handlers.c 95 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231
  1. /*
  2. * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  20. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  21. * SOFTWARE.
  22. *
  23. * Authors:
  24. * Kevin Tian <[email protected]>
  25. * Eddie Dong <[email protected]>
  26. * Zhiyuan Lv <[email protected]>
  27. *
  28. * Contributors:
  29. * Min He <[email protected]>
  30. * Tina Zhang <[email protected]>
  31. * Pei Zhang <[email protected]>
  32. * Niu Bing <[email protected]>
  33. * Ping Gao <[email protected]>
  34. * Zhi Wang <[email protected]>
  35. *
  36. */
  37. #include "i915_drv.h"
  38. #include "i915_reg.h"
  39. #include "gvt.h"
  40. #include "i915_pvinfo.h"
  41. #include "intel_mchbar_regs.h"
  42. #include "display/intel_display_types.h"
  43. #include "display/intel_dmc_regs.h"
  44. #include "display/intel_fbc.h"
  45. #include "display/vlv_dsi_pll_regs.h"
  46. #include "gt/intel_gt_regs.h"
  47. /* XXX FIXME i915 has changed PP_XXX definition */
  48. #define PCH_PP_STATUS _MMIO(0xc7200)
  49. #define PCH_PP_CONTROL _MMIO(0xc7204)
  50. #define PCH_PP_ON_DELAYS _MMIO(0xc7208)
  51. #define PCH_PP_OFF_DELAYS _MMIO(0xc720c)
  52. #define PCH_PP_DIVISOR _MMIO(0xc7210)
  53. unsigned long intel_gvt_get_device_type(struct intel_gvt *gvt)
  54. {
  55. struct drm_i915_private *i915 = gvt->gt->i915;
  56. if (IS_BROADWELL(i915))
  57. return D_BDW;
  58. else if (IS_SKYLAKE(i915))
  59. return D_SKL;
  60. else if (IS_KABYLAKE(i915))
  61. return D_KBL;
  62. else if (IS_BROXTON(i915))
  63. return D_BXT;
  64. else if (IS_COFFEELAKE(i915) || IS_COMETLAKE(i915))
  65. return D_CFL;
  66. return 0;
  67. }
  68. static bool intel_gvt_match_device(struct intel_gvt *gvt,
  69. unsigned long device)
  70. {
  71. return intel_gvt_get_device_type(gvt) & device;
  72. }
  73. static void read_vreg(struct intel_vgpu *vgpu, unsigned int offset,
  74. void *p_data, unsigned int bytes)
  75. {
  76. memcpy(p_data, &vgpu_vreg(vgpu, offset), bytes);
  77. }
  78. static void write_vreg(struct intel_vgpu *vgpu, unsigned int offset,
  79. void *p_data, unsigned int bytes)
  80. {
  81. memcpy(&vgpu_vreg(vgpu, offset), p_data, bytes);
  82. }
  83. struct intel_gvt_mmio_info *intel_gvt_find_mmio_info(struct intel_gvt *gvt,
  84. unsigned int offset)
  85. {
  86. struct intel_gvt_mmio_info *e;
  87. hash_for_each_possible(gvt->mmio.mmio_info_table, e, node, offset) {
  88. if (e->offset == offset)
  89. return e;
  90. }
  91. return NULL;
  92. }
  93. static int setup_mmio_info(struct intel_gvt *gvt, u32 offset, u32 size,
  94. u16 flags, u32 addr_mask, u32 ro_mask, u32 device,
  95. gvt_mmio_func read, gvt_mmio_func write)
  96. {
  97. struct intel_gvt_mmio_info *p;
  98. u32 start, end, i;
  99. if (!intel_gvt_match_device(gvt, device))
  100. return 0;
  101. if (WARN_ON(!IS_ALIGNED(offset, 4)))
  102. return -EINVAL;
  103. start = offset;
  104. end = offset + size;
  105. for (i = start; i < end; i += 4) {
  106. p = intel_gvt_find_mmio_info(gvt, i);
  107. if (!p) {
  108. WARN(1, "assign a handler to a non-tracked mmio %x\n",
  109. i);
  110. return -ENODEV;
  111. }
  112. p->ro_mask = ro_mask;
  113. gvt->mmio.mmio_attribute[i / 4] = flags;
  114. if (read)
  115. p->read = read;
  116. if (write)
  117. p->write = write;
  118. }
  119. return 0;
  120. }
  121. /**
  122. * intel_gvt_render_mmio_to_engine - convert a mmio offset into the engine
  123. * @gvt: a GVT device
  124. * @offset: register offset
  125. *
  126. * Returns:
  127. * The engine containing the offset within its mmio page.
