kv_dpm.c 73 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697
  1. /*
  2. * Copyright 2013 Advanced Micro Devices, Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. *
  22. */
  23. #include <linux/pci.h>
  24. #include <linux/seq_file.h>
  25. #include "cikd.h"
  26. #include "kv_dpm.h"
  27. #include "r600_dpm.h"
  28. #include "radeon.h"
  29. #include "radeon_asic.h"
  30. #define KV_MAX_DEEPSLEEP_DIVIDER_ID 5
  31. #define KV_MINIMUM_ENGINE_CLOCK 800
  32. #define SMC_RAM_END 0x40000
  33. static int kv_enable_nb_dpm(struct radeon_device *rdev,
  34. bool enable);
  35. static void kv_init_graphics_levels(struct radeon_device *rdev);
  36. static int kv_calculate_ds_divider(struct radeon_device *rdev);
  37. static int kv_calculate_nbps_level_settings(struct radeon_device *rdev);
  38. static int kv_calculate_dpm_settings(struct radeon_device *rdev);
  39. static void kv_enable_new_levels(struct radeon_device *rdev);
  40. static void kv_program_nbps_index_settings(struct radeon_device *rdev,
  41. struct radeon_ps *new_rps);
  42. static int kv_set_enabled_level(struct radeon_device *rdev, u32 level);
  43. static int kv_set_enabled_levels(struct radeon_device *rdev);
  44. static int kv_force_dpm_highest(struct radeon_device *rdev);
  45. static int kv_force_dpm_lowest(struct radeon_device *rdev);
  46. static void kv_apply_state_adjust_rules(struct radeon_device *rdev,
  47. struct radeon_ps *new_rps,
  48. struct radeon_ps *old_rps);
  49. static int kv_set_thermal_temperature_range(struct radeon_device *rdev,
  50. int min_temp, int max_temp);
  51. static int kv_init_fps_limits(struct radeon_device *rdev);
  52. void kv_dpm_powergate_uvd(struct radeon_device *rdev, bool gate);
  53. static void kv_dpm_powergate_vce(struct radeon_device *rdev, bool gate);
  54. static void kv_dpm_powergate_samu(struct radeon_device *rdev, bool gate);
  55. static void kv_dpm_powergate_acp(struct radeon_device *rdev, bool gate);
  56. extern void cik_enter_rlc_safe_mode(struct radeon_device *rdev);
  57. extern void cik_exit_rlc_safe_mode(struct radeon_device *rdev);
  58. extern void cik_update_cg(struct radeon_device *rdev,
  59. u32 block, bool enable);
  60. static const struct kv_pt_config_reg didt_config_kv[] =
  61. {
  62. { 0x10, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  63. { 0x10, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  64. { 0x10, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  65. { 0x10, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  66. { 0x11, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  67. { 0x11, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  68. { 0x11, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  69. { 0x11, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  70. { 0x12, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  71. { 0x12, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  72. { 0x12, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  73. { 0x12, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  74. { 0x2, 0x00003fff, 0, 0x4, KV_CONFIGREG_DIDT_IND },
  75. { 0x2, 0x03ff0000, 16, 0x80, KV_CONFIGREG_DIDT_IND },
  76. { 0x2, 0x78000000, 27, 0x3, KV_CONFIGREG_DIDT_IND },
  77. { 0x1, 0x0000ffff, 0, 0x3FFF, KV_CONFIGREG_DIDT_IND },
  78. { 0x1, 0xffff0000, 16, 0x3FFF, KV_CONFIGREG_DIDT_IND },
  79. { 0x0, 0x00000001, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  80. { 0x30, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  81. { 0x30, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  82. { 0x30, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  83. { 0x30, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  84. { 0x31, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  85. { 0x31, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  86. { 0x31, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  87. { 0x31, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  88. { 0x32, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  89. { 0x32, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  90. { 0x32, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  91. { 0x32, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  92. { 0x22, 0x00003fff, 0, 0x4, KV_CONFIGREG_DIDT_IND },
  93. { 0x22, 0x03ff0000, 16, 0x80, KV_CONFIGREG_DIDT_IND },
  94. { 0x22, 0x78000000, 27, 0x3, KV_CONFIGREG_DIDT_IND },
  95. { 0x21, 0x0000ffff, 0, 0x3FFF, KV_CONFIGREG_DIDT_IND },
  96. { 0x21, 0xffff0000, 16, 0x3FFF, KV_CONFIGREG_DIDT_IND },
  97. { 0x20, 0x00000001, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  98. { 0x50, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  99. { 0x50, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  100. { 0x50, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  101. { 0x50, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  102. { 0x51, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  103. { 0x51, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  104. { 0x51, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  105. { 0x51, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  106. { 0x52, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  107. { 0x52, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  108. { 0x52, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  109. { 0x52, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  110. { 0x42, 0x00003fff, 0, 0x4, KV_CONFIGREG_DIDT_IND },
  111. { 0x42, 0x03ff0000, 16, 0x80, KV_CONFIGREG_DIDT_IND },
  112. { 0x42, 0x78000000, 27, 0x3, KV_CONFIGREG_DIDT_IND },
  113. { 0x41, 0x0000ffff, 0, 0x3FFF, KV_CONFIGREG_DIDT_IND },
  114. { 0x41, 0xffff0000, 16, 0x3FFF, KV_CONFIGREG_DIDT_IND },
  115. { 0x40, 0x00000001, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  116. { 0x70, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  117. { 0x70, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  118. { 0x70, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  119. { 0x70, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  120. { 0x71, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  121. { 0x71, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  122. { 0x71, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  123. { 0x71, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  124. { 0x72, 0x000000ff, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  125. { 0x72, 0x0000ff00, 8, 0x0, KV_CONFIGREG_DIDT_IND },
  126. { 0x72, 0x00ff0000, 16, 0x0, KV_CONFIGREG_DIDT_IND },
  127. { 0x72, 0xff000000, 24, 0x0, KV_CONFIGREG_DIDT_IND },
  128. { 0x62, 0x00003fff, 0, 0x4, KV_CONFIGREG_DIDT_IND },
  129. { 0x62, 0x03ff0000, 16, 0x80, KV_CONFIGREG_DIDT_IND },
  130. { 0x62, 0x78000000, 27, 0x3, KV_CONFIGREG_DIDT_IND },
  131. { 0x61, 0x0000ffff, 0, 0x3FFF, KV_CONFIGREG_DIDT_IND },
  132. { 0x61, 0xffff0000, 16, 0x3FFF, KV_CONFIGREG_DIDT_IND },
  133. { 0x60, 0x00000001, 0, 0x0, KV_CONFIGREG_DIDT_IND },
  134. { 0xFFFFFFFF }
  135. };
  136. static struct kv_ps *kv_get_ps(struct radeon_ps *rps)
  137. {
  138. struct kv_ps *ps = rps->ps_priv;
  139. return ps;
  140. }
  141. static struct kv_power_info *kv_get_pi(struct radeon_device *rdev)
  142. {
  143. struct kv_power_info *pi = rdev->pm.dpm.priv;
  144. return pi;
  145. }
  146. static int kv_program_pt_config_registers(struct radeon_device *rdev,
  147. const struct kv_pt_config_reg *cac_config_regs)
  148. {
  149. const struct kv_pt_config_reg *config_regs = cac_config_regs;
  150. u32 data;
  151. u32 cache = 0;
  152. if (config_regs == NULL)
  153. return -EINVAL;
  154. while (config_regs->offset != 0xFFFFFFFF) {
  155. if (config_regs->type == KV_CONFIGREG_CACHE) {
  156. cache |= ((config_regs->value << config_regs->shift) & config_regs->mask);
  157. } else {
  158. switch (config_regs->type) {
  159. case KV_CONFIGREG_SMC_IND:
  160. data = RREG32_SMC(config_regs->offset);
  161. break;
  162. case KV_CONFIGREG_DIDT_IND:
  163. data = RREG32_DIDT(config_regs->offset);
  164. break;
  165. default:
  166. data = RREG32(config_regs->offset << 2);
  167. break;
  168. }
  169. data &= ~config_regs->mask;
  170. data |= ((config_regs->value << config_regs->shift) & config_regs->mask);
  171. data |= cache;
  172. cache = 0;
  173. switch (config_regs->type) {
  174. case KV_CONFIGREG_SMC_IND:
  175. WREG32_SMC(config_regs->offset, data);
  176. break;
  177. case KV_CONFIGREG_DIDT_IND:
  178. WREG32_DIDT(config_regs->offset, data);
  179. break;
  180. default:
  181. WREG32(config_regs->offset << 2, data);
  182. break;
  183. }
  184. }
  185. config_regs++;
  186. }
  187. return 0;
  188. }
  189. static void kv_do_enable_didt(struct radeon_device *rdev, bool enable)
  190. {
  191. struct kv_power_info *pi = kv_get_pi(rdev);
  192. u32 data;
  193. if (pi->caps_sq_ramping) {
  194. data = RREG32_DIDT(DIDT_SQ_CTRL0);
  195. if (enable)
  196. data |= DIDT_CTRL_EN;
  197. else
  198. data &= ~DIDT_CTRL_EN;
  199. WREG32_DIDT(DIDT_SQ_CTRL0, data);
  200. }
  201. if (pi->caps_db_ramping) {
  202. data = RREG32_DIDT(DIDT_DB_CTRL0);
  203. if (enable)
  204. data |= DIDT_CTRL_EN;
  205. else
  206. data &= ~DIDT_CTRL_EN;
  207. WREG32_DIDT(DIDT_DB_CTRL0, data);
  208. }
  209. if (pi->caps_td_ramping) {
  210. data = RREG32_DIDT(DIDT_TD_CTRL0);
  211. if (enable)
  212. data |= DIDT_CTRL_EN;
  213. else
  214. data &= ~DIDT_CTRL_EN;
  215. WREG32_DIDT(DIDT_TD_CTRL0, data);
  216. }
  217. if (pi->caps_tcp_ramping) {
  218. data = RREG32_DIDT(DIDT_TCP_CTRL0);
  219. if (enable)
  220. data |= DIDT_CTRL_EN;
  221. else
  222. data &= ~DIDT_CTRL_EN;
  223. WREG32_DIDT(DIDT_TCP_CTRL0, data);
  224. }
  225. }
  226. static int kv_enable_didt(struct radeon_device *rdev, bool enable)
  227. {
  228. struct kv_power_info *pi = kv_get_pi(rdev);
  229. int ret;
  230. if (pi->caps_sq_ramping ||
  231. pi->caps_db_ramping ||
  232. pi->caps_td_ramping ||
  233. pi->caps_tcp_ramping) {
  234. cik_enter_rlc_safe_mode(rdev);
  235. if (enable) {
  236. ret = kv_program_pt_config_registers(rdev, didt_config_kv);
  237. if (ret) {
  238. cik_exit_rlc_safe_mode(rdev);
  239. return ret;
  240. }
  241. }
  242. kv_do_enable_didt(rdev, enable);
  243. cik_exit_rlc_safe_mode(rdev);
  244. }
  245. return 0;
  246. }
  247. static int kv_enable_smc_cac(struct radeon_device *rdev, bool enable)
  248. {
  249. struct kv_power_info *pi = kv_get_pi(rdev);
  250. int ret = 0;
  251. if (pi->caps_cac) {
  252. if (enable) {
  253. ret = kv_notify_message_to_smu(rdev, PPSMC_MSG_EnableCac);
  254. if (ret)
  255. pi->cac_enabled = false;
  256. else
  257. pi->cac_enabled = true;
  258. } else if (pi->cac_enabled) {
  259. kv_notify_message_to_smu(rdev, PPSMC_MSG_DisableCac);
