFEC1_ACTRL_DLANE2_SHIFT 12
  473. # define DSI1_PHY_AFEC1_ACTRL_DLANE1_MASK VC4_MASK(11, 8)
  474. # define DSI1_PHY_AFEC1_ACTRL_DLANE1_SHIFT 8
  475. # define DSI1_PHY_AFEC1_ACTRL_DLANE0_MASK VC4_MASK(7, 4)
  476. # define DSI1_PHY_AFEC1_ACTRL_DLANE0_SHIFT 4
  477. # define DSI1_PHY_AFEC1_ACTRL_CLANE_MASK VC4_MASK(3, 0)
  478. # define DSI1_PHY_AFEC1_ACTRL_CLANE_SHIFT 0
  479. #define DSI1_TST_SEL 0x78
  480. #define DSI1_TST_MON 0x7c
  481. #define DSI1_PHY_TST1 0x80
  482. #define DSI1_PHY_TST2 0x84
  483. #define DSI1_PHY_FIFO_STAT 0x88
  484. /* Actually, all registers in the range that aren't otherwise claimed
  485. * will return the ID.
  486. */
  487. #define DSI1_ID 0x8c
  488. struct vc4_dsi_variant {
  489. /* Whether we're on bcm2835's DSI0 or DSI1. */
  490. unsigned int port;
  491. bool broken_axi_workaround;
  492. const char *debugfs_name;
  493. const struct debugfs_reg32 *regs;
  494. size_t nregs;
  495. };
  496. /* General DSI hardware state. */
  497. struct vc4_dsi {
  498. struct vc4_encoder encoder;
  499. struct mipi_dsi_host dsi_host;
  500. struct kref kref;
  501. struct platform_device *pdev;
  502. struct drm_bridge *bridge;
  503. struct list_head bridge_chain;
  504. void __iomem *regs;
  505. struct dma_chan *reg_dma_chan;
  506. dma_addr_t reg_dma_paddr;
  507. u32 *reg_dma_mem;
  508. dma_addr_t reg_paddr;
  509. const struct vc4_dsi_variant *variant;
  510. /* DSI channel for the panel we're connected to. */
  511. u32 channel;
  512. u32 lanes;
  513. u32 format;
  514. u32 divider;
  515. u32 mode_flags;
  516. /* Input clock from CPRMAN to the digital PHY, for the DSI
  517. * escape clock.
  518. */
  519. struct clk *escape_clock;
  520. /* Input clock to the analog PHY, used to generate the DSI bit
  521. * clock.
  522. */
  523. struct clk *pll_phy_clock;
  524. /* HS Clocks generated within the DSI analog PHY. */
  525. struct clk_fixed_factor phy_clocks[3];
  526. struct clk_hw_onecell_data *clk_onecell;
  527. /* Pixel clock output to the pixelvalve, generated from the HS
  528. * clock.
  529. */
  530. struct clk *pixel_clock;
  531. struct completion xfer_completion;
  532. int xfer_result;
  533. struct debugfs_regset32 regset;
  534. };
  535. #define host_to_dsi(host) container_of(host, struct vc4_dsi, dsi_host)
  536. static inline struct vc4_dsi *
  537. to_vc4_dsi(struct drm_encoder *encoder)
  538. {
  539. return container_of(encoder, struct vc4_dsi, encoder.base);
  540. }
  541. static inline void
  542. dsi_dma_workaround_write(struct vc4_dsi *dsi, u32 offset, u32 val)
  543. {
  544. struct dma_chan *chan = dsi->reg_dma_chan;
  545. struct dma_async_tx_descriptor *tx;
  546. dma_cookie_t cookie;
  547. int ret;
  548. /* DSI0 should be able to write normally. */
  549. if (!chan) {
  550. writel(val, dsi->regs + offset);
  551. return;
  552. }
  553. *dsi->reg_dma_mem = val;
  554. tx = chan->device->device_prep_dma_memcpy(chan,
  555. dsi->reg_paddr + offset,
  556. dsi->reg_dma_paddr,
  557. 4, 0);
  558. if (!tx) {
  559. DRM_ERROR("Failed to set up DMA register write\n");
  560. return;
  561. }
  562. cookie = tx->tx_submit(tx);
  563. ret = dma_submit_error(cookie);
  564. if (ret) {
  565. DRM_ERROR("Failed to submit DMA: %d\n", ret);
  566. return;
  567. }
  568. ret = dma_sync_wait(chan, cookie);
  569. if (ret)
  570. DRM_ERROR("Failed to wait for DMA: %d\n", ret);
  571. }
  572. #define DSI_READ(offset) readl(dsi->regs + (offset))
  573. #define DSI_WRITE(offset, val) dsi_dma_workaround_write(dsi, offset, val)
  574. #define DSI_PORT_READ(offset) \
  575. DSI_READ(dsi->variant->port ? DSI1_##offset : DSI0_##offset)
  576. #define DSI_PORT_WRITE(offset, val) \
  577. DSI_WRITE(dsi->variant->port ? DSI1_##offset : DSI0_##offset, val)
  578. #define DSI_PORT_BIT(bit) (dsi->variant->port ? DSI1_##bit : DSI0_##bit)
  579. static const struct debugfs_reg32 dsi0_regs[] = {
  580. VC4_REG32(DSI0_CTRL),
  581. VC4_REG32(DSI0_STAT),
  582. VC4_REG32(DSI0_HSTX_TO_CNT),
  583. VC4_REG32(DSI0_LPRX_TO_CNT),
  584. VC4_REG32(DSI0_TA_TO_CNT),
  585. VC4_REG32(DSI0_PR_TO_CNT),
  586. VC4_REG32(DSI0_DISP0_CTRL),
  587. VC4_REG32(DSI0_DISP1_CTRL),
  588. VC4_REG32(DSI0_INT_STAT),
  589. VC4_REG32(DSI0_INT_EN),
  590. VC4_REG32(DSI0_PHYC),
  591. VC4_REG32(DSI0_HS_CLT0),
  592. VC4_REG32(DSI0_HS_CLT1),
  593. VC4_REG32(DSI0_HS_CLT2),
  594. VC4_REG32(DSI0_HS_DLT3),
  595. VC4_REG32(DSI0_HS_DLT4),
  596. VC4_REG32(DSI0_HS_DLT5),
  597. VC4_REG32(DSI0_HS_DLT6),
  598. VC4_REG32(DSI0_HS_DLT7),
  599. VC4_REG32(DSI0_PHY_AFEC0),
  600. VC4_REG32(DSI0_PHY_AFEC1),
  601. VC4_REG32(DSI0_ID),
  602. };
  603. static const struct debugfs_reg32 dsi1_regs[] = {
  604. VC4_REG32(DSI1_CTRL),
  605. VC4_REG32(DSI1_STAT),
  606. VC4_REG32(DSI1_HSTX_TO_CNT),
  607. VC4_REG32(DSI1_LPRX_TO_CNT),
  608. VC4_REG32(DSI1_TA_TO_CNT),
  609. VC4_REG32(DSI1_PR_TO_CNT),
  610. VC4_REG32(DSI1_DISP0_CTRL),
  611. VC4_REG32(DSI1_DISP1_CTRL),
  612. VC4_REG32(DSI1_INT_STAT),
  613. VC4_REG32(DSI1_INT_EN),
  614. VC4_REG32(DSI1_PHYC),
  615. VC4_REG32(DSI1_HS_CLT0),
  616. VC4_REG32(DSI1_HS_CLT1),
  617. VC4_REG32(DSI1_HS_CLT2),
  618. VC4_REG32(DSI1_HS_DLT3),
  619. VC4_REG32(DSI1_HS_DLT4),
  620. VC4_REG32(DSI1_HS_DLT5),
  621. VC4_REG32(DSI1_HS_DLT6),
  622. VC4_REG32(DSI1_HS_DLT7),
  623. VC4_REG32(DSI1_PHY_AFEC0),
  624. VC4_REG32(DSI1_PHY_AFEC1),
  625. VC4_REG32(DSI1_ID),
  626. };