  128. */
  129. const struct intel_engine_cs *
  130. intel_gvt_render_mmio_to_engine(struct intel_gvt *gvt, unsigned int offset)
  131. {
  132. struct intel_engine_cs *engine;
  133. enum intel_engine_id id;
  134. offset &= ~GENMASK(11, 0);
  135. for_each_engine(engine, gvt->gt, id)
  136. if (engine->mmio_base == offset)
  137. return engine;
  138. return NULL;
  139. }
  140. #define offset_to_fence_num(offset) \
  141. ((offset - i915_mmio_reg_offset(FENCE_REG_GEN6_LO(0))) >> 3)
  142. #define fence_num_to_offset(num) \
  143. (num * 8 + i915_mmio_reg_offset(FENCE_REG_GEN6_LO(0)))
  144. void enter_failsafe_mode(struct intel_vgpu *vgpu, int reason)
  145. {
  146. switch (reason) {
  147. case GVT_FAILSAFE_UNSUPPORTED_GUEST:
  148. pr_err("Detected your guest driver doesn't support GVT-g.\n");
  149. break;
  150. case GVT_FAILSAFE_INSUFFICIENT_RESOURCE:
  151. pr_err("Graphics resource is not enough for the guest\n");
  152. break;
  153. case GVT_FAILSAFE_GUEST_ERR:
  154. pr_err("GVT Internal error for the guest\n");
  155. break;
  156. default:
  157. break;
  158. }
  159. pr_err("Now vgpu %d will enter failsafe mode.\n", vgpu->id);
  160. vgpu->failsafe = true;
  161. }
  162. static int sanitize_fence_mmio_access(struct intel_vgpu *vgpu,
  163. unsigned int fence_num, void *p_data, unsigned int bytes)
  164. {
  165. unsigned int max_fence = vgpu_fence_sz(vgpu);
  166. if (fence_num >= max_fence) {
  167. gvt_vgpu_err("access oob fence reg %d/%d\n",
  168. fence_num, max_fence);
  169. /* When guest access oob fence regs without access
  170. * pv_info first, we treat guest not supporting GVT,
  171. * and we will let vgpu enter failsafe mode.
  172. */
  173. if (!vgpu->pv_notified)
  174. enter_failsafe_mode(vgpu,
  175. GVT_FAILSAFE_UNSUPPORTED_GUEST);
  176. memset(p_data, 0, bytes);
  177. return -EINVAL;
  178. }
  179. return 0;
  180. }
  181. static int gamw_echo_dev_rw_ia_write(struct intel_vgpu *vgpu,
  182. unsigned int offset, void *p_data, unsigned int bytes)
  183. {
  184. u32 ips = (*(u32 *)p_data) & GAMW_ECO_ENABLE_64K_IPS_FIELD;
  185. if (GRAPHICS_VER(vgpu->gvt->gt->i915) <= 10) {
  186. if (ips == GAMW_ECO_ENABLE_64K_IPS_FIELD)
  187. gvt_dbg_core("vgpu%d: ips enabled\n", vgpu->id);
  188. else if (!ips)
  189. gvt_dbg_core("vgpu%d: ips disabled\n", vgpu->id);
  190. else {
  191. /* All engines must be enabled together for vGPU,
  192. * since we don't know which engine the ppgtt will
  193. * bind to when shadowing.