  260. pi->cac_enabled = false;
  261. }
  262. }
  263. return ret;
  264. }
  265. static int kv_process_firmware_header(struct radeon_device *rdev)
  266. {
  267. struct kv_power_info *pi = kv_get_pi(rdev);
  268. u32 tmp;
  269. int ret;
  270. ret = kv_read_smc_sram_dword(rdev, SMU7_FIRMWARE_HEADER_LOCATION +
  271. offsetof(SMU7_Firmware_Header, DpmTable),
  272. &tmp, pi->sram_end);
  273. if (ret == 0)
  274. pi->dpm_table_start = tmp;
  275. ret = kv_read_smc_sram_dword(rdev, SMU7_FIRMWARE_HEADER_LOCATION +
  276. offsetof(SMU7_Firmware_Header, SoftRegisters),
  277. &tmp, pi->sram_end);
  278. if (ret == 0)
  279. pi->soft_regs_start = tmp;
  280. return ret;
  281. }
  282. static int kv_enable_dpm_voltage_scaling(struct radeon_device *rdev)
  283. {
  284. struct kv_power_info *pi = kv_get_pi(rdev);
  285. int ret;
  286. pi->graphics_voltage_change_enable = 1;
  287. ret = kv_copy_bytes_to_smc(rdev,
  288. pi->dpm_table_start +
  289. offsetof(SMU7_Fusion_DpmTable, GraphicsVoltageChangeEnable),
  290. &pi->graphics_voltage_change_enable,
  291. sizeof(u8), pi->sram_end);
  292. return ret;
  293. }
  294. static int kv_set_dpm_interval(struct radeon_device *rdev)
  295. {
  296. struct kv_power_info *pi = kv_get_pi(rdev);
  297. int ret;
  298. pi->graphics_interval = 1;
  299. ret = kv_copy_bytes_to_smc(rdev,
  300. pi->dpm_table_start +
  301. offsetof(SMU7_Fusion_DpmTable, GraphicsInterval),
  302. &pi->graphics_interval,
  303. sizeof(u8), pi->sram_end);
  304. return ret;
  305. }
  306. static int kv_set_dpm_boot_state(struct radeon_device *rdev)
  307. {
  308. struct kv_power_info *pi = kv_get_pi(rdev);
  309. int ret;
  310. ret = kv_copy_bytes_to_smc(rdev,
  311. pi->dpm_table_start +
  312. offsetof(SMU7_Fusion_DpmTable, GraphicsBootLevel),
  313. &pi->graphics_boot_level,
  314. sizeof(u8), pi->sram_end);
  315. return ret;
  316. }
  317. static void kv_program_vc(struct radeon_device *rdev)
  318. {
  319. WREG32_SMC(CG_FTV_0, 0x3FFFC100);
  320. }
  321. static void kv_clear_vc(struct radeon_device *rdev)
  322. {
  323. WREG32_SMC(CG_FTV_0, 0);
  324. }
  325. static int kv_set_divider_value(struct radeon_device *rdev,
  326. u32 index, u32 sclk)
  327. {
  328. struct kv_power_info *pi = kv_get_pi(rdev);
  329. struct atom_clock_dividers dividers;
  330. int ret;
  331. ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM,
  332. sclk, false, &dividers);
  333. if (ret)
  334. return ret;
  335. pi->graphics_level[index].SclkDid = (u8)dividers.post_div;
  336. pi->graphics_level[index].SclkFrequency = cpu_to_be32(sclk);
  337. return 0;
  338. }
  339. static u32 kv_convert_vid2_to_vid7(struct radeon_device *rdev,
  340. struct sumo_vid_mapping_table *vid_mapping_table,
  341. u32 vid_2bit)
  342. {
  343. struct radeon_clock_voltage_dependency_table *vddc_sclk_table =
  344. &rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
  345. u32 i;
  346. if (vddc_sclk_table && vddc_sclk_table->count) {
  347. if (vid_2bit < vddc_sclk_table->count)
  348. return vddc_sclk_table->entries[vid_2bit].v;
  349. else
  350. return vddc_sclk_table->entries[vddc_sclk_table->count - 1].v;
  351. } else {
  352. for (i = 0; i < vid_mapping_table->num_entries; i++) {
  353. if (vid_mapping_table->entries[i].vid_2bit == vid_2bit)
  354. return vid_mapping_table->entries[i].vid_7bit;
  355. }
  356. return vid_mapping_table->entries[vid_mapping_table->num_entries - 1].vid_7bit;
  357. }
  358. }
  359. static u32 kv_convert_vid7_to_vid2(struct radeon_device *rdev,
  360. struct sumo_vid_mapping_table *vid_mapping_table,
  361. u32 vid_7bit)
  362. {
  363. struct radeon_clock_voltage_dependency_table *vddc_sclk_table =
  364. &rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
  365. u32 i;
  366. if (vddc_sclk_table && vddc_sclk_table->count) {
  367. for (i = 0; i < vddc_sclk_table->count; i++) {
  368. if (vddc_sclk_table->entries[i].v == vid_7bit)
  369. return i;
  370. }
  371. return vddc_sclk_table->count - 1;
  372. } else {
  373. for (i = 0; i < vid_mapping_table->num_entries; i++) {
  374. if (vid_mapping_table->entries[i].vid_7bit == vid_7bit)
  375. return vid_mapping_table->entries[i].vid_2bit;
  376. }
  377. return vid_mapping_table->entries[vid_mapping_table->num_entries - 1].vid_2bit;
  378. }
  379. }
  380. static u16 kv_convert_8bit_index_to_voltage(struct radeon_device *rdev,
  381. u16 voltage)
  382. {
  383. return 6200 - (voltage * 25);
  384. }
  385. static u16 kv_convert_2bit_index_to_voltage(struct radeon_device *rdev,
  386. u32 vid_2bit)
  387. {
  388. struct kv_power_info *pi = kv_get_pi(rdev);
  389. u32 vid_8bit = kv_convert_vid2_to_vid7(rdev,
  390. &pi->sys_info.vid_mapping_table,
  391. vid_2bit);
  392. return kv_convert_8bit_index_to_voltage(rdev, (u16)vid_8bit);
  393. }
  394. static int kv_set_vid(struct radeon_device *rdev, u32 index, u32 vid)
  395. {
  396. struct kv_power_info *pi = kv_get_pi(rdev);
  397. pi->graphics_level[index].VoltageDownH = (u8)pi->voltage_drop_t;
  398. pi->graphics_level[index].MinVddNb =
  399. cpu_to_be32(kv_convert_2bit_index_to_voltage(rdev, vid));
  400. return 0;
  401. }
  402. static int kv_set_at(struct radeon_device *rdev, u32 index, u32 at)
  403. {
  404. struct kv_power_info *pi = kv_get_pi(rdev);
  405. pi->graphics_level[index].AT = cpu_to_be16((u16)at);
  406. return 0;
  407. }
  408. static void kv_dpm_power_level_enable(struct radeon_device *rdev,
  409. u32 index, bool enable)
  410. {
  411. struct kv_power_info *pi = kv_get_pi(rdev);
  412. pi->graphics_level[index].EnabledForActivity = enable ? 1 : 0;
  413. }
  414. static void kv_start_dpm(struct radeon_device *rdev)
  415. {
  416. u32 tmp = RREG32_SMC(GENERAL_PWRMGT);
  417. tmp |= GLOBAL_PWRMGT_EN;
  418. WREG32_SMC(GENERAL_PWRMGT, tmp);
  419. kv_smc_dpm_enable(rdev, true);
  420. }
  421. static void kv_stop_dpm(struct radeon_device *rdev)
  422. {
  423. kv_smc_dpm_enable(rdev, false);
  424. }
  425. static void kv_start_am(struct radeon_device *rdev)
  426. {
  427. u32 sclk_pwrmgt_cntl = RREG32_SMC(SCLK_PWRMGT_CNTL);
  428. sclk_pwrmgt_cntl &= ~(RESET_SCLK_CNT | RESET_BUSY_CNT);
  429. sclk_pwrmgt_cntl |= DYNAMIC_PM_EN;
  430. WREG32_SMC(SCLK_PWRMGT_CNTL, sclk_pwrmgt_cntl);
  431. }
  432. static void kv_reset_am(struct radeon_device *rdev)
  433. {
  434. u32 sclk_pwrmgt_cntl = RREG32_SMC(SCLK_PWRMGT_CNTL);
  435. sclk_pwrmgt_cntl |= (RESET_SCLK_CNT | RESET_BUSY_CNT);
  436. WREG32_SMC(SCLK_PWRMGT_CNTL, sclk_pwrmgt_cntl);
  437. }
  438. static int kv_freeze_sclk_dpm(struct radeon_device *rdev, bool freeze)
  439. {
  440. return kv_notify_message_to_smu(rdev, freeze ?
  441. PPSMC_MSG_SCLKDPM_FreezeLevel : PPSMC_MSG_SCLKDPM_UnfreezeLevel);
  442. }
  443. static int kv_force_lowest_valid(struct radeon_device *rdev)
  444. {
  445. return kv_force_dpm_lowest(rdev);
  446. }
  447. static int kv_unforce_levels(struct radeon_device *rdev)
  448. {
  449. if (rdev->family == CHIP_KABINI || rdev->family == CHIP_MULLINS)
  450. return kv_notify_message_to_smu(rdev, PPSMC_MSG_NoForcedLevel);
  451. else
  452. return kv_set_enabled_levels(rdev);
  453. }
  454. static int kv_update_sclk_t(struct radeon_device *rdev)
  455. {
  456. struct kv_power_info *pi = kv_get_pi(rdev);
  457. u32 low_sclk_interrupt_t = 0;
  458. int ret = 0;
  459. if (pi->caps_sclk_throttle_low_notification) {
  460. low_sclk_interrupt_t = cpu_to_be32(pi->low_sclk_interrupt_t);
  461. ret = kv_copy_bytes_to_smc(rdev,
  462. pi->dpm_table_start +
  463. offsetof(SMU7_Fusion_DpmTable, LowSclkInterruptT),
  464. (u8 *)&low_sclk_interrupt_t,
  465. sizeof(u32), pi->sram_end);
  466. }
  467. return ret;
  468. }
  469. static int kv_program_bootup_state(struct radeon_device *rdev)
  470. {
  471. struct kv_power_info *pi = kv_get_pi(rdev);
  472. u32 i;
  473. struct radeon_clock_voltage_dependency_table *table =
  474. &rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
  475. if (table && table->count) {
  476. for (i = pi->graphics_dpm_level_count - 1; i > 0; i--) {
  477. if (table->entries[i].clk == pi->boot_pl.sclk)
  478. break;
  479. }
  480. pi->graphics_boot_level = (u8)i;
  481. kv_dpm_power_level_enable(rdev, i, true);
  482. } else {
  483. struct sumo_sclk_voltage_mapping_table *table =
  484. &pi->sys_info.sclk_voltage_mapping_table;
  485. if (table->num_max_dpm_entries == 0)
  486. return -EINVAL;
  487. for (i = pi->graphics_dpm_level_count - 1; i > 0; i--) {
  488. if (table->entries[i].sclk_frequency == pi->boot_pl.sclk)
  489. break;
  490. }
  491. pi->graphics_boot_level = (u8)i;
  492. kv_dpm_power_level_enable(rdev, i, true);
  493. }
  494. return 0;
  495. }
  496. static int kv_enable_auto_thermal_throttling(struct radeon_device *rdev)
  497. {
  498. struct kv_power_info *pi = kv_get_pi(rdev);
  499. int ret;
  500. pi->graphics_therm_throttle_enable = 1;
  501. ret = kv_copy_bytes_to_smc(rdev,
  502. pi->dpm_table_start +
  503. offsetof(SMU7_Fusion_DpmTable, GraphicsThermThrottleEnable),
  504. &pi->graphics_therm_throttle_enable,
  505. sizeof(u8), pi->sram_end);
  506. return ret;
  507. }
  508. static int kv_upload_dpm_settings(struct radeon_device *rdev)
  509. {
  510. struct kv_power_info *pi = kv_get_pi(rdev);
  511. int ret;
  512. ret = kv_copy_bytes_to_smc(rdev,
  513. pi->dpm_table_start +
  514. offsetof(SMU7_Fusion_DpmTable, GraphicsLevel),
  515. (u8 *)&pi->graphics_level,
  516. sizeof(SMU7_Fusion_GraphicsLevel) * SMU7_MAX_LEVELS_GRAPHICS,
  517. pi->sram_end);
  518. if (ret)
  519. return ret;
  520. ret = kv_copy_bytes_to_smc(rdev,
  521. pi->dpm_table_start +
  522. offsetof(SMU7_Fusion_DpmTable, GraphicsDpmLevelCount),
  523. &pi->graphics_dpm_level_count,
  524. sizeof(u8), pi->sram_end);
  525. return ret;
  526. }
  527. static u32 kv_get_clock_difference(u32 a, u32 b)
  528. {
  529. return (a >= b) ? a - b : b - a;
  530. }
  531. static u32 kv_get_clk_bypass(struct radeon_device *rdev, u32 clk)
  532. {
  533. struct kv_power_info *pi = kv_get_pi(rdev);
  534. u32 value;
  535. if (pi->caps_enable_dfs_bypass) {
  536. if (kv_get_clock_difference(clk, 40000) < 200)
  537. value = 3;
  538. else if (kv_get_clock_difference(clk, 30000) < 200)
  539. value = 2;
  540. else if (kv_get_clock_difference(clk, 20000) < 200)
  541. value = 7;
  542. else if (kv_get_clock_difference(clk, 15000) < 200)
  543. value = 6;
  544. else if (kv_get_clock_difference(clk, 10000) < 200)
  545. value = 8;
  546. else
  547. value = 0;
  548. } else {
  549. value = 0;
  550. }
  551. return value;
  552. }
  553. static int kv_populate_uvd_table(struct radeon_device *rdev)
  554. {
  555. struct kv_power_info *pi = kv_get_pi(rdev);
  556. struct radeon_uvd_clock_voltage_dependency_table *table =