  627. static void vc4_dsi_latch_ulps(struct vc4_dsi *dsi, bool latch)
  628. {
  629. u32 afec0 = DSI_PORT_READ(PHY_AFEC0);
  630. if (latch)
  631. afec0 |= DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
  632. else
  633. afec0 &= ~DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS);
  634. DSI_PORT_WRITE(PHY_AFEC0, afec0);
  635. }
  636. /* Enters or exits Ultra Low Power State. */
  637. static void vc4_dsi_ulps(struct vc4_dsi *dsi, bool ulps)
  638. {
  639. bool non_continuous = dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS;
  640. u32 phyc_ulps = ((non_continuous ? DSI_PORT_BIT(PHYC_CLANE_ULPS) : 0) |
  641. DSI_PHYC_DLANE0_ULPS |
  642. (dsi->lanes > 1 ? DSI_PHYC_DLANE1_ULPS : 0) |
  643. (dsi->lanes > 2 ? DSI_PHYC_DLANE2_ULPS : 0) |
  644. (dsi->lanes > 3 ? DSI_PHYC_DLANE3_ULPS : 0));
  645. u32 stat_ulps = ((non_continuous ? DSI1_STAT_PHY_CLOCK_ULPS : 0) |
  646. DSI1_STAT_PHY_D0_ULPS |
  647. (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_ULPS : 0) |
  648. (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_ULPS : 0) |
  649. (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_ULPS : 0));
  650. u32 stat_stop = ((non_continuous ? DSI1_STAT_PHY_CLOCK_STOP : 0) |
  651. DSI1_STAT_PHY_D0_STOP |
  652. (dsi->lanes > 1 ? DSI1_STAT_PHY_D1_STOP : 0) |
  653. (dsi->lanes > 2 ? DSI1_STAT_PHY_D2_STOP : 0) |
  654. (dsi->lanes > 3 ? DSI1_STAT_PHY_D3_STOP : 0));
  655. int ret;
  656. bool ulps_currently_enabled = (DSI_PORT_READ(PHY_AFEC0) &
  657. DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS));
  658. if (ulps == ulps_currently_enabled)
  659. return;
  660. DSI_PORT_WRITE(STAT, stat_ulps);
  661. DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) | phyc_ulps);
  662. ret = wait_for((DSI_PORT_READ(STAT) & stat_ulps) == stat_ulps, 200);
  663. if (ret) {
  664. dev_warn(&dsi->pdev->dev,
  665. "Timeout waiting for DSI ULPS entry: STAT 0x%08x",
  666. DSI_PORT_READ(STAT));
  667. DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
  668. vc4_dsi_latch_ulps(dsi, false);
  669. return;
  670. }
  671. /* The DSI module can't be disabled while the module is
  672. * generating ULPS state. So, to be able to disable the
  673. * module, we have the AFE latch the ULPS state and continue
  674. * on to having the module enter STOP.
  675. */
  676. vc4_dsi_latch_ulps(dsi, ulps);
  677. DSI_PORT_WRITE(STAT, stat_stop);
  678. DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
  679. ret = wait_for((DSI_PORT_READ(STAT) & stat_stop) == stat_stop, 200);
  680. if (ret) {
  681. dev_warn(&dsi->pdev->dev,
  682. "Timeout waiting for DSI STOP entry: STAT 0x%08x",
  683. DSI_PORT_READ(STAT));
  684. DSI_PORT_WRITE(PHYC, DSI_PORT_READ(PHYC) & ~phyc_ulps);
  685. return;
  686. }
  687. }
  688. static u32
  689. dsi_hs_timing(u32 ui_ns, u32 ns, u32 ui)
  690. {
  691. /* The HS timings have to be rounded up to a multiple of 8
  692. * because we're using the byte clock.
  693. */
  694. return roundup(ui + DIV_ROUND_UP(ns, ui_ns), 8);
  695. }
  696. /* ESC always runs at 100Mhz. */
  697. #define ESC_TIME_NS 10
  698. static u32
  699. dsi_esc_timing(u32 ns)
  700. {
  701. return DIV_ROUND_UP(ns, ESC_TIME_NS);
  702. }
  703. static void vc4_dsi_encoder_disable(struct drm_encoder *encoder)
  704. {
  705. struct vc4_dsi *dsi = to_vc4_dsi(encoder);
  706. struct device *dev = &dsi->pdev->dev;
  707. struct drm_bridge *iter;
  708. list_for_each_entry_reverse(iter, &dsi->bridge_chain, chain_node) {
  709. if (iter->funcs->disable)
  710. iter->funcs->disable(iter);
  711. if (iter == dsi->bridge)
  712. break;
  713. }
  714. vc4_dsi_ulps(dsi, true);
  715. list_for_each_entry_from(iter, &dsi->bridge_chain, chain_node) {
  716. if (iter->funcs->post_disable)
  717. iter->funcs->post_disable(iter);
  718. }
  719. clk_disable_unprepare(dsi->pll_phy_clock);
  720. clk_disable_unprepare(dsi->escape_clock);
  721. clk_disable_unprepare(dsi->pixel_clock);
  722. pm_runtime_put(dev);
  723. }
  724. /* Extends the mode's blank intervals to handle BCM2835's integer-only
  725. * DSI PLL divider.
  726. *
  727. * On 2835, PLLD is set to 2Ghz, and may not be changed by the display
  728. * driver since most peripherals are hanging off of the PLLD_PER
  729. * divider. PLLD_DSI1, which drives our DSI bit clock (and therefore
  730. * the pixel clock), only has an integer divider off of DSI.
  731. *
  732. * To get our panel mode to refresh at the expected 60Hz, we need to
  733. * extend the horizontal blank time. This means we drive a
  734. * higher-than-expected clock rate to the panel, but that's what the
  735. * firmware does too.
  736. */
  737. static bool vc4_dsi_encoder_mode_fixup(struct drm_encoder *encoder,
  738. const struct drm_display_mode *mode,
  739. struct drm_display_mode *adjusted_mode)
  740. {
  741. struct vc4_dsi *dsi = to_vc4_dsi(encoder);
  742. struct clk *phy_parent = clk_get_parent(dsi->pll_phy_clock);
  743. unsigned long parent_rate = clk_get_rate(phy_parent);
  744. unsigned long pixel_clock_hz = mode->clock * 1000;
  745. unsigned long pll_clock = pixel_clock_hz * dsi->divider;
  746. int divider;
  747. /* Find what divider gets us a faster clock than the requested
  748. * pixel clock.
  749. */
  750. for (divider = 1; divider < 255; divider++) {
  751. if (parent_rate / (divider + 1) < pll_clock)
  752. break;
  753. }
  754. /* Now that we've picked a PLL divider, calculate back to its
  755. * pixel clock.