  194. */
  195. gvt_vgpu_err("Unsupported IPS setting %x, cannot enable 64K gtt.\n",
  196. ips);
  197. return -EINVAL;
  198. }
  199. }
  200. write_vreg(vgpu, offset, p_data, bytes);
  201. return 0;
  202. }
  203. static int fence_mmio_read(struct intel_vgpu *vgpu, unsigned int off,
  204. void *p_data, unsigned int bytes)
  205. {
  206. int ret;
  207. ret = sanitize_fence_mmio_access(vgpu, offset_to_fence_num(off),
  208. p_data, bytes);
  209. if (ret)
  210. return ret;
  211. read_vreg(vgpu, off, p_data, bytes);
  212. return 0;
  213. }
  214. static int fence_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
  215. void *p_data, unsigned int bytes)
  216. {
  217. struct intel_gvt *gvt = vgpu->gvt;
  218. unsigned int fence_num = offset_to_fence_num(off);
  219. int ret;
  220. ret = sanitize_fence_mmio_access(vgpu, fence_num, p_data, bytes);
  221. if (ret)
  222. return ret;
  223. write_vreg(vgpu, off, p_data, bytes);
  224. mmio_hw_access_pre(gvt->gt);
  225. intel_vgpu_write_fence(vgpu, fence_num,
  226. vgpu_vreg64(vgpu, fence_num_to_offset(fence_num)));
  227. mmio_hw_access_post(gvt->gt);
  228. return 0;
  229. }
  230. #define CALC_MODE_MASK_REG(old, new) \
  231. (((new) & GENMASK(31, 16)) \
  232. | ((((old) & GENMASK(15, 0)) & ~((new) >> 16)) \
  233. | ((new) & ((new) >> 16))))
  234. static int mul_force_wake_write(struct intel_vgpu *vgpu,
  235. unsigned int offset, void *p_data, unsigned int bytes)
  236. {
  237. u32 old, new;
  238. u32 ack_reg_offset;
  239. old = vgpu_vreg(vgpu, offset);
  240. new = CALC_MODE_MASK_REG(old, *(u32 *)p_data);
  241. if (GRAPHICS_VER(vgpu->gvt->gt->i915) >= 9) {
  242. switch (offset) {
  243. case FORCEWAKE_RENDER_GEN9_REG:
  244. ack_reg_offset = FORCEWAKE_ACK_RENDER_GEN9_REG;
  245. break;
  246. case FORCEWAKE_GT_GEN9_REG:
  247. ack_reg_offset = FORCEWAKE_ACK_GT_GEN9_REG;
  248. break;
  249. case FORCEWAKE_MEDIA_GEN9_REG:
  250. ack_reg_offset = FORCEWAKE_ACK_MEDIA_GEN9_REG;
  251. break;
  252. default:
  253. /*should not hit here*/
  254. gvt_vgpu_err("invalid forcewake offset 0x%x\n", offset);
  255. return -EINVAL;
  256. }
  257. } else {
  258. ack_reg_offset = FORCEWAKE_ACK_HSW_REG;
  259. }
  260. vgpu_vreg(vgpu, offset) = new;
  261. vgpu_vreg(vgpu, ack_reg_offset) = (new & GENMASK(15, 0));
  262. return 0;
  263. }
  264. static int gdrst_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
  265. void *p_data, unsigned int bytes)
  266. {
  267. intel_engine_mask_t engine_mask = 0;
  268. u32 data;
  269. write_vreg(vgpu, offset, p_data, bytes);
  270. data = vgpu_vreg(vgpu, offset);
  271. if (data & GEN6_GRDOM_FULL) {