  557. &rdev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table;
  558. struct atom_clock_dividers dividers;
  559. int ret;
  560. u32 i;
  561. if (table == NULL || table->count == 0)
  562. return 0;
  563. pi->uvd_level_count = 0;
  564. for (i = 0; i < table->count; i++) {
  565. if (pi->high_voltage_t &&
  566. (pi->high_voltage_t < table->entries[i].v))
  567. break;
  568. pi->uvd_level[i].VclkFrequency = cpu_to_be32(table->entries[i].vclk);
  569. pi->uvd_level[i].DclkFrequency = cpu_to_be32(table->entries[i].dclk);
  570. pi->uvd_level[i].MinVddNb = cpu_to_be16(table->entries[i].v);
  571. pi->uvd_level[i].VClkBypassCntl =
  572. (u8)kv_get_clk_bypass(rdev, table->entries[i].vclk);
  573. pi->uvd_level[i].DClkBypassCntl =
  574. (u8)kv_get_clk_bypass(rdev, table->entries[i].dclk);
  575. ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM,
  576. table->entries[i].vclk, false, &dividers);
  577. if (ret)
  578. return ret;
  579. pi->uvd_level[i].VclkDivider = (u8)dividers.post_div;
  580. ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM,
  581. table->entries[i].dclk, false, &dividers);
  582. if (ret)
  583. return ret;
  584. pi->uvd_level[i].DclkDivider = (u8)dividers.post_div;
  585. pi->uvd_level_count++;
  586. }
  587. ret = kv_copy_bytes_to_smc(rdev,
  588. pi->dpm_table_start +
  589. offsetof(SMU7_Fusion_DpmTable, UvdLevelCount),
  590. (u8 *)&pi->uvd_level_count,
  591. sizeof(u8), pi->sram_end);
  592. if (ret)
  593. return ret;
  594. pi->uvd_interval = 1;
  595. ret = kv_copy_bytes_to_smc(rdev,
  596. pi->dpm_table_start +
  597. offsetof(SMU7_Fusion_DpmTable, UVDInterval),
  598. &pi->uvd_interval,
  599. sizeof(u8), pi->sram_end);
  600. if (ret)
  601. return ret;
  602. ret = kv_copy_bytes_to_smc(rdev,
  603. pi->dpm_table_start +
  604. offsetof(SMU7_Fusion_DpmTable, UvdLevel),
  605. (u8 *)&pi->uvd_level,
  606. sizeof(SMU7_Fusion_UvdLevel) * SMU7_MAX_LEVELS_UVD,
  607. pi->sram_end);
  608. return ret;
  609. }
  610. static int kv_populate_vce_table(struct radeon_device *rdev)
  611. {
  612. struct kv_power_info *pi = kv_get_pi(rdev);
  613. int ret;
  614. u32 i;
  615. struct radeon_vce_clock_voltage_dependency_table *table =
  616. &rdev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table;
  617. struct atom_clock_dividers dividers;
  618. if (table == NULL || table->count == 0)
  619. return 0;
  620. pi->vce_level_count = 0;
  621. for (i = 0; i < table->count; i++) {
  622. if (pi->high_voltage_t &&
  623. pi->high_voltage_t < table->entries[i].v)
  624. break;
  625. pi->vce_level[i].Frequency = cpu_to_be32(table->entries[i].evclk);
  626. pi->vce_level[i].MinVoltage = cpu_to_be16(table->entries[i].v);
  627. pi->vce_level[i].ClkBypassCntl =
  628. (u8)kv_get_clk_bypass(rdev, table->entries[i].evclk);
  629. ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM,
  630. table->entries[i].evclk, false, &dividers);
  631. if (ret)
  632. return ret;
  633. pi->vce_level[i].Divider = (u8)dividers.post_div;
  634. pi->vce_level_count++;
  635. }
  636. ret = kv_copy_bytes_to_smc(rdev,
  637. pi->dpm_table_start +
  638. offsetof(SMU7_Fusion_DpmTable, VceLevelCount),
  639. (u8 *)&pi->vce_level_count,
  640. sizeof(u8),
  641. pi->sram_end);
  642. if (ret)
  643. return ret;
  644. pi->vce_interval = 1;
  645. ret = kv_copy_bytes_to_smc(rdev,
  646. pi->dpm_table_start +
  647. offsetof(SMU7_Fusion_DpmTable, VCEInterval),
  648. (u8 *)&pi->vce_interval,
  649. sizeof(u8),
  650. pi->sram_end);
  651. if (ret)
  652. return ret;
  653. ret = kv_copy_bytes_to_smc(rdev,
  654. pi->dpm_table_start +
  655. offsetof(SMU7_Fusion_DpmTable, VceLevel),
  656. (u8 *)&pi->vce_level,
  657. sizeof(SMU7_Fusion_ExtClkLevel) * SMU7_MAX_LEVELS_VCE,
  658. pi->sram_end);
  659. return ret;
  660. }
  661. static int kv_populate_samu_table(struct radeon_device *rdev)
  662. {
  663. struct kv_power_info *pi = kv_get_pi(rdev);
  664. struct radeon_clock_voltage_dependency_table *table =
  665. &rdev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table;
  666. struct atom_clock_dividers dividers;
  667. int ret;
  668. u32 i;
  669. if (table == NULL || table->count == 0)
  670. return 0;
  671. pi->samu_level_count = 0;
  672. for (i = 0; i < table->count; i++) {
  673. if (pi->high_voltage_t &&
  674. pi->high_voltage_t < table->entries[i].v)
  675. break;
  676. pi->samu_level[i].Frequency = cpu_to_be32(table->entries[i].clk);
  677. pi->samu_level[i].MinVoltage = cpu_to_be16(table->entries[i].v);
  678. pi->samu_level[i].ClkBypassCntl =
  679. (u8)kv_get_clk_bypass(rdev, table->entries[i].clk);
  680. ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM,
  681. table->entries[i].clk, false, &dividers);
  682. if (ret)
  683. return ret;
  684. pi->samu_level[i].Divider = (u8)dividers.post_div;
  685. pi->samu_level_count++;
  686. }
  687. ret = kv_copy_bytes_to_smc(rdev,
  688. pi->dpm_table_start +
  689. offsetof(SMU7_Fusion_DpmTable, SamuLevelCount),
  690. (u8 *)&pi->samu_level_count,
  691. sizeof(u8),
  692. pi->sram_end);
  693. if (ret)
  694. return ret;
  695. pi->samu_interval = 1;
  696. ret = kv_copy_bytes_to_smc(rdev,
  697. pi->dpm_table_start +
  698. offsetof(SMU7_Fusion_DpmTable, SAMUInterval),
  699. (u8 *)&pi->samu_interval,
  700. sizeof(u8),
  701. pi->sram_end);
  702. if (ret)
  703. return ret;
  704. ret = kv_copy_bytes_to_smc(rdev,
  705. pi->dpm_table_start +
  706. offsetof(SMU7_Fusion_DpmTable, SamuLevel),
  707. (u8 *)&pi->samu_level,
  708. sizeof(SMU7_Fusion_ExtClkLevel) * SMU7_MAX_LEVELS_SAMU,
  709. pi->sram_end);
  710. if (ret)
  711. return ret;
  712. return ret;
  713. }
  714. static int kv_populate_acp_table(struct radeon_device *rdev)
  715. {
  716. struct kv_power_info *pi = kv_get_pi(rdev);
  717. struct radeon_clock_voltage_dependency_table *table =
  718. &rdev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table;
  719. struct atom_clock_dividers dividers;
  720. int ret;
  721. u32 i;
  722. if (table == NULL || table->count == 0)
  723. return 0;
  724. pi->acp_level_count = 0;
  725. for (i = 0; i < table->count; i++) {
  726. pi->acp_level[i].Frequency = cpu_to_be32(table->entries[i].clk);
  727. pi->acp_level[i].MinVoltage = cpu_to_be16(table->entries[i].v);
  728. ret = radeon_atom_get_clock_dividers(rdev, COMPUTE_ENGINE_PLL_PARAM,
  729. table->entries[i].clk, false, &dividers);
  730. if (ret)
  731. return ret;
  732. pi->acp_level[i].Divider = (u8)dividers.post_div;
  733. pi->acp_level_count++;
  734. }
  735. ret = kv_copy_bytes_to_smc(rdev,
  736. pi->dpm_table_start +
  737. offsetof(SMU7_Fusion_DpmTable, AcpLevelCount),
  738. (u8 *)&pi->acp_level_count,
  739. sizeof(u8),
  740. pi->sram_end);
  741. if (ret)
  742. return ret;
  743. pi->acp_interval = 1;
  744. ret = kv_copy_bytes_to_smc(rdev,
  745. pi->dpm_table_start +
  746. offsetof(SMU7_Fusion_DpmTable, ACPInterval),
  747. (u8 *)&pi->acp_interval,
  748. sizeof(u8),
  749. pi->sram_end);
  750. if (ret)
  751. return ret;
  752. ret = kv_copy_bytes_to_smc(rdev,
  753. pi->dpm_table_start +
  754. offsetof(SMU7_Fusion_DpmTable, AcpLevel),
  755. (u8 *)&pi->acp_level,
  756. sizeof(SMU7_Fusion_ExtClkLevel) * SMU7_MAX_LEVELS_ACP,
  757. pi->sram_end);
  758. if (ret)
  759. return ret;
  760. return ret;
  761. }
  762. static void kv_calculate_dfs_bypass_settings(struct radeon_device *rdev)
  763. {
  764. struct kv_power_info *pi = kv_get_pi(rdev);
  765. u32 i;
  766. struct radeon_clock_voltage_dependency_table *table =
  767. &rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
  768. if (table && table->count) {
  769. for (i = 0; i < pi->graphics_dpm_level_count; i++) {
  770. if (pi->caps_enable_dfs_bypass) {
  771. if (kv_get_clock_difference(table->entries[i].clk, 40000) < 200)
  772. pi->graphics_level[i].ClkBypassCntl = 3;
  773. else if (kv_get_clock_difference(table->entries[i].clk, 30000) < 200)
  774. pi->graphics_level[i].ClkBypassCntl = 2;
  775. else if (kv_get_clock_difference(table->entries[i].clk, 26600) < 200)
  776. pi->graphics_level[i].ClkBypassCntl = 7;
  777. else if (kv_get_clock_difference(table->entries[i].clk , 20000) < 200)
  778. pi->graphics_level[i].ClkBypassCntl = 6;
  779. else if (kv_get_clock_difference(table->entries[i].clk , 10000) < 200)
  780. pi->graphics_level[i].ClkBypassCntl = 8;
  781. else
  782. pi->graphics_level[i].ClkBypassCntl = 0;
  783. } else {
  784. pi->graphics_level[i].ClkBypassCntl = 0;
  785. }
  786. }
  787. } else {
  788. struct sumo_sclk_voltage_mapping_table *table =
  789. &pi->sys_info.sclk_voltage_mapping_table;
  790. for (i = 0; i < pi->graphics_dpm_level_count; i++) {
  791. if (pi->caps_enable_dfs_bypass) {
  792. if (kv_get_clock_difference(table->entries[i].sclk_frequency, 40000) < 200)
  793. pi->graphics_level[i].ClkBypassCntl = 3;
  794. else if (kv_get_clock_difference(table->entries[i].sclk_frequency, 30000) < 200)
  795. pi->graphics_level[i].ClkBypassCntl = 2;
  796. else if (kv_get_clock_difference(table->entries[i].sclk_frequency, 26600) < 200)
  797. pi->graphics_level[i].ClkBypassCntl = 7;
  798. else if (kv_get_clock_difference(table->entries[i].sclk_frequency, 20000) < 200)
  799. pi->graphics_level[i].ClkBypassCntl = 6;
  800. else if (kv_get_clock_difference(table->entries[i].sclk_frequency, 10000) < 200)
  801. pi->graphics_level[i].ClkBypassCntl = 8;
  802. else
  803. pi->graphics_level[i].ClkBypassCntl = 0;
  804. } else {
  805. pi->graphics_level[i].ClkBypassCntl = 0;
  806. }
  807. }
  808. }
  809. }
  810. static int kv_enable_ulv(struct radeon_device *rdev, bool enable)
  811. {
  812. return kv_notify_message_to_smu(rdev, enable ?
  813. PPSMC_MSG_EnableULV : PPSMC_MSG_DisableULV);
  814. }
  815. static void kv_reset_acp_boot_level(struct radeon_device *rdev)
  816. {
  817. struct kv_power_info *pi = kv_get_pi(rdev);
  818. pi->acp_boot_level = 0xff;
  819. }
  820. static void kv_update_current_ps(struct radeon_device *rdev,
  821. struct radeon_ps *rps)
  822. {
  823. struct kv_ps *new_ps = kv_get_ps(rps);
  824. struct kv_power_info *pi = kv_get_pi(rdev);
  825. pi->current_rps = *rps;
  826. pi->current_ps = *new_ps;
  827. pi->current_rps.ps_priv = &pi->current_ps;
  828. }
  829. static void kv_update_requested_ps(struct radeon_device *rdev,
  830. struct radeon_ps *rps)
  831. {
  832. struct kv_ps *new_ps = kv_get_ps(rps);
  833. struct kv_power_info *pi = kv_get_pi(rdev);
  834. pi->requested_rps = *rps;
  835. pi->requested_ps = *new_ps;
  836. pi->requested_rps.ps_priv = &pi->requested_ps;
  837. }
  838. void kv_dpm_enable_bapm(struct radeon_device *rdev, bool enable)
  839. {
  840. struct kv_power_info *pi = kv_get_pi(rdev);