  756. */
  757. pll_clock = parent_rate / divider;
  758. pixel_clock_hz = pll_clock / dsi->divider;
  759. adjusted_mode->clock = pixel_clock_hz / 1000;
  760. /* Given the new pixel clock, adjust HFP to keep vrefresh the same. */
  761. adjusted_mode->htotal = adjusted_mode->clock * mode->htotal /
  762. mode->clock;
  763. adjusted_mode->hsync_end += adjusted_mode->htotal - mode->htotal;
  764. adjusted_mode->hsync_start += adjusted_mode->htotal - mode->htotal;
  765. return true;
  766. }
  767. static void vc4_dsi_encoder_enable(struct drm_encoder *encoder)
  768. {
  769. struct drm_display_mode *mode = &encoder->crtc->state->adjusted_mode;
  770. struct vc4_dsi *dsi = to_vc4_dsi(encoder);
  771. struct device *dev = &dsi->pdev->dev;
  772. bool debug_dump_regs = false;
  773. struct drm_bridge *iter;
  774. unsigned long hs_clock;
  775. u32 ui_ns;
  776. /* Minimum LP state duration in escape clock cycles. */
  777. u32 lpx = dsi_esc_timing(60);
  778. unsigned long pixel_clock_hz = mode->clock * 1000;
  779. unsigned long dsip_clock;
  780. unsigned long phy_clock;
  781. int ret;
  782. ret = pm_runtime_resume_and_get(dev);
  783. if (ret) {
  784. DRM_ERROR("Failed to runtime PM enable on DSI%d\n", dsi->variant->port);
  785. return;
  786. }
  787. if (debug_dump_regs) {
  788. struct drm_printer p = drm_info_printer(&dsi->pdev->dev);
  789. dev_info(&dsi->pdev->dev, "DSI regs before:\n");
  790. drm_print_regset32(&p, &dsi->regset);
  791. }
  792. /* Round up the clk_set_rate() request slightly, since
  793. * PLLD_DSI1 is an integer divider and its rate selection will
  794. * never round up.
  795. */
  796. phy_clock = (pixel_clock_hz + 1000) * dsi->divider;
  797. ret = clk_set_rate(dsi->pll_phy_clock, phy_clock);
  798. if (ret) {
  799. dev_err(&dsi->pdev->dev,
  800. "Failed to set phy clock to %ld: %d\n", phy_clock, ret);
  801. }
  802. /* Reset the DSI and all its fifos. */
  803. DSI_PORT_WRITE(CTRL,
  804. DSI_CTRL_SOFT_RESET_CFG |
  805. DSI_PORT_BIT(CTRL_RESET_FIFOS));
  806. DSI_PORT_WRITE(CTRL,
  807. DSI_CTRL_HSDT_EOT_DISABLE |
  808. DSI_CTRL_RX_LPDT_EOT_DISABLE);
  809. /* Clear all stat bits so we see what has happened during enable. */
  810. DSI_PORT_WRITE(STAT, DSI_PORT_READ(STAT));
  811. /* Set AFE CTR00/CTR1 to release powerdown of analog. */
  812. if (dsi->variant->port == 0) {
  813. u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
  814. VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ));
  815. if (dsi->lanes < 2)
  816. afec0 |= DSI0_PHY_AFEC0_PD_DLANE1;
  817. if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO))
  818. afec0 |= DSI0_PHY_AFEC0_RESET;
  819. DSI_PORT_WRITE(PHY_AFEC0, afec0);
  820. /* AFEC reset hold time */
  821. mdelay(1);
  822. DSI_PORT_WRITE(PHY_AFEC1,
  823. VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE1) |
  824. VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE0) |
  825. VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_CLANE));
  826. } else {
  827. u32 afec0 = (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ) |
  828. VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ) |
  829. VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_CLANE) |
  830. VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE0) |
  831. VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE1) |
  832. VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE2) |
  833. VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE3));
  834. if (dsi->lanes < 4)
  835. afec0 |= DSI1_PHY_AFEC0_PD_DLANE3;
  836. if (dsi->lanes < 3)
  837. afec0 |= DSI1_PHY_AFEC0_PD_DLANE2;
  838. if (dsi->lanes < 2)
  839. afec0 |= DSI1_PHY_AFEC0_PD_DLANE1;
  840. afec0 |= DSI1_PHY_AFEC0_RESET;
  841. DSI_PORT_WRITE(PHY_AFEC0, afec0);
  842. DSI_PORT_WRITE(PHY_AFEC1, 0);
  843. /* AFEC reset hold time */
  844. mdelay(1);
  845. }
  846. ret = clk_prepare_enable(dsi->escape_clock);
  847. if (ret) {
  848. DRM_ERROR("Failed to turn on DSI escape clock: %d\n", ret);
  849. return;
  850. }
  851. ret = clk_prepare_enable(dsi->pll_phy_clock);
  852. if (ret) {
  853. DRM_ERROR("Failed to turn on DSI PLL: %d\n", ret);
  854. return;
  855. }
  856. hs_clock = clk_get_rate(dsi->pll_phy_clock);
  857. /* Yes, we set the DSI0P/DSI1P pixel clock to the byte rate,
  858. * not the pixel clock rate. DSIxP take from the APHY's byte,
  859. * DDR2, or DDR4 clock (we use byte) and feed into the PV at
  860. * that rate. Separately, a value derived from PIX_CLK_DIV
  861. * and HS_CLKC is fed into the PV to divide down to the actual
  862. * pixel clock for pushing pixels into DSI.
  863. */
  864. dsip_clock = phy_clock / 8;
  865. ret = clk_set_rate(dsi->pixel_clock, dsip_clock);
  866. if (ret) {
  867. dev_err(dev, "Failed to set pixel clock to %ldHz: %d\n",
  868. dsip_clock, ret);
  869. }
  870. ret = clk_prepare_enable(dsi->pixel_clock);
  871. if (ret) {
  872. DRM_ERROR("Failed to turn on DSI pixel clock: %d\n", ret);
  873. return;
  874. }
  875. /* How many ns one DSI unit interval is. Note that the clock
  876. * is DDR, so there's an extra divide by 2.