  272. gvt_dbg_mmio("vgpu%d: request full GPU reset\n", vgpu->id);
  273. engine_mask = ALL_ENGINES;
  274. } else {
  275. if (data & GEN6_GRDOM_RENDER) {
  276. gvt_dbg_mmio("vgpu%d: request RCS reset\n", vgpu->id);
  277. engine_mask |= BIT(RCS0);
  278. }
  279. if (data & GEN6_GRDOM_MEDIA) {
  280. gvt_dbg_mmio("vgpu%d: request VCS reset\n", vgpu->id);
  281. engine_mask |= BIT(VCS0);
  282. }
  283. if (data & GEN6_GRDOM_BLT) {
  284. gvt_dbg_mmio("vgpu%d: request BCS Reset\n", vgpu->id);
  285. engine_mask |= BIT(BCS0);
  286. }
  287. if (data & GEN6_GRDOM_VECS) {
  288. gvt_dbg_mmio("vgpu%d: request VECS Reset\n", vgpu->id);
  289. engine_mask |= BIT(VECS0);
  290. }
  291. if (data & GEN8_GRDOM_MEDIA2) {
  292. gvt_dbg_mmio("vgpu%d: request VCS2 Reset\n", vgpu->id);
  293. engine_mask |= BIT(VCS1);
  294. }
  295. if (data & GEN9_GRDOM_GUC) {
  296. gvt_dbg_mmio("vgpu%d: request GUC Reset\n", vgpu->id);
  297. vgpu_vreg_t(vgpu, GUC_STATUS) |= GS_MIA_IN_RESET;
  298. }
  299. engine_mask &= vgpu->gvt->gt->info.engine_mask;
  300. }
  301. /* vgpu_lock already hold by emulate mmio r/w */
  302. intel_gvt_reset_vgpu_locked(vgpu, false, engine_mask);
  303. /* sw will wait for the device to ack the reset request */
  304. vgpu_vreg(vgpu, offset) = 0;
  305. return 0;
  306. }
  307. static int gmbus_mmio_read(struct intel_vgpu *vgpu, unsigned int offset,
  308. void *p_data, unsigned int bytes)
  309. {
  310. return intel_gvt_i2c_handle_gmbus_read(vgpu, offset, p_data, bytes);
  311. }
  312. static int gmbus_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
  313. void *p_data, unsigned int bytes)
  314. {
  315. return intel_gvt_i2c_handle_gmbus_write(vgpu, offset, p_data, bytes);
  316. }
  317. static int pch_pp_control_mmio_write(struct intel_vgpu *vgpu,
  318. unsigned int offset, void *p_data, unsigned int bytes)
  319. {
  320. write_vreg(vgpu, offset, p_data, bytes);
  321. if (vgpu_vreg(vgpu, offset) & PANEL_POWER_ON) {
  322. vgpu_vreg_t(vgpu, PCH_PP_STATUS) |= PP_ON;
  323. vgpu_vreg_t(vgpu, PCH_PP_STATUS) |= PP_SEQUENCE_STATE_ON_IDLE;
  324. vgpu_vreg_t(vgpu, PCH_PP_STATUS) &= ~PP_SEQUENCE_POWER_DOWN;
  325. vgpu_vreg_t(vgpu, PCH_PP_STATUS) &= ~PP_CYCLE_DELAY_ACTIVE;
  326. } else
  327. vgpu_vreg_t(vgpu, PCH_PP_STATUS) &=
  328. ~(PP_ON | PP_SEQUENCE_POWER_DOWN
  329. | PP_CYCLE_DELAY_ACTIVE);
  330. return 0;
  331. }
  332. static int transconf_mmio_write(struct intel_vgpu *vgpu,
  333. unsigned int offset, void *p_data, unsigned int bytes)
  334. {
  335. write_vreg(vgpu, offset, p_data, bytes);
  336. if (vgpu_vreg(vgpu, offset) & TRANS_ENABLE)
  337. vgpu_vreg(vgpu, offset) |= TRANS_STATE_ENABLE;
  338. else