  841. int ret;
  842. if (pi->bapm_enable) {
  843. ret = kv_smc_bapm_enable(rdev, enable);
  844. if (ret)
  845. DRM_ERROR("kv_smc_bapm_enable failed\n");
  846. }
  847. }
  848. static void kv_enable_thermal_int(struct radeon_device *rdev, bool enable)
  849. {
  850. u32 thermal_int;
  851. thermal_int = RREG32_SMC(CG_THERMAL_INT_CTRL);
  852. if (enable)
  853. thermal_int |= THERM_INTH_MASK | THERM_INTL_MASK;
  854. else
  855. thermal_int &= ~(THERM_INTH_MASK | THERM_INTL_MASK);
  856. WREG32_SMC(CG_THERMAL_INT_CTRL, thermal_int);
  857. }
  858. int kv_dpm_enable(struct radeon_device *rdev)
  859. {
  860. struct kv_power_info *pi = kv_get_pi(rdev);
  861. int ret;
  862. ret = kv_process_firmware_header(rdev);
  863. if (ret) {
  864. DRM_ERROR("kv_process_firmware_header failed\n");
  865. return ret;
  866. }
  867. kv_init_fps_limits(rdev);
  868. kv_init_graphics_levels(rdev);
  869. ret = kv_program_bootup_state(rdev);
  870. if (ret) {
  871. DRM_ERROR("kv_program_bootup_state failed\n");
  872. return ret;
  873. }
  874. kv_calculate_dfs_bypass_settings(rdev);
  875. ret = kv_upload_dpm_settings(rdev);
  876. if (ret) {
  877. DRM_ERROR("kv_upload_dpm_settings failed\n");
  878. return ret;
  879. }
  880. ret = kv_populate_uvd_table(rdev);
  881. if (ret) {
  882. DRM_ERROR("kv_populate_uvd_table failed\n");
  883. return ret;
  884. }
  885. ret = kv_populate_vce_table(rdev);
  886. if (ret) {
  887. DRM_ERROR("kv_populate_vce_table failed\n");
  888. return ret;
  889. }
  890. ret = kv_populate_samu_table(rdev);
  891. if (ret) {
  892. DRM_ERROR("kv_populate_samu_table failed\n");
  893. return ret;
  894. }
  895. ret = kv_populate_acp_table(rdev);
  896. if (ret) {
  897. DRM_ERROR("kv_populate_acp_table failed\n");
  898. return ret;
  899. }
  900. kv_program_vc(rdev);
  901. kv_start_am(rdev);
  902. if (pi->enable_auto_thermal_throttling) {
  903. ret = kv_enable_auto_thermal_throttling(rdev);
  904. if (ret) {
  905. DRM_ERROR("kv_enable_auto_thermal_throttling failed\n");
  906. return ret;
  907. }
  908. }
  909. ret = kv_enable_dpm_voltage_scaling(rdev);
  910. if (ret) {
  911. DRM_ERROR("kv_enable_dpm_voltage_scaling failed\n");
  912. return ret;
  913. }
  914. ret = kv_set_dpm_interval(rdev);
  915. if (ret) {
  916. DRM_ERROR("kv_set_dpm_interval failed\n");
  917. return ret;
  918. }
  919. ret = kv_set_dpm_boot_state(rdev);
  920. if (ret) {
  921. DRM_ERROR("kv_set_dpm_boot_state failed\n");
  922. return ret;
  923. }
  924. ret = kv_enable_ulv(rdev, true);
  925. if (ret) {
  926. DRM_ERROR("kv_enable_ulv failed\n");
  927. return ret;
  928. }
  929. kv_start_dpm(rdev);
  930. ret = kv_enable_didt(rdev, true);
  931. if (ret) {
  932. DRM_ERROR("kv_enable_didt failed\n");
  933. return ret;
  934. }
  935. ret = kv_enable_smc_cac(rdev, true);
  936. if (ret) {
  937. DRM_ERROR("kv_enable_smc_cac failed\n");
  938. return ret;
  939. }
  940. kv_reset_acp_boot_level(rdev);
  941. ret = kv_smc_bapm_enable(rdev, false);
  942. if (ret) {
  943. DRM_ERROR("kv_smc_bapm_enable failed\n");
  944. return ret;
  945. }
  946. kv_update_current_ps(rdev, rdev->pm.dpm.boot_ps);
  947. return ret;
  948. }
  949. int kv_dpm_late_enable(struct radeon_device *rdev)
  950. {
  951. int ret = 0;
  952. if (rdev->irq.installed &&
  953. r600_is_internal_thermal_sensor(rdev->pm.int_thermal_type)) {
  954. ret = kv_set_thermal_temperature_range(rdev, R600_TEMP_RANGE_MIN, R600_TEMP_RANGE_MAX);
  955. if (ret) {
  956. DRM_ERROR("kv_set_thermal_temperature_range failed\n");
  957. return ret;
  958. }
  959. kv_enable_thermal_int(rdev, true);
  960. }
  961. /* powerdown unused blocks for now */
  962. kv_dpm_powergate_acp(rdev, true);
  963. kv_dpm_powergate_samu(rdev, true);
  964. kv_dpm_powergate_vce(rdev, true);
  965. kv_dpm_powergate_uvd(rdev, true);
  966. return ret;
  967. }
  968. void kv_dpm_disable(struct radeon_device *rdev)
  969. {
  970. kv_smc_bapm_enable(rdev, false);
  971. if (rdev->family == CHIP_MULLINS)
  972. kv_enable_nb_dpm(rdev, false);
  973. /* powerup blocks */
  974. kv_dpm_powergate_acp(rdev, false);
  975. kv_dpm_powergate_samu(rdev, false);
  976. kv_dpm_powergate_vce(rdev, false);
  977. kv_dpm_powergate_uvd(rdev, false);
  978. kv_enable_smc_cac(rdev, false);
  979. kv_enable_didt(rdev, false);
  980. kv_clear_vc(rdev);
  981. kv_stop_dpm(rdev);
  982. kv_enable_ulv(rdev, false);
  983. kv_reset_am(rdev);
  984. kv_enable_thermal_int(rdev, false);
  985. kv_update_current_ps(rdev, rdev->pm.dpm.boot_ps);
  986. }
  987. static void kv_init_sclk_t(struct radeon_device *rdev)
  988. {
  989. struct kv_power_info *pi = kv_get_pi(rdev);
  990. pi->low_sclk_interrupt_t = 0;
  991. }
  992. static int kv_init_fps_limits(struct radeon_device *rdev)
  993. {
  994. struct kv_power_info *pi = kv_get_pi(rdev);
  995. int ret = 0;
  996. if (pi->caps_fps) {
  997. u16 tmp;
  998. tmp = 45;
  999. pi->fps_high_t = cpu_to_be16(tmp);
  1000. ret = kv_copy_bytes_to_smc(rdev,
  1001. pi->dpm_table_start +
  1002. offsetof(SMU7_Fusion_DpmTable, FpsHighT),
  1003. (u8 *)&pi->fps_high_t,
  1004. sizeof(u16), pi->sram_end);
  1005. tmp = 30;
  1006. pi->fps_low_t = cpu_to_be16(tmp);
  1007. ret = kv_copy_bytes_to_smc(rdev,
  1008. pi->dpm_table_start +
  1009. offsetof(SMU7_Fusion_DpmTable, FpsLowT),
  1010. (u8 *)&pi->fps_low_t,
  1011. sizeof(u16), pi->sram_end);
  1012. }
  1013. return ret;
  1014. }
  1015. static void kv_init_powergate_state(struct radeon_device *rdev)
  1016. {
  1017. struct kv_power_info *pi = kv_get_pi(rdev);
  1018. pi->uvd_power_gated = false;
  1019. pi->vce_power_gated = false;
  1020. pi->samu_power_gated = false;
  1021. pi->acp_power_gated = false;
  1022. }
  1023. static int kv_enable_uvd_dpm(struct radeon_device *rdev, bool enable)
  1024. {
  1025. return kv_notify_message_to_smu(rdev, enable ?
  1026. PPSMC_MSG_UVDDPM_Enable : PPSMC_MSG_UVDDPM_Disable);
  1027. }
  1028. static int kv_enable_vce_dpm(struct radeon_device *rdev, bool enable)
  1029. {
  1030. return kv_notify_message_to_smu(rdev, enable ?
  1031. PPSMC_MSG_VCEDPM_Enable : PPSMC_MSG_VCEDPM_Disable);
  1032. }
  1033. static int kv_enable_samu_dpm(struct radeon_device *rdev, bool enable)
  1034. {
  1035. return kv_notify_message_to_smu(rdev, enable ?
  1036. PPSMC_MSG_SAMUDPM_Enable : PPSMC_MSG_SAMUDPM_Disable);
  1037. }
  1038. static int kv_enable_acp_dpm(struct radeon_device *rdev, bool enable)
  1039. {
  1040. return kv_notify_message_to_smu(rdev, enable ?
  1041. PPSMC_MSG_ACPDPM_Enable : PPSMC_MSG_ACPDPM_Disable);
  1042. }
  1043. static int kv_update_uvd_dpm(struct radeon_device *rdev, bool gate)
  1044. {
  1045. struct kv_power_info *pi = kv_get_pi(rdev);
  1046. struct radeon_uvd_clock_voltage_dependency_table *table =
  1047. &rdev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table;
  1048. int ret;
  1049. u32 mask;
  1050. if (!gate) {
  1051. if (table->count)
  1052. pi->uvd_boot_level = table->count - 1;
  1053. else
  1054. pi->uvd_boot_level = 0;
  1055. if (!pi->caps_uvd_dpm || pi->caps_stable_p_state) {
  1056. mask = 1 << pi->uvd_boot_level;
  1057. } else {
  1058. mask = 0x1f;
  1059. }
  1060. ret = kv_copy_bytes_to_smc(rdev,
  1061. pi->dpm_table_start +
  1062. offsetof(SMU7_Fusion_DpmTable, UvdBootLevel),
  1063. (uint8_t *)&pi->uvd_boot_level,
  1064. sizeof(u8), pi->sram_end);
  1065. if (ret)
  1066. return ret;
  1067. kv_send_msg_to_smc_with_parameter(rdev,
  1068. PPSMC_MSG_UVDDPM_SetEnabledMask,
  1069. mask);
  1070. }
  1071. return kv_enable_uvd_dpm(rdev, !gate);
  1072. }
  1073. static u8 kv_get_vce_boot_level(struct radeon_device *rdev, u32 evclk)
  1074. {
  1075. u8 i;
  1076. struct radeon_vce_clock_voltage_dependency_table *table =
  1077. &rdev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table;
  1078. for (i = 0; i < table->count; i++) {
  1079. if (table->entries[i].evclk >= evclk)
  1080. break;
  1081. }
  1082. return i;
  1083. }
  1084. static int kv_update_vce_dpm(struct radeon_device *rdev,
  1085. struct radeon_ps *radeon_new_state,
  1086. struct radeon_ps *radeon_current_state)
  1087. {
  1088. struct kv_power_info *pi = kv_get_pi(rdev);
  1089. struct radeon_vce_clock_voltage_dependency_table *table =
  1090. &rdev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table;
  1091. int ret;
  1092. if (radeon_new_state->evclk > 0 && radeon_current_state->evclk == 0) {
  1093. kv_dpm_powergate_vce(rdev, false);
  1094. /* turn the clocks on when encoding */
  1095. cik_update_cg(rdev, RADEON_CG_BLOCK_VCE, false);
  1096. if (pi->caps_stable_p_state)
  1097. pi->vce_boot_level = table->count - 1;
  1098. else
  1099. pi->vce_boot_level = kv_get_vce_boot_level(rdev, radeon_new_state->evclk);
  1100. ret = kv_copy_bytes_to_smc(rdev,
  1101. pi->dpm_table_start +
  1102. offsetof(SMU7_Fusion_DpmTable, VceBootLevel),
  1103. (u8 *)&pi->vce_boot_level,
  1104. sizeof(u8),
  1105. pi->sram_end);
  1106. if (ret)
  1107. return ret;
  1108. if (pi->caps_stable_p_state)
  1109. kv_send_msg_to_smc_with_parameter(rdev,
  1110. PPSMC_MSG_VCEDPM_SetEnabledMask,
  1111. (1 << pi->vce_boot_level));
  1112. kv_enable_vce_dpm(rdev, true);
  1113. } else if (radeon_new_state->evclk == 0 && radeon_current_state->evclk > 0) {
  1114. kv_enable_vce_dpm(rdev, false);
  1115. /* turn the clocks off when not encoding */
  1116. cik_update_cg(rdev, RADEON_CG_BLOCK_VCE, true);
  1117. kv_dpm_powergate_vce(rdev, true);
  1118. }
  1119. return 0;
  1120. }
  1121. static int kv_update_samu_dpm(struct radeon_device *rdev, bool gate)
  1122. {
  1123. struct kv_power_info *pi = kv_get_pi(rdev);
  1124. struct radeon_clock_voltage_dependency_table *table =
  1125. &rdev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table;
  1126. int ret;
  1127. if (!gate) {
  1128. if (pi->caps_stable_p_state)
  1129. pi->samu_boot_level = table->count - 1;
  1130. else
  1131. pi->samu_boot_level = 0;
  1132. ret = kv_copy_bytes_to_smc(rdev,
  1133. pi->dpm_table_start +
  1134. offsetof(SMU7_Fusion_DpmTable, SamuBootLevel),
  1135. (u8 *)&pi->samu_boot_level,
  1136. sizeof(u8),
  1137. pi->sram_end);
  1138. if (ret)
  1139. return ret;
  1140. if (pi->caps_stable_p_state)
  1141. kv_send_msg_to_smc_with_parameter(rdev,
  1142. PPSMC_MSG_SAMUDPM_SetEnabledMask,
  1143. (1 << pi->samu_boot_level));
  1144. }
  1145. return kv_enable_samu_dpm(rdev, !gate);
  1146. }
  1147. static u8 kv_get_acp_boot_level(struct radeon_device *rdev)
  1148. {
  1149. u8 i;
  1150. struct radeon_clock_voltage_dependency_table *table =
  1151. &rdev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table;
  1152. for (i = 0; i < table->count; i++) {
  1153. if (table->entries[i].clk >= 0) /* XXX */