  877. */
  878. ui_ns = DIV_ROUND_UP(500000000, hs_clock);
  879. DSI_PORT_WRITE(HS_CLT0,
  880. VC4_SET_FIELD(dsi_hs_timing(ui_ns, 262, 0),
  881. DSI_HS_CLT0_CZERO) |
  882. VC4_SET_FIELD(dsi_hs_timing(ui_ns, 0, 8),
  883. DSI_HS_CLT0_CPRE) |
  884. VC4_SET_FIELD(dsi_hs_timing(ui_ns, 38, 0),
  885. DSI_HS_CLT0_CPREP));
  886. DSI_PORT_WRITE(HS_CLT1,
  887. VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 0),
  888. DSI_HS_CLT1_CTRAIL) |
  889. VC4_SET_FIELD(dsi_hs_timing(ui_ns, 60, 52),
  890. DSI_HS_CLT1_CPOST));
  891. DSI_PORT_WRITE(HS_CLT2,
  892. VC4_SET_FIELD(dsi_hs_timing(ui_ns, 1000000, 0),
  893. DSI_HS_CLT2_WUP));
  894. DSI_PORT_WRITE(HS_DLT3,
  895. VC4_SET_FIELD(dsi_hs_timing(ui_ns, 100, 0),
  896. DSI_HS_DLT3_EXIT) |
  897. VC4_SET_FIELD(dsi_hs_timing(ui_ns, 105, 6),
  898. DSI_HS_DLT3_ZERO) |
  899. VC4_SET_FIELD(dsi_hs_timing(ui_ns, 40, 4),
  900. DSI_HS_DLT3_PRE));
  901. DSI_PORT_WRITE(HS_DLT4,
  902. VC4_SET_FIELD(dsi_hs_timing(ui_ns, lpx * ESC_TIME_NS, 0),
  903. DSI_HS_DLT4_LPX) |
  904. VC4_SET_FIELD(max(dsi_hs_timing(ui_ns, 0, 8),
  905. dsi_hs_timing(ui_ns, 60, 4)),
  906. DSI_HS_DLT4_TRAIL) |
  907. VC4_SET_FIELD(0, DSI_HS_DLT4_ANLAT));
  908. /* T_INIT is how long STOP is driven after power-up to
  909. * indicate to the slave (also coming out of power-up) that
  910. * master init is complete, and should be greater than the
  911. * maximum of two value: T_INIT,MASTER and T_INIT,SLAVE. The
  912. * D-PHY spec gives a minimum 100us for T_INIT,MASTER and
  913. * T_INIT,SLAVE, while allowing protocols on top of it to give
  914. * greater minimums. The vc4 firmware uses an extremely
  915. * conservative 5ms, and we maintain that here.
  916. */
  917. DSI_PORT_WRITE(HS_DLT5, VC4_SET_FIELD(dsi_hs_timing(ui_ns,
  918. 5 * 1000 * 1000, 0),
  919. DSI_HS_DLT5_INIT));
  920. DSI_PORT_WRITE(HS_DLT6,
  921. VC4_SET_FIELD(lpx * 5, DSI_HS_DLT6_TA_GET) |
  922. VC4_SET_FIELD(lpx, DSI_HS_DLT6_TA_SURE) |
  923. VC4_SET_FIELD(lpx * 4, DSI_HS_DLT6_TA_GO) |
  924. VC4_SET_FIELD(lpx, DSI_HS_DLT6_LP_LPX));
  925. DSI_PORT_WRITE(HS_DLT7,
  926. VC4_SET_FIELD(dsi_esc_timing(1000000),
  927. DSI_HS_DLT7_LP_WUP));
  928. DSI_PORT_WRITE(PHYC,
  929. DSI_PHYC_DLANE0_ENABLE |
  930. (dsi->lanes >= 2 ? DSI_PHYC_DLANE1_ENABLE : 0) |
  931. (dsi->lanes >= 3 ? DSI_PHYC_DLANE2_ENABLE : 0) |
  932. (dsi->lanes >= 4 ? DSI_PHYC_DLANE3_ENABLE : 0) |
  933. DSI_PORT_BIT(PHYC_CLANE_ENABLE) |
  934. ((dsi->mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS) ?
  935. 0 : DSI_PORT_BIT(PHYC_HS_CLK_CONTINUOUS)) |
  936. (dsi->variant->port == 0 ?
  937. VC4_SET_FIELD(lpx - 1, DSI0_PHYC_ESC_CLK_LPDT) :
  938. VC4_SET_FIELD(lpx - 1, DSI1_PHYC_ESC_CLK_LPDT)));
  939. DSI_PORT_WRITE(CTRL,
  940. DSI_PORT_READ(CTRL) |
  941. DSI_CTRL_CAL_BYTE);
  942. /* HS timeout in HS clock cycles: disabled. */
  943. DSI_PORT_WRITE(HSTX_TO_CNT, 0);
  944. /* LP receive timeout in HS clocks. */
  945. DSI_PORT_WRITE(LPRX_TO_CNT, 0xffffff);
  946. /* Bus turnaround timeout */
  947. DSI_PORT_WRITE(TA_TO_CNT, 100000);
  948. /* Display reset sequence timeout */
  949. DSI_PORT_WRITE(PR_TO_CNT, 100000);
  950. /* Set up DISP1 for transferring long command payloads through
  951. * the pixfifo.
  952. */
  953. DSI_PORT_WRITE(DISP1_CTRL,
  954. VC4_SET_FIELD(DSI_DISP1_PFORMAT_32BIT_LE,
  955. DSI_DISP1_PFORMAT) |
  956. DSI_DISP1_ENABLE);
  957. /* Ungate the block. */
  958. if (dsi->variant->port == 0)
  959. DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI0_CTRL_CTRL0);
  960. else
  961. DSI_PORT_WRITE(CTRL, DSI_PORT_READ(CTRL) | DSI1_CTRL_EN);
  962. /* Bring AFE out of reset. */
  963. DSI_PORT_WRITE(PHY_AFEC0,
  964. DSI_PORT_READ(PHY_AFEC0) &
  965. ~DSI_PORT_BIT(PHY_AFEC0_RESET));
  966. vc4_dsi_ulps(dsi, false);
  967. list_for_each_entry_reverse(iter, &dsi->bridge_chain, chain_node) {
  968. if (iter->funcs->pre_enable)
  969. iter->funcs->pre_enable(iter);
  970. }
  971. if (dsi->mode_flags & MIPI_DSI_MODE_VIDEO) {
  972. DSI_PORT_WRITE(DISP0_CTRL,
  973. VC4_SET_FIELD(dsi->divider,
  974. DSI_DISP0_PIX_CLK_DIV) |
  975. VC4_SET_FIELD(dsi->format, DSI_DISP0_PFORMAT) |
  976. VC4_SET_FIELD(DSI_DISP0_LP_STOP_PERFRAME,
  977. DSI_DISP0_LP_STOP_CTRL) |
  978. DSI_DISP0_ST_END |
  979. DSI_DISP0_ENABLE);
  980. } else {
  981. DSI_PORT_WRITE(DISP0_CTRL,
  982. DSI_DISP0_COMMAND_MODE |
  983. DSI_DISP0_ENABLE);
  984. }
  985. list_for_each_entry(iter, &dsi->bridge_chain, chain_node) {
  986. if (iter->funcs->enable)
  987. iter->funcs->enable(iter);
  988. }
  989. if (debug_dump_regs) {
  990. struct drm_printer p = drm_info_printer(&dsi->pdev->dev);
  991. dev_info(&dsi->pdev->dev, "DSI regs after:\n");
  992. drm_print_regset32(&p, &dsi->regset);
  993. }
  994. }
  995. static ssize_t vc4_dsi_host_transfer(struct mipi_dsi_host *host,
  996. const struct mipi_dsi_msg *msg)
  997. {
  998. struct vc4_dsi *dsi = host_to_dsi(host);
  999. struct mipi_dsi_packet packet;
  1000. u32 pkth = 0, pktc = 0;
  1001. int i, ret;
  1002. bool is_long = mipi_dsi_packet_format_is_long(msg->type);
  1003. u32 cmd_fifo_len = 0, pix_fifo_len = 0;
  1004. mipi_dsi_create_packet(&packet, msg);
  1005. pkth |= VC4_SET_FIELD(packet.header[0], DSI_TXPKT1H_BC_DT);
  1006. pkth |= VC4_SET_FIELD(packet.header[1] |
  1007. (packet.header[2] << 8),
  1008. DSI_TXPKT1H_BC_PARAM);
  1009. if (is_long) {
  1010. /* Divide data across the various FIFOs we have available.