  339. vgpu_vreg(vgpu, offset) &= ~TRANS_STATE_ENABLE;
  340. return 0;
  341. }
  342. static int lcpll_ctl_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
  343. void *p_data, unsigned int bytes)
  344. {
  345. write_vreg(vgpu, offset, p_data, bytes);
  346. if (vgpu_vreg(vgpu, offset) & LCPLL_PLL_DISABLE)
  347. vgpu_vreg(vgpu, offset) &= ~LCPLL_PLL_LOCK;
  348. else
  349. vgpu_vreg(vgpu, offset) |= LCPLL_PLL_LOCK;
  350. if (vgpu_vreg(vgpu, offset) & LCPLL_CD_SOURCE_FCLK)
  351. vgpu_vreg(vgpu, offset) |= LCPLL_CD_SOURCE_FCLK_DONE;
  352. else
  353. vgpu_vreg(vgpu, offset) &= ~LCPLL_CD_SOURCE_FCLK_DONE;
  354. return 0;
  355. }
  356. static int dpy_reg_mmio_read(struct intel_vgpu *vgpu, unsigned int offset,
  357. void *p_data, unsigned int bytes)
  358. {
  359. switch (offset) {
  360. case 0xe651c:
  361. case 0xe661c:
  362. case 0xe671c:
  363. case 0xe681c:
  364. vgpu_vreg(vgpu, offset) = 1 << 17;
  365. break;
  366. case 0xe6c04:
  367. vgpu_vreg(vgpu, offset) = 0x3;
  368. break;
  369. case 0xe6e1c:
  370. vgpu_vreg(vgpu, offset) = 0x2f << 16;
  371. break;
  372. default:
  373. return -EINVAL;
  374. }
  375. read_vreg(vgpu, offset, p_data, bytes);
  376. return 0;
  377. }
  378. /*
  379. * Only PIPE_A is enabled in current vGPU display and PIPE_A is tied to
  380. * TRANSCODER_A in HW. DDI/PORT could be PORT_x depends on
  381. * setup_virtual_dp_monitor().
  382. * emulate_monitor_status_change() set up PLL for PORT_x as the initial enabled
  383. * DPLL. Later guest driver may setup a different DPLLx when setting mode.
  384. * So the correct sequence to find DP stream clock is:
  385. * Check TRANS_DDI_FUNC_CTL on TRANSCODER_A to get PORT_x.
  386. * Check correct PLLx for PORT_x to get PLL frequency and DP bitrate.
  387. * Then Refresh rate then can be calculated based on follow equations:
  388. * Pixel clock = h_total * v_total * refresh_rate
  389. * stream clock = Pixel clock
  390. * ls_clk = DP bitrate
  391. * Link M/N = strm_clk / ls_clk
  392. */
  393. static u32 bdw_vgpu_get_dp_bitrate(struct intel_vgpu *vgpu, enum port port)
  394. {
  395. u32 dp_br = 0;
  396. u32 ddi_pll_sel = vgpu_vreg_t(vgpu, PORT_CLK_SEL(port));
  397. switch (ddi_pll_sel) {
  398. case PORT_CLK_SEL_LCPLL_2700:
  399. dp_br = 270000 * 2;
  400. break;
  401. case PORT_CLK_SEL_LCPLL_1350:
  402. dp_br = 135000 * 2;
  403. break;
  404. case PORT_CLK_SEL_LCPLL_810:
  405. dp_br = 81000 * 2;
  406. break;
  407. case PORT_CLK_SEL_SPLL:
  408. {
  409. switch (vgpu_vreg_t(vgpu, SPLL_CTL) & SPLL_FREQ_MASK) {
  410. case SPLL_FREQ_810MHz:
  411. dp_br = 81000 * 2;
  412. break;
  413. case SPLL_FREQ_1350MHz:
  414. dp_br = 135000 * 2;
  415. break;
  416. case SPLL_FREQ_2700MHz:
  417. dp_br = 270000 * 2;
  418. break;
  419. default:
  420. gvt_dbg_dpy("vgpu-%d PORT_%c can't get freq from SPLL 0x%08x\n",
  421. vgpu->id, port_name(port), vgpu_vreg_t(vgpu, SPLL_CTL));
  422. break;
  423. }
  424. break;
  425. }
  426. case PORT_CLK_SEL_WRPLL1:
  427. case PORT_CLK_SEL_WRPLL2:
  428. {
  429. u32 wrpll_ctl;
  430. int refclk, n, p, r;
  431. if (ddi_pll_sel == PORT_CLK_SEL_WRPLL1)
  432. wrpll_ctl = vgpu_vreg_t(vgpu, WRPLL_CTL(DPLL_ID_WRPLL1));
  433. else
  434. wrpll_ctl = vgpu_vreg_t(vgpu, WRPLL_CTL(DPLL_ID_WRPLL2));
  435. switch (wrpll_ctl & WRPLL_REF_MASK) {
  436. case WRPLL_REF_PCH_SSC:
  437. refclk = vgpu->gvt->gt->i915->display.dpll.ref_clks.ssc;
  438. break;
  439. case WRPLL_REF_LCPLL:
  440. refclk = 2700000;
  441. break;
  442. default:
  443. gvt_dbg_dpy("vgpu-%d PORT_%c WRPLL can't get refclk 0x%08x\n",
  444. vgpu->id, port_name(port), wrpll_ctl);
  445. goto out;
  446. }
  447. r = wrpll_ctl & WRPLL_DIVIDER_REF_MASK;
  448. p = (wrpll_ctl & WRPLL_DIVIDER_POST_MASK) >> WRPLL_DIVIDER_POST_SHIFT;
  449. n = (wrpll_ctl & WRPLL_DIVIDER_FB_MASK) >> WRPLL_DIVIDER_FB_SHIFT;
  450. dp_br = (refclk * n / 10) / (p * r) * 2;
  451. break;
  452. }
  453. default:
  454. gvt_dbg_dpy("vgpu-%d PORT_%c has invalid clock select 0x%08x\n",
  455. vgpu->id, port_name(port), vgpu_vreg_t(vgpu, PORT_CLK_SEL(port)));
  456. break;
  457. }
  458. out:
  459. return dp_br;
  460. }
  461. static u32 bxt_vgpu_get_dp_bitrate(struct intel_vgpu *vgpu, enum port port)
  462. {
  463. u32 dp_br = 0;
  464. int refclk = vgpu->gvt->gt->i915->display.dpll.ref_clks.nssc;
  465. enum dpio_phy phy = DPIO_PHY0;
  466. enum dpio_channel ch = DPIO_CH0;
  467. struct dpll clock = {0};
  468. u32 temp;
  469. /* Port to PHY mapping is fixed, see bxt_ddi_phy_info{} */
  470. switch (port) {
  471. case PORT_A:
  472. phy = DPIO_PHY1;
  473. ch = DPIO_CH0;
  474. break;
  475. case PORT_B:
  476. phy = DPIO_PHY0;
  477. ch = DPIO_CH0;
  478. break;
  479. case PORT_C:
  480. phy = DPIO_PHY0;
  481. ch = DPIO_CH1;
  482. break;
  483. default:
  484. gvt_dbg_dpy("vgpu-%d no PHY for PORT_%c\n", vgpu->id, port_name(port));
  485. goto out;
  486. }
  487. temp = vgpu_vreg_t(vgpu, BXT_PORT_PLL_ENABLE(port));
  488. if (!(temp & PORT_PLL_ENABLE) || !(temp & PORT_PLL_LOCK)) {
  489. gvt_dbg_dpy("vgpu-%d PORT_%c PLL_ENABLE 0x%08x isn't enabled or locked\n",
  490. vgpu->id, port_name(port), temp);
  491. goto out;
  492. }
  493. clock.m1 = 2;
  494. clock.m2 = REG_FIELD_GET(PORT_PLL_M2_INT_MASK,
  495. vgpu_vreg_t(vgpu, BXT_PORT_PLL(phy, ch, 0))) << 22;