  1154. break;
  1155. }
  1156. if (i >= table->count)
  1157. i = table->count - 1;
  1158. return i;
  1159. }
  1160. static void kv_update_acp_boot_level(struct radeon_device *rdev)
  1161. {
  1162. struct kv_power_info *pi = kv_get_pi(rdev);
  1163. u8 acp_boot_level;
  1164. if (!pi->caps_stable_p_state) {
  1165. acp_boot_level = kv_get_acp_boot_level(rdev);
  1166. if (acp_boot_level != pi->acp_boot_level) {
  1167. pi->acp_boot_level = acp_boot_level;
  1168. kv_send_msg_to_smc_with_parameter(rdev,
  1169. PPSMC_MSG_ACPDPM_SetEnabledMask,
  1170. (1 << pi->acp_boot_level));
  1171. }
  1172. }
  1173. }
  1174. static int kv_update_acp_dpm(struct radeon_device *rdev, bool gate)
  1175. {
  1176. struct kv_power_info *pi = kv_get_pi(rdev);
  1177. struct radeon_clock_voltage_dependency_table *table =
  1178. &rdev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table;
  1179. int ret;
  1180. if (!gate) {
  1181. if (pi->caps_stable_p_state)
  1182. pi->acp_boot_level = table->count - 1;
  1183. else
  1184. pi->acp_boot_level = kv_get_acp_boot_level(rdev);
  1185. ret = kv_copy_bytes_to_smc(rdev,
  1186. pi->dpm_table_start +
  1187. offsetof(SMU7_Fusion_DpmTable, AcpBootLevel),
  1188. (u8 *)&pi->acp_boot_level,
  1189. sizeof(u8),
  1190. pi->sram_end);
  1191. if (ret)
  1192. return ret;
  1193. if (pi->caps_stable_p_state)
  1194. kv_send_msg_to_smc_with_parameter(rdev,
  1195. PPSMC_MSG_ACPDPM_SetEnabledMask,
  1196. (1 << pi->acp_boot_level));
  1197. }
  1198. return kv_enable_acp_dpm(rdev, !gate);
  1199. }
  1200. void kv_dpm_powergate_uvd(struct radeon_device *rdev, bool gate)
  1201. {
  1202. struct kv_power_info *pi = kv_get_pi(rdev);
  1203. if (pi->uvd_power_gated == gate)
  1204. return;
  1205. pi->uvd_power_gated = gate;
  1206. if (gate) {
  1207. if (pi->caps_uvd_pg) {
  1208. uvd_v1_0_stop(rdev);
  1209. cik_update_cg(rdev, RADEON_CG_BLOCK_UVD, false);
  1210. }
  1211. kv_update_uvd_dpm(rdev, gate);
  1212. if (pi->caps_uvd_pg)
  1213. kv_notify_message_to_smu(rdev, PPSMC_MSG_UVDPowerOFF);
  1214. } else {
  1215. if (pi->caps_uvd_pg) {
  1216. kv_notify_message_to_smu(rdev, PPSMC_MSG_UVDPowerON);
  1217. uvd_v4_2_resume(rdev);
  1218. uvd_v1_0_start(rdev);
  1219. cik_update_cg(rdev, RADEON_CG_BLOCK_UVD, true);
  1220. }
  1221. kv_update_uvd_dpm(rdev, gate);
  1222. }
  1223. }
  1224. static void kv_dpm_powergate_vce(struct radeon_device *rdev, bool gate)
  1225. {
  1226. struct kv_power_info *pi = kv_get_pi(rdev);
  1227. if (pi->vce_power_gated == gate)
  1228. return;
  1229. pi->vce_power_gated = gate;
  1230. if (gate) {
  1231. if (pi->caps_vce_pg) {
  1232. /* XXX do we need a vce_v1_0_stop() ? */
  1233. kv_notify_message_to_smu(rdev, PPSMC_MSG_VCEPowerOFF);
  1234. }
  1235. } else {
  1236. if (pi->caps_vce_pg) {
  1237. kv_notify_message_to_smu(rdev, PPSMC_MSG_VCEPowerON);
  1238. vce_v2_0_resume(rdev);
  1239. vce_v1_0_start(rdev);
  1240. }
  1241. }
  1242. }
  1243. static void kv_dpm_powergate_samu(struct radeon_device *rdev, bool gate)
  1244. {
  1245. struct kv_power_info *pi = kv_get_pi(rdev);
  1246. if (pi->samu_power_gated == gate)
  1247. return;
  1248. pi->samu_power_gated = gate;
  1249. if (gate) {
  1250. kv_update_samu_dpm(rdev, true);
  1251. if (pi->caps_samu_pg)
  1252. kv_notify_message_to_smu(rdev, PPSMC_MSG_SAMPowerOFF);
  1253. } else {
  1254. if (pi->caps_samu_pg)
  1255. kv_notify_message_to_smu(rdev, PPSMC_MSG_SAMPowerON);
  1256. kv_update_samu_dpm(rdev, false);
  1257. }
  1258. }
  1259. static void kv_dpm_powergate_acp(struct radeon_device *rdev, bool gate)
  1260. {
  1261. struct kv_power_info *pi = kv_get_pi(rdev);
  1262. if (pi->acp_power_gated == gate)
  1263. return;
  1264. if (rdev->family == CHIP_KABINI || rdev->family == CHIP_MULLINS)
  1265. return;
  1266. pi->acp_power_gated = gate;
  1267. if (gate) {
  1268. kv_update_acp_dpm(rdev, true);
  1269. if (pi->caps_acp_pg)
  1270. kv_notify_message_to_smu(rdev, PPSMC_MSG_ACPPowerOFF);
  1271. } else {
  1272. if (pi->caps_acp_pg)
  1273. kv_notify_message_to_smu(rdev, PPSMC_MSG_ACPPowerON);
  1274. kv_update_acp_dpm(rdev, false);
  1275. }
  1276. }
  1277. static void kv_set_valid_clock_range(struct radeon_device *rdev,
  1278. struct radeon_ps *new_rps)
  1279. {
  1280. struct kv_ps *new_ps = kv_get_ps(new_rps);
  1281. struct kv_power_info *pi = kv_get_pi(rdev);
  1282. u32 i;
  1283. struct radeon_clock_voltage_dependency_table *table =
  1284. &rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
  1285. if (table && table->count) {
  1286. for (i = 0; i < pi->graphics_dpm_level_count; i++) {
  1287. if ((table->entries[i].clk >= new_ps->levels[0].sclk) ||
  1288. (i == (pi->graphics_dpm_level_count - 1))) {
  1289. pi->lowest_valid = i;
  1290. break;
  1291. }
  1292. }
  1293. for (i = pi->graphics_dpm_level_count - 1; i > 0; i--) {
  1294. if (table->entries[i].clk <= new_ps->levels[new_ps->num_levels - 1].sclk)
  1295. break;
  1296. }
  1297. pi->highest_valid = i;
  1298. if (pi->lowest_valid > pi->highest_valid) {
  1299. if ((new_ps->levels[0].sclk - table->entries[pi->highest_valid].clk) >
  1300. (table->entries[pi->lowest_valid].clk - new_ps->levels[new_ps->num_levels - 1].sclk))
  1301. pi->highest_valid = pi->lowest_valid;
  1302. else
  1303. pi->lowest_valid = pi->highest_valid;
  1304. }
  1305. } else {
  1306. struct sumo_sclk_voltage_mapping_table *table =
  1307. &pi->sys_info.sclk_voltage_mapping_table;
  1308. for (i = 0; i < (int)pi->graphics_dpm_level_count; i++) {
  1309. if (table->entries[i].sclk_frequency >= new_ps->levels[0].sclk ||
  1310. i == (int)(pi->graphics_dpm_level_count - 1)) {
  1311. pi->lowest_valid = i;
  1312. break;
  1313. }
  1314. }
  1315. for (i = pi->graphics_dpm_level_count - 1; i > 0; i--) {
  1316. if (table->entries[i].sclk_frequency <=
  1317. new_ps->levels[new_ps->num_levels - 1].sclk)
  1318. break;
  1319. }
  1320. pi->highest_valid = i;
  1321. if (pi->lowest_valid > pi->highest_valid) {
  1322. if ((new_ps->levels[0].sclk -
  1323. table->entries[pi->highest_valid].sclk_frequency) >
  1324. (table->entries[pi->lowest_valid].sclk_frequency -
  1325. new_ps->levels[new_ps->num_levels -1].sclk))
  1326. pi->highest_valid = pi->lowest_valid;
  1327. else
  1328. pi->lowest_valid = pi->highest_valid;
  1329. }
  1330. }
  1331. }
  1332. static int kv_update_dfs_bypass_settings(struct radeon_device *rdev,
  1333. struct radeon_ps *new_rps)
  1334. {
  1335. struct kv_ps *new_ps = kv_get_ps(new_rps);
  1336. struct kv_power_info *pi = kv_get_pi(rdev);
  1337. int ret = 0;
  1338. u8 clk_bypass_cntl;
  1339. if (pi->caps_enable_dfs_bypass) {
  1340. clk_bypass_cntl = new_ps->need_dfs_bypass ?
  1341. pi->graphics_level[pi->graphics_boot_level].ClkBypassCntl : 0;
  1342. ret = kv_copy_bytes_to_smc(rdev,
  1343. (pi->dpm_table_start +
  1344. offsetof(SMU7_Fusion_DpmTable, GraphicsLevel) +
  1345. (pi->graphics_boot_level * sizeof(SMU7_Fusion_GraphicsLevel)) +
  1346. offsetof(SMU7_Fusion_GraphicsLevel, ClkBypassCntl)),
  1347. &clk_bypass_cntl,
  1348. sizeof(u8), pi->sram_end);
  1349. }
  1350. return ret;
  1351. }
  1352. static int kv_enable_nb_dpm(struct radeon_device *rdev,
  1353. bool enable)
  1354. {
  1355. struct kv_power_info *pi = kv_get_pi(rdev);
  1356. int ret = 0;
  1357. if (enable) {
  1358. if (pi->enable_nb_dpm && !pi->nb_dpm_enabled) {
  1359. ret = kv_notify_message_to_smu(rdev, PPSMC_MSG_NBDPM_Enable);
  1360. if (ret == 0)
  1361. pi->nb_dpm_enabled = true;
  1362. }
  1363. } else {
  1364. if (pi->enable_nb_dpm && pi->nb_dpm_enabled) {
  1365. ret = kv_notify_message_to_smu(rdev, PPSMC_MSG_NBDPM_Disable);
  1366. if (ret == 0)
  1367. pi->nb_dpm_enabled = false;
  1368. }
  1369. }
  1370. return ret;
  1371. }
  1372. int kv_dpm_force_performance_level(struct radeon_device *rdev,
  1373. enum radeon_dpm_forced_level level)
  1374. {
  1375. int ret;
  1376. if (level == RADEON_DPM_FORCED_LEVEL_HIGH) {
  1377. ret = kv_force_dpm_highest(rdev);
  1378. if (ret)
  1379. return ret;
  1380. } else if (level == RADEON_DPM_FORCED_LEVEL_LOW) {
  1381. ret = kv_force_dpm_lowest(rdev);
  1382. if (ret)
  1383. return ret;
  1384. } else if (level == RADEON_DPM_FORCED_LEVEL_AUTO) {
  1385. ret = kv_unforce_levels(rdev);
  1386. if (ret)
  1387. return ret;
  1388. }
  1389. rdev->pm.dpm.forced_level = level;
  1390. return 0;
  1391. }
  1392. int kv_dpm_pre_set_power_state(struct radeon_device *rdev)
  1393. {
  1394. struct kv_power_info *pi = kv_get_pi(rdev);
  1395. struct radeon_ps requested_ps = *rdev->pm.dpm.requested_ps;
  1396. struct radeon_ps *new_ps = &requested_ps;
  1397. kv_update_requested_ps(rdev, new_ps);
  1398. kv_apply_state_adjust_rules(rdev,
  1399. &pi->requested_rps,
  1400. &pi->current_rps);
  1401. return 0;
  1402. }
  1403. int kv_dpm_set_power_state(struct radeon_device *rdev)
  1404. {
  1405. struct kv_power_info *pi = kv_get_pi(rdev);
  1406. struct radeon_ps *new_ps = &pi->requested_rps;
  1407. struct radeon_ps *old_ps = &pi->current_rps;
  1408. int ret;
  1409. if (pi->bapm_enable) {
  1410. ret = kv_smc_bapm_enable(rdev, rdev->pm.dpm.ac_power);
  1411. if (ret) {
  1412. DRM_ERROR("kv_smc_bapm_enable failed\n");
  1413. return ret;
  1414. }
  1415. }
  1416. if (rdev->family == CHIP_KABINI || rdev->family == CHIP_MULLINS) {
  1417. if (pi->enable_dpm) {
  1418. kv_set_valid_clock_range(rdev, new_ps);
  1419. kv_update_dfs_bypass_settings(rdev, new_ps);
  1420. ret = kv_calculate_ds_divider(rdev);
  1421. if (ret) {
  1422. DRM_ERROR("kv_calculate_ds_divider failed\n");
  1423. return ret;
  1424. }
  1425. kv_calculate_nbps_level_settings(rdev);
  1426. kv_calculate_dpm_settings(rdev);
  1427. kv_force_lowest_valid(rdev);
  1428. kv_enable_new_levels(rdev);
  1429. kv_upload_dpm_settings(rdev);
  1430. kv_program_nbps_index_settings(rdev, new_ps);
  1431. kv_unforce_levels(rdev);
  1432. kv_set_enabled_levels(rdev);
  1433. kv_force_lowest_valid(rdev);
  1434. kv_unforce_levels(rdev);
  1435. ret = kv_update_vce_dpm(rdev, new_ps, old_ps);
  1436. if (ret) {
  1437. DRM_ERROR("kv_update_vce_dpm failed\n");
  1438. return ret;
  1439. }
  1440. kv_update_sclk_t(rdev);
  1441. if (rdev->family == CHIP_MULLINS)
  1442. kv_enable_nb_dpm(rdev, true);
  1443. }
  1444. } else {
  1445. if (pi->enable_dpm) {
  1446. kv_set_valid_clock_range(rdev, new_ps);
  1447. kv_update_dfs_bypass_settings(rdev, new_ps);
  1448. ret = kv_calculate_ds_divider(rdev);
  1449. if (ret) {
  1450. DRM_ERROR("kv_calculate_ds_divider failed\n");
  1451. return ret;
  1452. }
  1453. kv_calculate_nbps_level_settings(rdev);
  1454. kv_calculate_dpm_settings(rdev);
  1455. kv_freeze_sclk_dpm(rdev, true);