  1011. * The command FIFO takes byte-oriented data, but is of
  1012. * limited size. The pixel FIFO (never actually used for
  1013. * pixel data in reality) is word oriented, and substantially
  1014. * larger. So, we use the pixel FIFO for most of the data,
  1015. * sending the residual bytes in the command FIFO at the start.
  1016. *
  1017. * With this arrangement, the command FIFO will never get full.
  1018. */
  1019. if (packet.payload_length <= 16) {
  1020. cmd_fifo_len = packet.payload_length;
  1021. pix_fifo_len = 0;
  1022. } else {
  1023. cmd_fifo_len = (packet.payload_length %
  1024. DSI_PIX_FIFO_WIDTH);
  1025. pix_fifo_len = ((packet.payload_length - cmd_fifo_len) /
  1026. DSI_PIX_FIFO_WIDTH);
  1027. }
  1028. WARN_ON_ONCE(pix_fifo_len >= DSI_PIX_FIFO_DEPTH);
  1029. pkth |= VC4_SET_FIELD(cmd_fifo_len, DSI_TXPKT1H_BC_CMDFIFO);
  1030. }
  1031. if (msg->rx_len) {
  1032. pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_RX,
  1033. DSI_TXPKT1C_CMD_CTRL);
  1034. } else {
  1035. pktc |= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_TX,
  1036. DSI_TXPKT1C_CMD_CTRL);
  1037. }
  1038. for (i = 0; i < cmd_fifo_len; i++)
  1039. DSI_PORT_WRITE(TXPKT_CMD_FIFO, packet.payload[i]);
  1040. for (i = 0; i < pix_fifo_len; i++) {
  1041. const u8 *pix = packet.payload + cmd_fifo_len + i * 4;
  1042. DSI_PORT_WRITE(TXPKT_PIX_FIFO,
  1043. pix[0] |
  1044. pix[1] << 8 |
  1045. pix[2] << 16 |
  1046. pix[3] << 24);
  1047. }
  1048. if (msg->flags & MIPI_DSI_MSG_USE_LPM)
  1049. pktc |= DSI_TXPKT1C_CMD_MODE_LP;
  1050. if (is_long)
  1051. pktc |= DSI_TXPKT1C_CMD_TYPE_LONG;
  1052. /* Send one copy of the packet. Larger repeats are used for pixel
  1053. * data in command mode.
  1054. */
  1055. pktc |= VC4_SET_FIELD(1, DSI_TXPKT1C_CMD_REPEAT);
  1056. pktc |= DSI_TXPKT1C_CMD_EN;
  1057. if (pix_fifo_len) {
  1058. pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SECONDARY,
  1059. DSI_TXPKT1C_DISPLAY_NO);
  1060. } else {
  1061. pktc |= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SHORT,
  1062. DSI_TXPKT1C_DISPLAY_NO);
  1063. }
  1064. /* Enable the appropriate interrupt for the transfer completion. */
  1065. dsi->xfer_result = 0;
  1066. reinit_completion(&dsi->xfer_completion);
  1067. if (dsi->variant->port == 0) {
  1068. DSI_PORT_WRITE(INT_STAT,
  1069. DSI0_INT_CMDC_DONE_MASK | DSI1_INT_PHY_DIR_RTF);
  1070. if (msg->rx_len) {
  1071. DSI_PORT_WRITE(INT_EN, (DSI0_INTERRUPTS_ALWAYS_ENABLED |
  1072. DSI0_INT_PHY_DIR_RTF));
  1073. } else {
  1074. DSI_PORT_WRITE(INT_EN,
  1075. (DSI0_INTERRUPTS_ALWAYS_ENABLED |
  1076. VC4_SET_FIELD(DSI0_INT_CMDC_DONE_NO_REPEAT,
  1077. DSI0_INT_CMDC_DONE)));
  1078. }
  1079. } else {
  1080. DSI_PORT_WRITE(INT_STAT,
  1081. DSI1_INT_TXPKT1_DONE | DSI1_INT_PHY_DIR_RTF);
  1082. if (msg->rx_len) {
  1083. DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
  1084. DSI1_INT_PHY_DIR_RTF));
  1085. } else {
  1086. DSI_PORT_WRITE(INT_EN, (DSI1_INTERRUPTS_ALWAYS_ENABLED |
  1087. DSI1_INT_TXPKT1_DONE));
  1088. }
  1089. }
  1090. /* Send the packet. */
  1091. DSI_PORT_WRITE(TXPKT1H, pkth);
  1092. DSI_PORT_WRITE(TXPKT1C, pktc);
  1093. if (!wait_for_completion_timeout(&dsi->xfer_completion,
  1094. msecs_to_jiffies(1000))) {
  1095. dev_err(&dsi->pdev->dev, "transfer interrupt wait timeout");
  1096. dev_err(&dsi->pdev->dev, "instat: 0x%08x\n",
  1097. DSI_PORT_READ(INT_STAT));
  1098. ret = -ETIMEDOUT;
  1099. } else {
  1100. ret = dsi->xfer_result;
  1101. }
  1102. DSI_PORT_WRITE(INT_EN, DSI_PORT_BIT(INTERRUPTS_ALWAYS_ENABLED));
  1103. if (ret)
  1104. goto reset_fifo_and_return;
  1105. if (ret == 0 && msg->rx_len) {
  1106. u32 rxpkt1h = DSI_PORT_READ(RXPKT1H);
  1107. u8 *msg_rx = msg->rx_buf;
  1108. if (rxpkt1h & DSI_RXPKT1H_PKT_TYPE_LONG) {
  1109. u32 rxlen = VC4_GET_FIELD(rxpkt1h,
  1110. DSI_RXPKT1H_BC_PARAM);
  1111. if (rxlen != msg->rx_len) {
  1112. DRM_ERROR("DSI returned %db, expecting %db\n",
  1113. rxlen, (int)msg->rx_len);
  1114. ret = -ENXIO;
  1115. goto reset_fifo_and_return;
  1116. }
  1117. for (i = 0; i < msg->rx_len; i++)
  1118. msg_rx[i] = DSI_READ(DSI1_RXPKT_FIFO);
  1119. } else {
  1120. /* FINISHME: Handle AWER */
  1121. msg_rx[0] = VC4_GET_FIELD(rxpkt1h,
  1122. DSI_RXPKT1H_SHORT_0);
  1123. if (msg->rx_len > 1) {
  1124. msg_rx[1] = VC4_GET_FIELD(rxpkt1h,
  1125. DSI_RXPKT1H_SHORT_1);
  1126. }
  1127. }
  1128. }
  1129. return ret;
  1130. reset_fifo_and_return:
  1131. DRM_ERROR("DSI transfer failed, resetting: %d\n", ret);
  1132. DSI_PORT_WRITE(TXPKT1C, DSI_PORT_READ(TXPKT1C) & ~DSI_TXPKT1C_CMD_EN);
  1133. udelay(1);
  1134. DSI_PORT_WRITE(CTRL,
  1135. DSI_PORT_READ(CTRL) |
  1136. DSI_PORT_BIT(CTRL_RESET_FIFOS));
  1137. DSI_PORT_WRITE(TXPKT1C, 0);
  1138. DSI_PORT_WRITE(INT_EN, DSI_PORT_BIT(INTERRUPTS_ALWAYS_ENABLED));
  1139. return ret;
  1140. }
  1141. static const struct component_ops vc4_dsi_ops;
  1142. static int vc4_dsi_host_attach(struct mipi_dsi_host *host,
  1143. struct mipi_dsi_device *device)
  1144. {
  1145. struct vc4_dsi *dsi = host_to_dsi(host);
  1146. dsi->lanes = device->lanes;
  1147. dsi->channel = device->channel;
  1148. dsi->mode_flags = device->mode_flags;
  1149. switch (device->format) {
  1150. case MIPI_DSI_FMT_RGB888:
  1151. dsi->format = DSI_PFORMAT_RGB888;
  1152. dsi->divider = 24 / dsi->lanes;
  1153. break;
  1154. case MIPI_DSI_FMT_RGB666:
  1155. dsi->format = DSI_PFORMAT_RGB666;