  496. if (vgpu_vreg_t(vgpu, BXT_PORT_PLL(phy, ch, 3)) & PORT_PLL_M2_FRAC_ENABLE)
  497. clock.m2 |= REG_FIELD_GET(PORT_PLL_M2_FRAC_MASK,
  498. vgpu_vreg_t(vgpu, BXT_PORT_PLL(phy, ch, 2)));
  499. clock.n = REG_FIELD_GET(PORT_PLL_N_MASK,
  500. vgpu_vreg_t(vgpu, BXT_PORT_PLL(phy, ch, 1)));
  501. clock.p1 = REG_FIELD_GET(PORT_PLL_P1_MASK,
  502. vgpu_vreg_t(vgpu, BXT_PORT_PLL_EBB_0(phy, ch)));
  503. clock.p2 = REG_FIELD_GET(PORT_PLL_P2_MASK,
  504. vgpu_vreg_t(vgpu, BXT_PORT_PLL_EBB_0(phy, ch)));
  505. clock.m = clock.m1 * clock.m2;
  506. clock.p = clock.p1 * clock.p2 * 5;
  507. if (clock.n == 0 || clock.p == 0) {
  508. gvt_dbg_dpy("vgpu-%d PORT_%c PLL has invalid divider\n", vgpu->id, port_name(port));
  509. goto out;
  510. }
  511. clock.vco = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(refclk, clock.m), clock.n << 22);
  512. clock.dot = DIV_ROUND_CLOSEST(clock.vco, clock.p);
  513. dp_br = clock.dot;
  514. out:
  515. return dp_br;
  516. }
  517. static u32 skl_vgpu_get_dp_bitrate(struct intel_vgpu *vgpu, enum port port)
  518. {
  519. u32 dp_br = 0;
  520. enum intel_dpll_id dpll_id = DPLL_ID_SKL_DPLL0;
  521. /* Find the enabled DPLL for the DDI/PORT */
  522. if (!(vgpu_vreg_t(vgpu, DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_OFF(port)) &&
  523. (vgpu_vreg_t(vgpu, DPLL_CTRL2) & DPLL_CTRL2_DDI_SEL_OVERRIDE(port))) {
  524. dpll_id += (vgpu_vreg_t(vgpu, DPLL_CTRL2) &
  525. DPLL_CTRL2_DDI_CLK_SEL_MASK(port)) >>
  526. DPLL_CTRL2_DDI_CLK_SEL_SHIFT(port);
  527. } else {
  528. gvt_dbg_dpy("vgpu-%d DPLL for PORT_%c isn't turned on\n",
  529. vgpu->id, port_name(port));
  530. return dp_br;
  531. }
  532. /* Find PLL output frequency from correct DPLL, and get bir rate */
  533. switch ((vgpu_vreg_t(vgpu, DPLL_CTRL1) &
  534. DPLL_CTRL1_LINK_RATE_MASK(dpll_id)) >>
  535. DPLL_CTRL1_LINK_RATE_SHIFT(dpll_id)) {
  536. case DPLL_CTRL1_LINK_RATE_810:
  537. dp_br = 81000 * 2;
  538. break;
  539. case DPLL_CTRL1_LINK_RATE_1080:
  540. dp_br = 108000 * 2;
  541. break;
  542. case DPLL_CTRL1_LINK_RATE_1350:
  543. dp_br = 135000 * 2;
  544. break;
  545. case DPLL_CTRL1_LINK_RATE_1620:
  546. dp_br = 162000 * 2;
  547. break;
  548. case DPLL_CTRL1_LINK_RATE_2160:
  549. dp_br = 216000 * 2;
  550. break;
  551. case DPLL_CTRL1_LINK_RATE_2700:
  552. dp_br = 270000 * 2;
  553. break;
  554. default:
  555. dp_br = 0;
  556. gvt_dbg_dpy("vgpu-%d PORT_%c fail to get DPLL-%d freq\n",
  557. vgpu->id, port_name(port), dpll_id);
  558. }
  559. return dp_br;
  560. }
  561. static void vgpu_update_refresh_rate(struct intel_vgpu *vgpu)
  562. {
  563. struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915;