  1456. kv_upload_dpm_settings(rdev);
  1457. kv_program_nbps_index_settings(rdev, new_ps);
  1458. kv_freeze_sclk_dpm(rdev, false);
  1459. kv_set_enabled_levels(rdev);
  1460. ret = kv_update_vce_dpm(rdev, new_ps, old_ps);
  1461. if (ret) {
  1462. DRM_ERROR("kv_update_vce_dpm failed\n");
  1463. return ret;
  1464. }
  1465. kv_update_acp_boot_level(rdev);
  1466. kv_update_sclk_t(rdev);
  1467. kv_enable_nb_dpm(rdev, true);
  1468. }
  1469. }
  1470. return 0;
  1471. }
  1472. void kv_dpm_post_set_power_state(struct radeon_device *rdev)
  1473. {
  1474. struct kv_power_info *pi = kv_get_pi(rdev);
  1475. struct radeon_ps *new_ps = &pi->requested_rps;
  1476. kv_update_current_ps(rdev, new_ps);
  1477. }
  1478. void kv_dpm_setup_asic(struct radeon_device *rdev)
  1479. {
  1480. sumo_take_smu_control(rdev, true);
  1481. kv_init_powergate_state(rdev);
  1482. kv_init_sclk_t(rdev);
  1483. }
  1484. //XXX use sumo_dpm_display_configuration_changed
  1485. static void kv_construct_max_power_limits_table(struct radeon_device *rdev,
  1486. struct radeon_clock_and_voltage_limits *table)
  1487. {
  1488. struct kv_power_info *pi = kv_get_pi(rdev);
  1489. if (pi->sys_info.sclk_voltage_mapping_table.num_max_dpm_entries > 0) {
  1490. int idx = pi->sys_info.sclk_voltage_mapping_table.num_max_dpm_entries - 1;
  1491. table->sclk =
  1492. pi->sys_info.sclk_voltage_mapping_table.entries[idx].sclk_frequency;
  1493. table->vddc =
  1494. kv_convert_2bit_index_to_voltage(rdev,
  1495. pi->sys_info.sclk_voltage_mapping_table.entries[idx].vid_2bit);
  1496. }
  1497. table->mclk = pi->sys_info.nbp_memory_clock[0];
  1498. }
  1499. static void kv_patch_voltage_values(struct radeon_device *rdev)
  1500. {
  1501. int i;
  1502. struct radeon_uvd_clock_voltage_dependency_table *uvd_table =
  1503. &rdev->pm.dpm.dyn_state.uvd_clock_voltage_dependency_table;
  1504. struct radeon_vce_clock_voltage_dependency_table *vce_table =
  1505. &rdev->pm.dpm.dyn_state.vce_clock_voltage_dependency_table;
  1506. struct radeon_clock_voltage_dependency_table *samu_table =
  1507. &rdev->pm.dpm.dyn_state.samu_clock_voltage_dependency_table;
  1508. struct radeon_clock_voltage_dependency_table *acp_table =
  1509. &rdev->pm.dpm.dyn_state.acp_clock_voltage_dependency_table;
  1510. if (uvd_table->count) {
  1511. for (i = 0; i < uvd_table->count; i++)
  1512. uvd_table->entries[i].v =
  1513. kv_convert_8bit_index_to_voltage(rdev,
  1514. uvd_table->entries[i].v);
  1515. }
  1516. if (vce_table->count) {
  1517. for (i = 0; i < vce_table->count; i++)
  1518. vce_table->entries[i].v =
  1519. kv_convert_8bit_index_to_voltage(rdev,
  1520. vce_table->entries[i].v);
  1521. }
  1522. if (samu_table->count) {
  1523. for (i = 0; i < samu_table->count; i++)
  1524. samu_table->entries[i].v =
  1525. kv_convert_8bit_index_to_voltage(rdev,
  1526. samu_table->entries[i].v);
  1527. }
  1528. if (acp_table->count) {
  1529. for (i = 0; i < acp_table->count; i++)
  1530. acp_table->entries[i].v =
  1531. kv_convert_8bit_index_to_voltage(rdev,
  1532. acp_table->entries[i].v);
  1533. }
  1534. }
  1535. static void kv_construct_boot_state(struct radeon_device *rdev)
  1536. {
  1537. struct kv_power_info *pi = kv_get_pi(rdev);
  1538. pi->boot_pl.sclk = pi->sys_info.bootup_sclk;
  1539. pi->boot_pl.vddc_index = pi->sys_info.bootup_nb_voltage_index;
  1540. pi->boot_pl.ds_divider_index = 0;
  1541. pi->boot_pl.ss_divider_index = 0;
  1542. pi->boot_pl.allow_gnb_slow = 1;
  1543. pi->boot_pl.force_nbp_state = 0;
  1544. pi->boot_pl.display_wm = 0;
  1545. pi->boot_pl.vce_wm = 0;
  1546. }
  1547. static int kv_force_dpm_highest(struct radeon_device *rdev)
  1548. {
  1549. int ret;
  1550. u32 enable_mask, i;
  1551. ret = kv_dpm_get_enable_mask(rdev, &enable_mask);
  1552. if (ret)
  1553. return ret;
  1554. for (i = SMU7_MAX_LEVELS_GRAPHICS - 1; i > 0; i--) {
  1555. if (enable_mask & (1 << i))
  1556. break;
  1557. }
  1558. if (rdev->family == CHIP_KABINI || rdev->family == CHIP_MULLINS)
  1559. return kv_send_msg_to_smc_with_parameter(rdev, PPSMC_MSG_DPM_ForceState, i);
  1560. else
  1561. return kv_set_enabled_level(rdev, i);
  1562. }
  1563. static int kv_force_dpm_lowest(struct radeon_device *rdev)
  1564. {
  1565. int ret;
  1566. u32 enable_mask, i;
  1567. ret = kv_dpm_get_enable_mask(rdev, &enable_mask);
  1568. if (ret)
  1569. return ret;
  1570. for (i = 0; i < SMU7_MAX_LEVELS_GRAPHICS; i++) {
  1571. if (enable_mask & (1 << i))
  1572. break;
  1573. }
  1574. if (rdev->family == CHIP_KABINI || rdev->family == CHIP_MULLINS)
  1575. return kv_send_msg_to_smc_with_parameter(rdev, PPSMC_MSG_DPM_ForceState, i);
  1576. else
  1577. return kv_set_enabled_level(rdev, i);
  1578. }
  1579. static u8 kv_get_sleep_divider_id_from_clock(struct radeon_device *rdev,
  1580. u32 sclk, u32 min_sclk_in_sr)
  1581. {
  1582. struct kv_power_info *pi = kv_get_pi(rdev);
  1583. u32 i;
  1584. u32 temp;
  1585. u32 min = (min_sclk_in_sr > KV_MINIMUM_ENGINE_CLOCK) ?
  1586. min_sclk_in_sr : KV_MINIMUM_ENGINE_CLOCK;
  1587. if (sclk < min)
  1588. return 0;
  1589. if (!pi->caps_sclk_ds)
  1590. return 0;
  1591. for (i = KV_MAX_DEEPSLEEP_DIVIDER_ID; i > 0; i--) {
  1592. temp = sclk / sumo_get_sleep_divider_from_id(i);
  1593. if (temp >= min)
  1594. break;
  1595. }
  1596. return (u8)i;
  1597. }
  1598. static int kv_get_high_voltage_limit(struct radeon_device *rdev, int *limit)
  1599. {
  1600. struct kv_power_info *pi = kv_get_pi(rdev);
  1601. struct radeon_clock_voltage_dependency_table *table =
  1602. &rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
  1603. int i;
  1604. if (table && table->count) {
  1605. for (i = table->count - 1; i >= 0; i--) {
  1606. if (pi->high_voltage_t &&
  1607. (kv_convert_8bit_index_to_voltage(rdev, table->entries[i].v) <=
  1608. pi->high_voltage_t)) {
  1609. *limit = i;
  1610. return 0;
  1611. }
  1612. }
  1613. } else {
  1614. struct sumo_sclk_voltage_mapping_table *table =
  1615. &pi->sys_info.sclk_voltage_mapping_table;
  1616. for (i = table->num_max_dpm_entries - 1; i >= 0; i--) {
  1617. if (pi->high_voltage_t &&
  1618. (kv_convert_2bit_index_to_voltage(rdev, table->entries[i].vid_2bit) <=
  1619. pi->high_voltage_t)) {
  1620. *limit = i;
  1621. return 0;
  1622. }
  1623. }
  1624. }
  1625. *limit = 0;
  1626. return 0;
  1627. }
  1628. static void kv_apply_state_adjust_rules(struct radeon_device *rdev,
  1629. struct radeon_ps *new_rps,
  1630. struct radeon_ps *old_rps)
  1631. {
  1632. struct kv_ps *ps = kv_get_ps(new_rps);
  1633. struct kv_power_info *pi = kv_get_pi(rdev);
  1634. u32 min_sclk = 10000; /* ??? */
  1635. u32 sclk, mclk = 0;
  1636. int i, limit;
  1637. bool force_high;
  1638. struct radeon_clock_voltage_dependency_table *table =
  1639. &rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
  1640. u32 stable_p_state_sclk = 0;
  1641. struct radeon_clock_and_voltage_limits *max_limits =
  1642. &rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac;
  1643. if (new_rps->vce_active) {
  1644. new_rps->evclk = rdev->pm.dpm.vce_states[rdev->pm.dpm.vce_level].evclk;
  1645. new_rps->ecclk = rdev->pm.dpm.vce_states[rdev->pm.dpm.vce_level].ecclk;
  1646. } else {
  1647. new_rps->evclk = 0;
  1648. new_rps->ecclk = 0;
  1649. }
  1650. mclk = max_limits->mclk;
  1651. sclk = min_sclk;
  1652. if (pi->caps_stable_p_state) {
  1653. stable_p_state_sclk = (max_limits->sclk * 75) / 100;
  1654. for (i = table->count - 1; i >= 0; i--) {
  1655. if (stable_p_state_sclk >= table->entries[i].clk) {
  1656. stable_p_state_sclk = table->entries[i].clk;
  1657. break;
  1658. }
  1659. }
  1660. if (i > 0)
  1661. stable_p_state_sclk = table->entries[0].clk;
  1662. sclk = stable_p_state_sclk;
  1663. }
  1664. if (new_rps->vce_active) {
  1665. if (sclk < rdev->pm.dpm.vce_states[rdev->pm.dpm.vce_level].sclk)
  1666. sclk = rdev->pm.dpm.vce_states[rdev->pm.dpm.vce_level].sclk;
  1667. }
  1668. ps->need_dfs_bypass = true;
  1669. for (i = 0; i < ps->num_levels; i++) {
  1670. if (ps->levels[i].sclk < sclk)
  1671. ps->levels[i].sclk = sclk;
  1672. }
  1673. if (table && table->count) {
  1674. for (i = 0; i < ps->num_levels; i++) {
  1675. if (pi->high_voltage_t &&
  1676. (pi->high_voltage_t <
  1677. kv_convert_8bit_index_to_voltage(rdev, ps->levels[i].vddc_index))) {
  1678. kv_get_high_voltage_limit(rdev, &limit);
  1679. ps->levels[i].sclk = table->entries[limit].clk;
  1680. }
  1681. }
  1682. } else {
  1683. struct sumo_sclk_voltage_mapping_table *table =
  1684. &pi->sys_info.sclk_voltage_mapping_table;
  1685. for (i = 0; i < ps->num_levels; i++) {
  1686. if (pi->high_voltage_t &&
  1687. (pi->high_voltage_t <
  1688. kv_convert_8bit_index_to_voltage(rdev, ps->levels[i].vddc_index))) {
  1689. kv_get_high_voltage_limit(rdev, &limit);
  1690. ps->levels[i].sclk = table->entries[limit].sclk_frequency;
  1691. }
  1692. }
  1693. }
  1694. if (pi->caps_stable_p_state) {
  1695. for (i = 0; i < ps->num_levels; i++) {
  1696. ps->levels[i].sclk = stable_p_state_sclk;
  1697. }
  1698. }
  1699. pi->video_start = new_rps->dclk || new_rps->vclk ||
  1700. new_rps->evclk || new_rps->ecclk;
  1701. if ((new_rps->class & ATOM_PPLIB_CLASSIFICATION_UI_MASK) ==
  1702. ATOM_PPLIB_CLASSIFICATION_UI_BATTERY)
  1703. pi->battery_state = true;
  1704. else
  1705. pi->battery_state = false;
  1706. if (rdev->family == CHIP_KABINI || rdev->family == CHIP_MULLINS) {
  1707. ps->dpm0_pg_nb_ps_lo = 0x1;
  1708. ps->dpm0_pg_nb_ps_hi = 0x0;
  1709. ps->dpmx_nb_ps_lo = 0x1;
  1710. ps->dpmx_nb_ps_hi = 0x0;
  1711. } else {
  1712. ps->dpm0_pg_nb_ps_lo = 0x3;
  1713. ps->dpm0_pg_nb_ps_hi = 0x0;
  1714. ps->dpmx_nb_ps_lo = 0x3;
  1715. ps->dpmx_nb_ps_hi = 0x0;
  1716. if (pi->sys_info.nb_dpm_enable) {
  1717. force_high = (mclk >= pi->sys_info.nbp_memory_clock[3]) ||
  1718. pi->video_start || (rdev->pm.dpm.new_active_crtc_count >= 3) ||
  1719. pi->disable_nb_ps3_in_battery;
  1720. ps->dpm0_pg_nb_ps_lo = force_high ? 0x2 : 0x3;
  1721. ps->dpm0_pg_nb_ps_hi = 0x2;
  1722. ps->dpmx_nb_ps_lo = force_high ? 0x2 : 0x3;
  1723. ps->dpmx_nb_ps_hi = 0x2;
  1724. }
  1725. }
  1726. }
  1727. static void kv_dpm_power_level_enabled_for_throttle(struct radeon_device *rdev,
  1728. u32 index, bool enable)
  1729. {
  1730. struct kv_power_info *pi = kv_get_pi(rdev);
  1731. pi->graphics_level[index].EnabledForThrottle = enable ? 1 : 0;
  1732. }
  1733. static int kv_calculate_ds_divider(struct radeon_device *rdev)
  1734. {
  1735. struct kv_power_info *pi = kv_get_pi(rdev);
  1736. u32 sclk_in_sr = 10000; /* ??? */
  1737. u32 i;
  1738. if (pi->lowest_valid > pi->highest_valid)
  1739. return -EINVAL;