  1156. dsi->divider = 24 / dsi->lanes;
  1157. break;
  1158. case MIPI_DSI_FMT_RGB666_PACKED:
  1159. dsi->format = DSI_PFORMAT_RGB666_PACKED;
  1160. dsi->divider = 18 / dsi->lanes;
  1161. break;
  1162. case MIPI_DSI_FMT_RGB565:
  1163. dsi->format = DSI_PFORMAT_RGB565;
  1164. dsi->divider = 16 / dsi->lanes;
  1165. break;
  1166. default:
  1167. dev_err(&dsi->pdev->dev, "Unknown DSI format: %d.\n",
  1168. dsi->format);
  1169. return 0;
  1170. }
  1171. if (!(dsi->mode_flags & MIPI_DSI_MODE_VIDEO)) {
  1172. dev_err(&dsi->pdev->dev,
  1173. "Only VIDEO mode panels supported currently.\n");
  1174. return 0;
  1175. }
  1176. return component_add(&dsi->pdev->dev, &vc4_dsi_ops);
  1177. }
  1178. static int vc4_dsi_host_detach(struct mipi_dsi_host *host,
  1179. struct mipi_dsi_device *device)
  1180. {
  1181. struct vc4_dsi *dsi = host_to_dsi(host);
  1182. component_del(&dsi->pdev->dev, &vc4_dsi_ops);
  1183. return 0;
  1184. }
  1185. static const struct mipi_dsi_host_ops vc4_dsi_host_ops = {
  1186. .attach = vc4_dsi_host_attach,
  1187. .detach = vc4_dsi_host_detach,
  1188. .transfer = vc4_dsi_host_transfer,
  1189. };
  1190. static const struct drm_encoder_helper_funcs vc4_dsi_encoder_helper_funcs = {
  1191. .disable = vc4_dsi_encoder_disable,
  1192. .enable = vc4_dsi_encoder_enable,
  1193. .mode_fixup = vc4_dsi_encoder_mode_fixup,
  1194. };
  1195. static int vc4_dsi_late_register(struct drm_encoder *encoder)
  1196. {
  1197. struct drm_device *drm = encoder->dev;
  1198. struct vc4_dsi *dsi = to_vc4_dsi(encoder);
  1199. int ret;
  1200. ret = vc4_debugfs_add_regset32(drm->primary, dsi->variant->debugfs_name,
  1201. &dsi->regset);
  1202. if (ret)
  1203. return ret;
  1204. return 0;
  1205. }
  1206. static const struct drm_encoder_funcs vc4_dsi_encoder_funcs = {
  1207. .late_register = vc4_dsi_late_register,
  1208. };
  1209. static const struct vc4_dsi_variant bcm2711_dsi1_variant = {
  1210. .port = 1,
  1211. .debugfs_name = "dsi1_regs",
  1212. .regs = dsi1_regs,
  1213. .nregs = ARRAY_SIZE(dsi1_regs),
  1214. };
  1215. static const struct vc4_dsi_variant bcm2835_dsi0_variant = {
  1216. .port = 0,
  1217. .debugfs_name = "dsi0_regs",
  1218. .regs = dsi0_regs,
  1219. .nregs = ARRAY_SIZE(dsi0_regs),
  1220. };
  1221. static const struct vc4_dsi_variant bcm2835_dsi1_variant = {
  1222. .port = 1,
  1223. .broken_axi_workaround = true,
  1224. .debugfs_name = "dsi1_regs",
  1225. .regs = dsi1_regs,
  1226. .nregs = ARRAY_SIZE(dsi1_regs),
  1227. };
  1228. static const struct of_device_id vc4_dsi_dt_match[] = {
  1229. { .compatible = "brcm,bcm2711-dsi1", &bcm2711_dsi1_variant },
  1230. { .compatible = "brcm,bcm2835-dsi0", &bcm2835_dsi0_variant },
  1231. { .compatible = "brcm,bcm2835-dsi1", &bcm2835_dsi1_variant },
  1232. {}
  1233. };
  1234. static void dsi_handle_error(struct vc4_dsi *dsi,
  1235. irqreturn_t *ret, u32 stat, u32 bit,
  1236. const char *type)
  1237. {
  1238. if (!(stat & bit))
  1239. return;
  1240. DRM_ERROR("DSI%d: %s error\n", dsi->variant->port, type);
  1241. *ret = IRQ_HANDLED;
  1242. }
  1243. /*
  1244. * Initial handler for port 1 where we need the reg_dma workaround.
  1245. * The register DMA writes sleep, so we can't do it in the top half.
  1246. * Instead we use IRQF_ONESHOT so that the IRQ gets disabled in the
  1247. * parent interrupt contrller until our interrupt thread is done.
  1248. */
  1249. static irqreturn_t vc4_dsi_irq_defer_to_thread_handler(int irq, void *data)
  1250. {
  1251. struct vc4_dsi *dsi = data;
  1252. u32 stat = DSI_PORT_READ(INT_STAT);
  1253. if (!stat)
  1254. return IRQ_NONE;
  1255. return IRQ_WAKE_THREAD;
  1256. }
  1257. /*
  1258. * Normal IRQ handler for port 0, or the threaded IRQ handler for port
  1259. * 1 where we need the reg_dma workaround.
  1260. */
  1261. static irqreturn_t vc4_dsi_irq_handler(int irq, void *data)
  1262. {
  1263. struct vc4_dsi *dsi = data;
  1264. u32 stat = DSI_PORT_READ(INT_STAT);
  1265. irqreturn_t ret = IRQ_NONE;
  1266. DSI_PORT_WRITE(INT_STAT, stat);
  1267. dsi_handle_error(dsi, &ret, stat,
  1268. DSI_PORT_BIT(INT_ERR_SYNC_ESC), "LPDT sync");
  1269. dsi_handle_error(dsi, &ret, stat,
  1270. DSI_PORT_BIT(INT_ERR_CONTROL), "data lane 0 sequence");
  1271. dsi_handle_error(dsi, &ret, stat,
  1272. DSI_PORT_BIT(INT_ERR_CONT_LP0), "LP0 contention");
  1273. dsi_handle_error(dsi, &ret, stat,
  1274. DSI_PORT_BIT(INT_ERR_CONT_LP1), "LP1 contention");
  1275. dsi_handle_error(dsi, &ret, stat,
  1276. DSI_PORT_BIT(INT_HSTX_TO), "HSTX timeout");
  1277. dsi_handle_error(dsi, &ret, stat,
  1278. DSI_PORT_BIT(INT_LPRX_TO), "LPRX timeout");
  1279. dsi_handle_error(dsi, &ret, stat,
  1280. DSI_PORT_BIT(INT_TA_TO), "turnaround timeout");
  1281. dsi_handle_error(dsi, &ret, stat,
  1282. DSI_PORT_BIT(INT_PR_TO), "peripheral reset timeout");
  1283. if (stat & ((dsi->variant->port ? DSI1_INT_TXPKT1_DONE :
  1284. DSI0_INT_CMDC_DONE_MASK) |
  1285. DSI_PORT_BIT(INT_PHY_DIR_RTF))) {
  1286. complete(&dsi->xfer_completion);
  1287. ret = IRQ_HANDLED;
  1288. } else if (stat & DSI_PORT_BIT(INT_HSTX_TO)) {
  1289. complete(&dsi->xfer_completion);
  1290. dsi->xfer_result = -ETIMEDOUT;
  1291. ret = IRQ_HANDLED;
  1292. }
  1293. return ret;
  1294. }
  1295. /**
  1296. * vc4_dsi_init_phy_clocks - Exposes clocks generated by the analog
  1297. * PHY that are consumed by CPRMAN (clk-bcm2835.c).
  1298. * @dsi: DSI encoder
  1299. */
  1300. static int
  1301. vc4_dsi_init_phy_clocks(struct vc4_dsi *dsi)
  1302. {
  1303. struct device *dev = &dsi->pdev->dev;
  1304. const char *parent_name = __clk_get_name(dsi->pll_phy_clock);
  1305. static const struct {
  1306. const char *name;
  1307. int div;
  1308. } phy_clocks[] = {
  1309. { "byte", 8 },
  1310. { "ddr2", 4 },
  1311. { "ddr", 2 },
  1312. };
  1313. int i;
  1314. dsi->clk_onecell = devm_kzalloc(dev,
  1315. sizeof(*dsi->clk_onecell) +
  1316. ARRAY_SIZE(phy_clocks) *
  1317. sizeof(struct clk_hw *),
  1318. GFP_KERNEL);
  1319. if (!dsi->clk_onecell)
  1320. return -ENOMEM;
  1321. dsi->clk_onecell->num = ARRAY_SIZE(phy_clocks);
  1322. for (i = 0; i < ARRAY_SIZE(phy_clocks); i++) {
  1323. struct clk_fixed_factor *fix = &dsi->phy_clocks[i];
  1324. struct clk_init_data init;
  1325. char clk_name[16];
  1326. int ret;
  1327. snprintf(clk_name, sizeof(clk_name),
  1328. "dsi%u_%s", dsi->variant->port, phy_clocks[i].name);
  1329. /* We just use core fixed factor clock ops for the PHY
  1330. * clocks. The clocks are actually gated by the
  1331. * PHY_AFEC0_DDRCLK_EN bits, which we should be
  1332. * setting if we use the DDR/DDR2 clocks. However,
  1333. * vc4_dsi_encoder_enable() is setting up both AFEC0,
  1334. * setting both our parent DSI PLL's rate and this
  1335. * clock's rate, so it knows if DDR/DDR2 are going to
  1336. * be used and could enable the gates itself.
  1337. */
  1338. fix->mult = 1;
  1339. fix->div = phy_clocks[i].div;
  1340. fix->hw.init = &init;
  1341. memset(&init, 0, sizeof(init));
  1342. init.parent_names = &parent_name;
  1343. init.num_parents = 1;
  1344. init.name = clk_name;
  1345. init.ops = &clk_fixed_factor_ops;
  1346. ret = devm_clk_hw_register(dev, &fix->hw);
  1347. if (ret)
  1348. return ret;
  1349. dsi->clk_onecell->hws[i] = &fix->hw;
  1350. }
  1351. return of_clk_add_hw_provider(dev->of_node,
  1352. of_clk_hw_onecell_get,
  1353. dsi->clk_onecell);
  1354. }
  1355. static void vc4_dsi_dma_mem_release(void *ptr)
  1356. {
  1357. struct vc4_dsi *dsi = ptr;
  1358. struct device *dev = &dsi->pdev->dev;
  1359. dma_free_coherent(dev, 4, dsi->reg_dma_mem, dsi->reg_dma_paddr);
  1360. dsi->reg_dma_mem = NULL;
  1361. }
  1362. static void vc4_dsi_dma_chan_release(void *ptr)
  1363. {
  1364. struct vc4_dsi *dsi = ptr;
  1365. dma_release_channel(dsi->reg_dma_chan);
  1366. dsi->reg_dma_chan = NULL;
  1367. }
  1368. static void vc4_dsi_release(struct kref *kref)
  1369. {
  1370. struct vc4_dsi *dsi =
  1371. container_of(kref, struct vc4_dsi, kref);
  1372. kfree(dsi);
  1373. }
  1374. static void vc4_dsi_get(struct vc4_dsi *dsi)
  1375. {
  1376. kref_get(&dsi->kref);
  1377. }
  1378. static void vc4_dsi_put(struct vc4_dsi *dsi)
  1379. {
  1380. kref_put(&dsi->kref, &vc4_dsi_release);
  1381. }
  1382. static void vc4_dsi_release_action(struct drm_device *drm, void *ptr)
  1383. {
  1384. struct vc4_dsi *dsi = ptr;
  1385. vc4_dsi_put(dsi);
  1386. }
  1387. static int vc4_dsi_bind(struct device *dev, struct device *master, void *data)
  1388. {
  1389. struct platform_device *pdev = to_platform_device(dev);
  1390. struct drm_device *drm = dev_get_drvdata(master);
  1391. struct vc4_dsi *dsi = dev_get_drvdata(dev);
  1392. struct drm_encoder *encoder = &dsi->encoder.base;
  1393. int ret;
  1394. vc4_dsi_get(dsi);
  1395. ret = drmm_add_action_or_reset(drm, vc4_dsi_release_action, dsi);
  1396. if (ret)
  1397. return ret;
  1398. dsi->variant = of_device_get_match_data(dev);
  1399. INIT_LIST_HEAD(&dsi->bridge_chain);
  1400. dsi->encoder.type = dsi->variant->port ?
  1401. VC4_ENCODER_TYPE_DSI1 : VC4_ENCODER_TYPE_DSI0;
  1402. dsi->regs = vc4_ioremap_regs(pdev, 0);
  1403. if (IS_ERR(dsi->regs))
  1404. return PTR_ERR(dsi->regs);
  1405. dsi->regset.base = dsi->regs;
  1406. dsi->regset.regs = dsi->variant->regs;
  1407. dsi->regset.nregs = dsi->variant->nregs;
  1408. if (DSI_PORT_READ(ID) != DSI_ID_VALUE) {
  1409. dev_err(dev, "Port returned 0x%08x for ID instead of 0x%08x\n",
  1410. DSI_PORT_READ(ID), DSI_ID_VALUE);
  1411. return -ENODEV;
  1412. }
  1413. /* DSI1 on BCM2835/6/7 has a broken AXI slave that doesn't respond to
  1414. * writes from the ARM. It does handle writes from the DMA engine,
  1415. * so set up a channel for talking to it.