  1740. for (i = pi->lowest_valid; i <= pi->highest_valid; i++) {
  1741. pi->graphics_level[i].DeepSleepDivId =
  1742. kv_get_sleep_divider_id_from_clock(rdev,
  1743. be32_to_cpu(pi->graphics_level[i].SclkFrequency),
  1744. sclk_in_sr);
  1745. }
  1746. return 0;
  1747. }
  1748. static int kv_calculate_nbps_level_settings(struct radeon_device *rdev)
  1749. {
  1750. struct kv_power_info *pi = kv_get_pi(rdev);
  1751. u32 i;
  1752. bool force_high;
  1753. struct radeon_clock_and_voltage_limits *max_limits =
  1754. &rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac;
  1755. u32 mclk = max_limits->mclk;
  1756. if (pi->lowest_valid > pi->highest_valid)
  1757. return -EINVAL;
  1758. if (rdev->family == CHIP_KABINI || rdev->family == CHIP_MULLINS) {
  1759. for (i = pi->lowest_valid; i <= pi->highest_valid; i++) {
  1760. pi->graphics_level[i].GnbSlow = 1;
  1761. pi->graphics_level[i].ForceNbPs1 = 0;
  1762. pi->graphics_level[i].UpH = 0;
  1763. }
  1764. if (!pi->sys_info.nb_dpm_enable)
  1765. return 0;
  1766. force_high = ((mclk >= pi->sys_info.nbp_memory_clock[3]) ||
  1767. (rdev->pm.dpm.new_active_crtc_count >= 3) || pi->video_start);
  1768. if (force_high) {
  1769. for (i = pi->lowest_valid; i <= pi->highest_valid; i++)
  1770. pi->graphics_level[i].GnbSlow = 0;
  1771. } else {
  1772. if (pi->battery_state)
  1773. pi->graphics_level[0].ForceNbPs1 = 1;
  1774. pi->graphics_level[1].GnbSlow = 0;
  1775. pi->graphics_level[2].GnbSlow = 0;
  1776. pi->graphics_level[3].GnbSlow = 0;
  1777. pi->graphics_level[4].GnbSlow = 0;
  1778. }
  1779. } else {
  1780. for (i = pi->lowest_valid; i <= pi->highest_valid; i++) {
  1781. pi->graphics_level[i].GnbSlow = 1;
  1782. pi->graphics_level[i].ForceNbPs1 = 0;
  1783. pi->graphics_level[i].UpH = 0;
  1784. }
  1785. if (pi->sys_info.nb_dpm_enable && pi->battery_state) {
  1786. pi->graphics_level[pi->lowest_valid].UpH = 0x28;
  1787. pi->graphics_level[pi->lowest_valid].GnbSlow = 0;
  1788. if (pi->lowest_valid != pi->highest_valid)
  1789. pi->graphics_level[pi->lowest_valid].ForceNbPs1 = 1;
  1790. }
  1791. }
  1792. return 0;
  1793. }
  1794. static int kv_calculate_dpm_settings(struct radeon_device *rdev)
  1795. {
  1796. struct kv_power_info *pi = kv_get_pi(rdev);
  1797. u32 i;
  1798. if (pi->lowest_valid > pi->highest_valid)
  1799. return -EINVAL;
  1800. for (i = pi->lowest_valid; i <= pi->highest_valid; i++)
  1801. pi->graphics_level[i].DisplayWatermark = (i == pi->highest_valid) ? 1 : 0;
  1802. return 0;
  1803. }
  1804. static void kv_init_graphics_levels(struct radeon_device *rdev)
  1805. {
  1806. struct kv_power_info *pi = kv_get_pi(rdev);
  1807. u32 i;
  1808. struct radeon_clock_voltage_dependency_table *table =
  1809. &rdev->pm.dpm.dyn_state.vddc_dependency_on_sclk;
  1810. if (table && table->count) {
  1811. u32 vid_2bit;
  1812. pi->graphics_dpm_level_count = 0;
  1813. for (i = 0; i < table->count; i++) {
  1814. if (pi->high_voltage_t &&
  1815. (pi->high_voltage_t <
  1816. kv_convert_8bit_index_to_voltage(rdev, table->entries[i].v)))
  1817. break;
  1818. kv_set_divider_value(rdev, i, table->entries[i].clk);
  1819. vid_2bit = kv_convert_vid7_to_vid2(rdev,
  1820. &pi->sys_info.vid_mapping_table,
  1821. table->entries[i].v);
  1822. kv_set_vid(rdev, i, vid_2bit);
  1823. kv_set_at(rdev, i, pi->at[i]);
  1824. kv_dpm_power_level_enabled_for_throttle(rdev, i, true);
  1825. pi->graphics_dpm_level_count++;
  1826. }
  1827. } else {
  1828. struct sumo_sclk_voltage_mapping_table *table =
  1829. &pi->sys_info.sclk_voltage_mapping_table;
  1830. pi->graphics_dpm_level_count = 0;
  1831. for (i = 0; i < table->num_max_dpm_entries; i++) {
  1832. if (pi->high_voltage_t &&
  1833. pi->high_voltage_t <
  1834. kv_convert_2bit_index_to_voltage(rdev, table->entries[i].vid_2bit))
  1835. break;
  1836. kv_set_divider_value(rdev, i, table->entries[i].sclk_frequency);
  1837. kv_set_vid(rdev, i, table->entries[i].vid_2bit);
  1838. kv_set_at(rdev, i, pi->at[i]);
  1839. kv_dpm_power_level_enabled_for_throttle(rdev, i, true);
  1840. pi->graphics_dpm_level_count++;
  1841. }
  1842. }
  1843. for (i = 0; i < SMU7_MAX_LEVELS_GRAPHICS; i++)
  1844. kv_dpm_power_level_enable(rdev, i, false);
  1845. }
  1846. static void kv_enable_new_levels(struct radeon_device *rdev)
  1847. {
  1848. struct kv_power_info *pi = kv_get_pi(rdev);
  1849. u32 i;
  1850. for (i = 0; i < SMU7_MAX_LEVELS_GRAPHICS; i++) {
  1851. if (i >= pi->lowest_valid && i <= pi->highest_valid)
  1852. kv_dpm_power_level_enable(rdev, i, true);
  1853. }
  1854. }
  1855. static int kv_set_enabled_level(struct radeon_device *rdev, u32 level)
  1856. {
  1857. u32 new_mask = (1 << level);
  1858. return kv_send_msg_to_smc_with_parameter(rdev,
  1859. PPSMC_MSG_SCLKDPM_SetEnabledMask,
  1860. new_mask);
  1861. }
  1862. static int kv_set_enabled_levels(struct radeon_device *rdev)
  1863. {
  1864. struct kv_power_info *pi = kv_get_pi(rdev);
  1865. u32 i, new_mask = 0;
  1866. for (i = pi->lowest_valid; i <= pi->highest_valid; i++)
  1867. new_mask |= (1 << i);
  1868. return kv_send_msg_to_smc_with_parameter(rdev,
  1869. PPSMC_MSG_SCLKDPM_SetEnabledMask,
  1870. new_mask);
  1871. }
  1872. static void kv_program_nbps_index_settings(struct radeon_device *rdev,
  1873. struct radeon_ps *new_rps)
  1874. {
  1875. struct kv_ps *new_ps = kv_get_ps(new_rps);
  1876. struct kv_power_info *pi = kv_get_pi(rdev);
  1877. u32 nbdpmconfig1;
  1878. if (rdev->family == CHIP_KABINI || rdev->family == CHIP_MULLINS)
  1879. return;
  1880. if (pi->sys_info.nb_dpm_enable) {
  1881. nbdpmconfig1 = RREG32_SMC(NB_DPM_CONFIG_1);
  1882. nbdpmconfig1 &= ~(Dpm0PgNbPsLo_MASK | Dpm0PgNbPsHi_MASK |
  1883. DpmXNbPsLo_MASK | DpmXNbPsHi_MASK);
  1884. nbdpmconfig1 |= (Dpm0PgNbPsLo(new_ps->dpm0_pg_nb_ps_lo) |
  1885. Dpm0PgNbPsHi(new_ps->dpm0_pg_nb_ps_hi) |
  1886. DpmXNbPsLo(new_ps->dpmx_nb_ps_lo) |
  1887. DpmXNbPsHi(new_ps->dpmx_nb_ps_hi));
  1888. WREG32_SMC(NB_DPM_CONFIG_1, nbdpmconfig1);
  1889. }
  1890. }
  1891. static int kv_set_thermal_temperature_range(struct radeon_device *rdev,
  1892. int min_temp, int max_temp)
  1893. {
  1894. int low_temp = 0 * 1000;
  1895. int high_temp = 255 * 1000;
  1896. u32 tmp;
  1897. if (low_temp < min_temp)
  1898. low_temp = min_temp;
  1899. if (high_temp > max_temp)
  1900. high_temp = max_temp;
  1901. if (high_temp < low_temp) {
  1902. DRM_ERROR("invalid thermal range: %d - %d\n", low_temp, high_temp);
  1903. return -EINVAL;
  1904. }
  1905. tmp = RREG32_SMC(CG_THERMAL_INT_CTRL);
  1906. tmp &= ~(DIG_THERM_INTH_MASK | DIG_THERM_INTL_MASK);
  1907. tmp |= (DIG_THERM_INTH(49 + (high_temp / 1000)) |
  1908. DIG_THERM_INTL(49 + (low_temp / 1000)));
  1909. WREG32_SMC(CG_THERMAL_INT_CTRL, tmp);
  1910. rdev->pm.dpm.thermal.min_temp = low_temp;
  1911. rdev->pm.dpm.thermal.max_temp = high_temp;
  1912. return 0;
  1913. }
  1914. union igp_info {
  1915. struct _ATOM_INTEGRATED_SYSTEM_INFO info;
  1916. struct _ATOM_INTEGRATED_SYSTEM_INFO_V2 info_2;
  1917. struct _ATOM_INTEGRATED_SYSTEM_INFO_V5 info_5;
  1918. struct _ATOM_INTEGRATED_SYSTEM_INFO_V6 info_6;
  1919. struct _ATOM_INTEGRATED_SYSTEM_INFO_V1_7 info_7;
  1920. struct _ATOM_INTEGRATED_SYSTEM_INFO_V1_8 info_8;
  1921. };
  1922. static int kv_parse_sys_info_table(struct radeon_device *rdev)
  1923. {
  1924. struct kv_power_info *pi = kv_get_pi(rdev);
  1925. struct radeon_mode_info *mode_info = &rdev->mode_info;
  1926. int index = GetIndexIntoMasterTable(DATA, IntegratedSystemInfo);
  1927. union igp_info *igp_info;
  1928. u8 frev, crev;
  1929. u16 data_offset;
  1930. int i;
  1931. if (atom_parse_data_header(mode_info->atom_context, index, NULL,
  1932. &frev, &crev, &data_offset)) {
  1933. igp_info = (union igp_info *)(mode_info->atom_context->bios +
  1934. data_offset);
  1935. if (crev != 8) {
  1936. DRM_ERROR("Unsupported IGP table: %d %d\n", frev, crev);
  1937. return -EINVAL;
  1938. }
  1939. pi->sys_info.bootup_sclk = le32_to_cpu(igp_info->info_8.ulBootUpEngineClock);
  1940. pi->sys_info.bootup_uma_clk = le32_to_cpu(igp_info->info_8.ulBootUpUMAClock);
  1941. pi->sys_info.bootup_nb_voltage_index =
  1942. le16_to_cpu(igp_info->info_8.usBootUpNBVoltage);
  1943. if (igp_info->info_8.ucHtcTmpLmt == 0)
  1944. pi->sys_info.htc_tmp_lmt = 203;
  1945. else
  1946. pi->sys_info.htc_tmp_lmt = igp_info->info_8.ucHtcTmpLmt;
  1947. if (igp_info->info_8.ucHtcHystLmt == 0)
  1948. pi->sys_info.htc_hyst_lmt = 5;
  1949. else
  1950. pi->sys_info.htc_hyst_lmt = igp_info->info_8.ucHtcHystLmt;
  1951. if (pi->sys_info.htc_tmp_lmt <= pi->sys_info.htc_hyst_lmt) {
  1952. DRM_ERROR("The htcTmpLmt should be larger than htcHystLmt.\n");
  1953. }
  1954. if (le32_to_cpu(igp_info->info_8.ulSystemConfig) & (1 << 3))
  1955. pi->sys_info.nb_dpm_enable = true;
  1956. else
  1957. pi->sys_info.nb_dpm_enable = false;
  1958. for (i = 0; i < KV_NUM_NBPSTATES; i++) {
  1959. pi->sys_info.nbp_memory_clock[i] =
  1960. le32_to_cpu(igp_info->info_8.ulNbpStateMemclkFreq[i]);
  1961. pi->sys_info.nbp_n_clock[i] =
  1962. le32_to_cpu(igp_info->info_8.ulNbpStateNClkFreq[i]);
  1963. }
  1964. if (le32_to_cpu(igp_info->info_8.ulGPUCapInfo) &
  1965. SYS_INFO_GPUCAPS__ENABEL_DFS_BYPASS)
  1966. pi->caps_enable_dfs_bypass = true;
  1967. sumo_construct_sclk_voltage_mapping_table(rdev,
  1968. &pi->sys_info.sclk_voltage_mapping_table,
  1969. igp_info->info_8.sAvail_SCLK);
  1970. sumo_construct_vid_mapping_table(rdev,
  1971. &pi->sys_info.vid_mapping_table,
  1972. igp_info->info_8.sAvail_SCLK);
  1973. kv_construct_max_power_limits_table(rdev,
  1974. &rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac);
  1975. }
  1976. return 0;
  1977. }
  1978. union power_info {
  1979. struct _ATOM_POWERPLAY_INFO info;
  1980. struct _ATOM_POWERPLAY_INFO_V2 info_2;
  1981. struct _ATOM_POWERPLAY_INFO_V3 info_3;
  1982. struct _ATOM_PPLIB_POWERPLAYTABLE pplib;
  1983. struct _ATOM_PPLIB_POWERPLAYTABLE2 pplib2;
  1984. struct _ATOM_PPLIB_POWERPLAYTABLE3 pplib3;
  1985. };
  1986. union pplib_clock_info {
  1987. struct _ATOM_PPLIB_R600_CLOCK_INFO r600;
  1988. struct _ATOM_PPLIB_RS780_CLOCK_INFO rs780;
  1989. struct _ATOM_PPLIB_EVERGREEN_CLOCK_INFO evergreen;
  1990. struct _ATOM_PPLIB_SUMO_CLOCK_INFO sumo;
  1991. };
  1992. union pplib_power_state {
  1993. struct _ATOM_PPLIB_STATE v1;
  1994. struct _ATOM_PPLIB_STATE_V2 v2;
  1995. };
  1996. static void kv_patch_boot_state(struct radeon_device *rdev,
  1997. struct kv_ps *ps)
  1998. {
  1999. struct kv_power_info *pi = kv_get_pi(rdev);
  2000. ps->num_levels = 1;
  2001. ps->levels[0] = pi->boot_pl;
  2002. }
  2003. static void kv_parse_pplib_non_clock_info(struct radeon_device *rdev,