  1416. */
  1417. if (dsi->variant->broken_axi_workaround) {
  1418. dma_cap_mask_t dma_mask;
  1419. dsi->reg_dma_mem = dma_alloc_coherent(dev, 4,
  1420. &dsi->reg_dma_paddr,
  1421. GFP_KERNEL);
  1422. if (!dsi->reg_dma_mem) {
  1423. DRM_ERROR("Failed to get DMA memory\n");
  1424. return -ENOMEM;
  1425. }
  1426. ret = devm_add_action_or_reset(dev, vc4_dsi_dma_mem_release, dsi);
  1427. if (ret)
  1428. return ret;
  1429. dma_cap_zero(dma_mask);
  1430. dma_cap_set(DMA_MEMCPY, dma_mask);
  1431. dsi->reg_dma_chan = dma_request_chan_by_mask(&dma_mask);
  1432. if (IS_ERR(dsi->reg_dma_chan)) {
  1433. ret = PTR_ERR(dsi->reg_dma_chan);
  1434. if (ret != -EPROBE_DEFER)
  1435. DRM_ERROR("Failed to get DMA channel: %d\n",
  1436. ret);
  1437. return ret;
  1438. }
  1439. ret = devm_add_action_or_reset(dev, vc4_dsi_dma_chan_release, dsi);
  1440. if (ret)
  1441. return ret;
  1442. /* Get the physical address of the device's registers. The
  1443. * struct resource for the regs gives us the bus address
  1444. * instead.
  1445. */
  1446. dsi->reg_paddr = be32_to_cpup(of_get_address(dev->of_node,
  1447. 0, NULL, NULL));
  1448. }
  1449. init_completion(&dsi->xfer_completion);
  1450. /* At startup enable error-reporting interrupts and nothing else. */
  1451. DSI_PORT_WRITE(INT_EN, DSI1_INTERRUPTS_ALWAYS_ENABLED);
  1452. /* Clear any existing interrupt state. */
  1453. DSI_PORT_WRITE(INT_STAT, DSI_PORT_READ(INT_STAT));
  1454. if (dsi->reg_dma_mem)
  1455. ret = devm_request_threaded_irq(dev, platform_get_irq(pdev, 0),
  1456. vc4_dsi_irq_defer_to_thread_handler,
  1457. vc4_dsi_irq_handler,
  1458. IRQF_ONESHOT,
  1459. "vc4 dsi", dsi);
  1460. else
  1461. ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
  1462. vc4_dsi_irq_handler, 0, "vc4 dsi", dsi);
  1463. if (ret) {
  1464. if (ret != -EPROBE_DEFER)
  1465. dev_err(dev, "Failed to get interrupt: %d\n", ret);
  1466. return ret;
  1467. }
  1468. dsi->escape_clock = devm_clk_get(dev, "escape");
  1469. if (IS_ERR(dsi->escape_clock)) {
  1470. ret = PTR_ERR(dsi->escape_clock);
  1471. if (ret != -EPROBE_DEFER)
  1472. dev_err(dev, "Failed to get escape clock: %d\n", ret);
  1473. return ret;
  1474. }
  1475. dsi->pll_phy_clock = devm_clk_get(dev, "phy");
  1476. if (IS_ERR(dsi->pll_phy_clock)) {
  1477. ret = PTR_ERR(dsi->pll_phy_clock);
  1478. if (ret != -EPROBE_DEFER)
  1479. dev_err(dev, "Failed to get phy clock: %d\n", ret);
  1480. return ret;
  1481. }
  1482. dsi->pixel_clock = devm_clk_get(dev, "pixel");
  1483. if (IS_ERR(dsi->pixel_clock)) {
  1484. ret = PTR_ERR(dsi->pixel_clock);
  1485. if (ret != -EPROBE_DEFER)
  1486. dev_err(dev, "Failed to get pixel clock: %d\n", ret);
  1487. return ret;
  1488. }
  1489. dsi->bridge = drmm_of_get_bridge(drm, dev->of_node, 0, 0);
  1490. if (IS_ERR(dsi->bridge))
  1491. return PTR_ERR(dsi->bridge);
  1492. /* The esc clock rate is supposed to always be 100Mhz. */
  1493. ret = clk_set_rate(dsi->escape_clock, 100 * 1000000);
  1494. if (ret) {
  1495. dev_err(dev, "Failed to set esc clock: %d\n", ret);
  1496. return ret;
  1497. }
  1498. ret = vc4_dsi_init_phy_clocks(dsi);
  1499. if (ret)
  1500. return ret;
  1501. ret = drmm_encoder_init(drm, encoder,
  1502. &vc4_dsi_encoder_funcs,
  1503. DRM_MODE_ENCODER_DSI,
  1504. NULL);
  1505. if (ret)
  1506. return ret;
  1507. drm_encoder_helper_add(encoder, &vc4_dsi_encoder_helper_funcs);
  1508. ret = devm_pm_runtime_enable(dev);
  1509. if (ret)
  1510. return ret;
  1511. ret = drm_bridge_attach(encoder, dsi->bridge, NULL, 0);
  1512. if (ret)
  1513. return ret;
  1514. /* Disable the atomic helper calls into the bridge. We
  1515. * manually call the bridge pre_enable / enable / etc. calls
  1516. * from our driver, since we need to sequence them within the
  1517. * encoder's enable/disable paths.
  1518. */
  1519. list_splice_init(&encoder->bridge_chain, &dsi->bridge_chain);
  1520. return 0;
  1521. }
  1522. static void vc4_dsi_unbind(struct device *dev, struct device *master,
  1523. void *data)
  1524. {
  1525. struct vc4_dsi *dsi = dev_get_drvdata(dev);
  1526. struct drm_encoder *encoder = &dsi->encoder.base;
  1527. /*
  1528. * Restore the bridge_chain so the bridge detach procedure can happen
  1529. * normally.
  1530. */
  1531. list_splice_init(&dsi->bridge_chain, &encoder->bridge_chain);
  1532. }
  1533. static const struct component_ops vc4_dsi_ops = {
  1534. .bind = vc4_dsi_bind,
  1535. .unbind = vc4_dsi_unbind,
  1536. };
  1537. static int vc4_dsi_dev_probe(struct platform_device *pdev)
  1538. {
  1539. struct device *dev = &pdev->dev;
  1540. struct vc4_dsi *dsi;
  1541. dsi = kzalloc(sizeof(*dsi), GFP_KERNEL);
  1542. if (!dsi)
  1543. return -ENOMEM;
  1544. dev_set_drvdata(dev, dsi);
  1545. kref_init(&dsi->kref);
  1546. dsi->pdev = pdev;
  1547. dsi->dsi_host.ops = &vc4_dsi_host_ops;
  1548. dsi->dsi_host.dev = dev;
  1549. mipi_dsi_host_register(&dsi->dsi_host);
  1550. return 0;
  1551. }
  1552. static int vc4_dsi_dev_remove(struct platform_device *pdev)
  1553. {
  1554. struct device *dev = &pdev->dev;
  1555. struct vc4_dsi *dsi = dev_get_drvdata(dev);
  1556. mipi_dsi_host_unregister(&dsi->dsi_host);
  1557. vc4_dsi_put(dsi);
  1558. return 0;
  1559. }
  1560. struct platform_driver vc4_dsi_driver = {
  1561. .probe = vc4_dsi_dev_probe,
  1562. .remove = vc4_dsi_dev_remove,
  1563. .driver = {
  1564. .name = "vc4_dsi",
  1565. .of_match_table = vc4_dsi_dt_match,
  1566. },
  1567. };