  2004. struct radeon_ps *rps,
  2005. struct _ATOM_PPLIB_NONCLOCK_INFO *non_clock_info,
  2006. u8 table_rev)
  2007. {
  2008. struct kv_ps *ps = kv_get_ps(rps);
  2009. rps->caps = le32_to_cpu(non_clock_info->ulCapsAndSettings);
  2010. rps->class = le16_to_cpu(non_clock_info->usClassification);
  2011. rps->class2 = le16_to_cpu(non_clock_info->usClassification2);
  2012. if (ATOM_PPLIB_NONCLOCKINFO_VER1 < table_rev) {
  2013. rps->vclk = le32_to_cpu(non_clock_info->ulVCLK);
  2014. rps->dclk = le32_to_cpu(non_clock_info->ulDCLK);
  2015. } else {
  2016. rps->vclk = 0;
  2017. rps->dclk = 0;
  2018. }
  2019. if (rps->class & ATOM_PPLIB_CLASSIFICATION_BOOT) {
  2020. rdev->pm.dpm.boot_ps = rps;
  2021. kv_patch_boot_state(rdev, ps);
  2022. }
  2023. if (rps->class & ATOM_PPLIB_CLASSIFICATION_UVDSTATE)
  2024. rdev->pm.dpm.uvd_ps = rps;
  2025. }
  2026. static void kv_parse_pplib_clock_info(struct radeon_device *rdev,
  2027. struct radeon_ps *rps, int index,
  2028. union pplib_clock_info *clock_info)
  2029. {
  2030. struct kv_power_info *pi = kv_get_pi(rdev);
  2031. struct kv_ps *ps = kv_get_ps(rps);
  2032. struct kv_pl *pl = &ps->levels[index];
  2033. u32 sclk;
  2034. sclk = le16_to_cpu(clock_info->sumo.usEngineClockLow);
  2035. sclk |= clock_info->sumo.ucEngineClockHigh << 16;
  2036. pl->sclk = sclk;
  2037. pl->vddc_index = clock_info->sumo.vddcIndex;
  2038. ps->num_levels = index + 1;
  2039. if (pi->caps_sclk_ds) {
  2040. pl->ds_divider_index = 5;
  2041. pl->ss_divider_index = 5;
  2042. }
  2043. }
  2044. static int kv_parse_power_table(struct radeon_device *rdev)
  2045. {
  2046. struct radeon_mode_info *mode_info = &rdev->mode_info;
  2047. struct _ATOM_PPLIB_NONCLOCK_INFO *non_clock_info;
  2048. union pplib_power_state *power_state;
  2049. int i, j, k, non_clock_array_index, clock_array_index;
  2050. union pplib_clock_info *clock_info;
  2051. struct _StateArray *state_array;
  2052. struct _ClockInfoArray *clock_info_array;
  2053. struct _NonClockInfoArray *non_clock_info_array;
  2054. union power_info *power_info;
  2055. int index = GetIndexIntoMasterTable(DATA, PowerPlayInfo);
  2056. u16 data_offset;
  2057. u8 frev, crev;
  2058. u8 *power_state_offset;
  2059. struct kv_ps *ps;
  2060. if (!atom_parse_data_header(mode_info->atom_context, index, NULL,
  2061. &frev, &crev, &data_offset))
  2062. return -EINVAL;
  2063. power_info = (union power_info *)(mode_info->atom_context->bios + data_offset);
  2064. state_array = (struct _StateArray *)
  2065. (mode_info->atom_context->bios + data_offset +
  2066. le16_to_cpu(power_info->pplib.usStateArrayOffset));
  2067. clock_info_array = (struct _ClockInfoArray *)
  2068. (mode_info->atom_context->bios + data_offset +
  2069. le16_to_cpu(power_info->pplib.usClockInfoArrayOffset));
  2070. non_clock_info_array = (struct _NonClockInfoArray *)
  2071. (mode_info->atom_context->bios + data_offset +
  2072. le16_to_cpu(power_info->pplib.usNonClockInfoArrayOffset));
  2073. rdev->pm.dpm.ps = kcalloc(state_array->ucNumEntries,
  2074. sizeof(struct radeon_ps),
  2075. GFP_KERNEL);
  2076. if (!rdev->pm.dpm.ps)
  2077. return -ENOMEM;
  2078. power_state_offset = (u8 *)state_array->states;
  2079. for (i = 0; i < state_array->ucNumEntries; i++) {
  2080. u8 *idx;
  2081. power_state = (union pplib_power_state *)power_state_offset;
  2082. non_clock_array_index = power_state->v2.nonClockInfoIndex;
  2083. non_clock_info = (struct _ATOM_PPLIB_NONCLOCK_INFO *)
  2084. &non_clock_info_array->nonClockInfo[non_clock_array_index];
  2085. if (!rdev->pm.power_state[i].clock_info)
  2086. return -EINVAL;
  2087. ps = kzalloc(sizeof(struct kv_ps), GFP_KERNEL);
  2088. if (ps == NULL) {
  2089. kfree(rdev->pm.dpm.ps);
  2090. return -ENOMEM;
  2091. }
  2092. rdev->pm.dpm.ps[i].ps_priv = ps;
  2093. k = 0;
  2094. idx = (u8 *)&power_state->v2.clockInfoIndex[0];
  2095. for (j = 0; j < power_state->v2.ucNumDPMLevels; j++) {
  2096. clock_array_index = idx[j];
  2097. if (clock_array_index >= clock_info_array->ucNumEntries)
  2098. continue;
  2099. if (k >= SUMO_MAX_HARDWARE_POWERLEVELS)
  2100. break;
  2101. clock_info = (union pplib_clock_info *)
  2102. ((u8 *)&clock_info_array->clockInfo[0] +
  2103. (clock_array_index * clock_info_array->ucEntrySize));
  2104. kv_parse_pplib_clock_info(rdev,
  2105. &rdev->pm.dpm.ps[i], k,
  2106. clock_info);
  2107. k++;
  2108. }
  2109. kv_parse_pplib_non_clock_info(rdev, &rdev->pm.dpm.ps[i],
  2110. non_clock_info,
  2111. non_clock_info_array->ucEntrySize);
  2112. power_state_offset += 2 + power_state->v2.ucNumDPMLevels;
  2113. }
  2114. rdev->pm.dpm.num_ps = state_array->ucNumEntries;
  2115. /* fill in the vce power states */
  2116. for (i = 0; i < RADEON_MAX_VCE_LEVELS; i++) {
  2117. u32 sclk;
  2118. clock_array_index = rdev->pm.dpm.vce_states[i].clk_idx;
  2119. clock_info = (union pplib_clock_info *)
  2120. &clock_info_array->clockInfo[clock_array_index * clock_info_array->ucEntrySize];
  2121. sclk = le16_to_cpu(clock_info->sumo.usEngineClockLow);
  2122. sclk |= clock_info->sumo.ucEngineClockHigh << 16;
  2123. rdev->pm.dpm.vce_states[i].sclk = sclk;
  2124. rdev->pm.dpm.vce_states[i].mclk = 0;
  2125. }
  2126. return 0;
  2127. }
  2128. int kv_dpm_init(struct radeon_device *rdev)
  2129. {
  2130. struct kv_power_info *pi;
  2131. int ret, i;
  2132. pi = kzalloc(sizeof(struct kv_power_info), GFP_KERNEL);
  2133. if (pi == NULL)
  2134. return -ENOMEM;
  2135. rdev->pm.dpm.priv = pi;
  2136. ret = r600_get_platform_caps(rdev);
  2137. if (ret)
  2138. return ret;
  2139. ret = r600_parse_extended_power_table(rdev);
  2140. if (ret)
  2141. return ret;
  2142. for (i = 0; i < SUMO_MAX_HARDWARE_POWERLEVELS; i++)
  2143. pi->at[i] = TRINITY_AT_DFLT;
  2144. pi->sram_end = SMC_RAM_END;
  2145. /* Enabling nb dpm on an asrock system prevents dpm from working */
  2146. if (rdev->pdev->subsystem_vendor == 0x1849)
  2147. pi->enable_nb_dpm = false;
  2148. else
  2149. pi->enable_nb_dpm = true;
  2150. pi->caps_power_containment = true;
  2151. pi->caps_cac = true;
  2152. pi->enable_didt = false;
  2153. if (pi->enable_didt) {
  2154. pi->caps_sq_ramping = true;
  2155. pi->caps_db_ramping = true;
  2156. pi->caps_td_ramping = true;
  2157. pi->caps_tcp_ramping = true;
  2158. }
  2159. pi->caps_sclk_ds = true;
  2160. pi->enable_auto_thermal_throttling = true;
  2161. pi->disable_nb_ps3_in_battery = false;
  2162. if (radeon_bapm == -1) {
  2163. /* only enable bapm on KB, ML by default */
  2164. if (rdev->family == CHIP_KABINI || rdev->family == CHIP_MULLINS)
  2165. pi->bapm_enable = true;
  2166. else
  2167. pi->bapm_enable = false;
  2168. } else if (radeon_bapm == 0) {
  2169. pi->bapm_enable = false;
  2170. } else {
  2171. pi->bapm_enable = true;
  2172. }
  2173. pi->voltage_drop_t = 0;
  2174. pi->caps_sclk_throttle_low_notification = false;
  2175. pi->caps_fps = false; /* true? */
  2176. pi->caps_uvd_pg = true;
  2177. pi->caps_uvd_dpm = true;
  2178. pi->caps_vce_pg = false; /* XXX true */
  2179. pi->caps_samu_pg = false;
  2180. pi->caps_acp_pg = false;
  2181. pi->caps_stable_p_state = false;
  2182. ret = kv_parse_sys_info_table(rdev);
  2183. if (ret)
  2184. return ret;
  2185. kv_patch_voltage_values(rdev);
  2186. kv_construct_boot_state(rdev);
  2187. ret = kv_parse_power_table(rdev);
  2188. if (ret)
  2189. return ret;
  2190. pi->enable_dpm = true;
  2191. return 0;
  2192. }
  2193. void kv_dpm_debugfs_print_current_performance_level(struct radeon_device *rdev,
  2194. struct seq_file *m)
  2195. {
  2196. struct kv_power_info *pi = kv_get_pi(rdev);
  2197. u32 current_index =
  2198. (RREG32_SMC(TARGET_AND_CURRENT_PROFILE_INDEX) & CURR_SCLK_INDEX_MASK) >>
  2199. CURR_SCLK_INDEX_SHIFT;
  2200. u32 sclk, tmp;
  2201. u16 vddc;
  2202. if (current_index >= SMU__NUM_SCLK_DPM_STATE) {
  2203. seq_printf(m, "invalid dpm profile %d\n", current_index);
  2204. } else {
  2205. sclk = be32_to_cpu(pi->graphics_level[current_index].SclkFrequency);
  2206. tmp = (RREG32_SMC(SMU_VOLTAGE_STATUS) & SMU_VOLTAGE_CURRENT_LEVEL_MASK) >>
  2207. SMU_VOLTAGE_CURRENT_LEVEL_SHIFT;
  2208. vddc = kv_convert_8bit_index_to_voltage(rdev, (u16)tmp);
  2209. seq_printf(m, "uvd %sabled\n", pi->uvd_power_gated ? "dis" : "en");
  2210. seq_printf(m, "vce %sabled\n", pi->vce_power_gated ? "dis" : "en");
  2211. seq_printf(m, "power level %d sclk: %u vddc: %u\n",
  2212. current_index, sclk, vddc);
  2213. }
  2214. }
  2215. u32 kv_dpm_get_current_sclk(struct radeon_device *rdev)
  2216. {
  2217. struct kv_power_info *pi = kv_get_pi(rdev);
  2218. u32 current_index =
  2219. (RREG32_SMC(TARGET_AND_CURRENT_PROFILE_INDEX) & CURR_SCLK_INDEX_MASK) >>
  2220. CURR_SCLK_INDEX_SHIFT;
  2221. u32 sclk;
  2222. if (current_index >= SMU__NUM_SCLK_DPM_STATE) {
  2223. return 0;
  2224. } else {
  2225. sclk = be32_to_cpu(pi->graphics_level[current_index].SclkFrequency);
  2226. return sclk;
  2227. }
  2228. }
  2229. u32 kv_dpm_get_current_mclk(struct radeon_device *rdev)
  2230. {
  2231. struct kv_power_info *pi = kv_get_pi(rdev);
  2232. return pi->sys_info.bootup_uma_clk;
  2233. }
  2234. void kv_dpm_print_power_state(struct radeon_device *rdev,
  2235. struct radeon_ps *rps)
  2236. {
  2237. int i;
  2238. struct kv_ps *ps = kv_get_ps(rps);
  2239. r600_dpm_print_class_info(rps->class, rps->class2);
  2240. r600_dpm_print_cap_info(rps->caps);
  2241. printk("\tuvd vclk: %d dclk: %d\n", rps->vclk, rps->dclk);
  2242. for (i = 0; i < ps->num_levels; i++) {
  2243. struct kv_pl *pl = &ps->levels[i];
  2244. printk("\t\tpower level %d sclk: %u vddc: %u\n",
  2245. i, pl->sclk,
  2246. kv_convert_8bit_index_to_voltage(rdev, pl->vddc_index));
  2247. }
  2248. r600_dpm_print_ps_status(rdev, rps);
  2249. }
  2250. void kv_dpm_fini(struct radeon_device *rdev)
  2251. {
  2252. int i;
  2253. for (i = 0; i < rdev->pm.dpm.num_ps; i++) {
  2254. kfree(rdev->pm.dpm.ps[i].ps_priv);
  2255. }
  2256. kfree(rdev->pm.dpm.ps);
  2257. kfree(rdev->pm.dpm.priv);
  2258. r600_free_extended_power_table(rdev);
  2259. }
  2260. void kv_dpm_display_configuration_changed(struct radeon_device *rdev)
  2261. {
  2262. }
  2263. u32 kv_dpm_get_sclk(struct radeon_device *rdev, bool low)
  2264. {
  2265. struct kv_power_info *pi = kv_get_pi(rdev);
  2266. struct kv_ps *requested_state = kv_get_ps(&pi->requested_rps);
  2267. if (low)
  2268. return requested_state->levels[0].sclk;
  2269. else
  2270. return requested_state->levels[requested_state->num_levels - 1].sclk;
  2271. }
  2272. u32 kv_dpm_get_mclk(struct radeon_device *rdev, bool low)
  2273. {
  2274. struct kv_power_info *pi = kv_get_pi(rdev);
  2275. return pi->sys_info.bootup_uma_clk;
  2276. }