  564. enum port port;
  565. u32 dp_br, link_m, link_n, htotal, vtotal;
  566. /* Find DDI/PORT assigned to TRANSCODER_A, expect B or D */
  567. port = (vgpu_vreg_t(vgpu, TRANS_DDI_FUNC_CTL(TRANSCODER_A)) &
  568. TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
  569. if (port != PORT_B && port != PORT_D) {
  570. gvt_dbg_dpy("vgpu-%d unsupported PORT_%c\n", vgpu->id, port_name(port));
  571. return;
  572. }
  573. /* Calculate DP bitrate from PLL */
  574. if (IS_BROADWELL(dev_priv))
  575. dp_br = bdw_vgpu_get_dp_bitrate(vgpu, port);
  576. else if (IS_BROXTON(dev_priv))
  577. dp_br = bxt_vgpu_get_dp_bitrate(vgpu, port);
  578. else
  579. dp_br = skl_vgpu_get_dp_bitrate(vgpu, port);
  580. /* Get DP link symbol clock M/N */
  581. link_m = vgpu_vreg_t(vgpu, PIPE_LINK_M1(TRANSCODER_A));
  582. link_n = vgpu_vreg_t(vgpu, PIPE_LINK_N1(TRANSCODER_A));
  583. /* Get H/V total from transcoder timing */
  584. htotal = (vgpu_vreg_t(vgpu, HTOTAL(TRANSCODER_A)) >> TRANS_HTOTAL_SHIFT);
  585. vtotal = (vgpu_vreg_t(vgpu, VTOTAL(TRANSCODER_A)) >> TRANS_VTOTAL_SHIFT);
  586. if (dp_br && link_n && htotal && vtotal) {
  587. u64 pixel_clk = 0;
  588. u32 new_rate = 0;
  589. u32 *old_rate = &(intel_vgpu_port(vgpu, vgpu->display.port_num)->vrefresh_k);
  590. /* Calcuate pixel clock by (ls_clk * M / N) */
  591. pixel_clk = div_u64(mul_u32_u32(link_m, dp_br), link_n);
  592. pixel_clk *= MSEC_PER_SEC;
  593. /* Calcuate refresh rate by (pixel_clk / (h_total * v_total)) */
  594. new_rate = DIV64_U64_ROUND_CLOSEST(mul_u64_u32_shr(pixel_clk, MSEC_PER_SEC, 0), mul_u32_u32(htotal + 1, vtotal + 1));
  595. if (*old_rate != new_rate)
  596. *old_rate = new_rate;
  597. gvt_dbg_dpy("vgpu-%d PIPE_%c refresh rate updated to %d\n",
  598. vgpu->id, pipe_name(PIPE_A), new_rate);
  599. }
  600. }
  601. static int pipeconf_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
  602. void *p_data, unsigned int bytes)
  603. {
  604. u32 data;
  605. write_vreg(vgpu, offset, p_data, bytes);
  606. data = vgpu_vreg(vgpu, offset);
  607. if (data & PIPECONF_ENABLE) {
  608. vgpu_vreg(vgpu, offset) |= PIPECONF_STATE_ENABLE;
  609. vgpu_update_refresh_rate(vgpu);
  610. vgpu_update_vblank_emulation(vgpu, true);
  611. } else {
  612. vgpu_vreg(vgpu, offset) &= ~PIPECONF_STATE_ENABLE;
  613. vgpu_update_vblank_emulation(vgpu, false);
  614. }
  615. return 0;
  616. }
  617. /* sorted in ascending order */
  618. static i915_reg_t force_nonpriv_white_list[] = {
  619. _MMIO(0xd80),
  620. GEN9_CS_DEBUG_MODE1, //_MMIO(0x20ec)
  621. GEN9_CTX_PREEMPT_REG,//_MMIO(0x2248)
  622. CL_PRIMITIVES_COUNT, //_MMIO(0x2340)
  623. PS_INVOCATION_COUNT, //_MMIO(0x2348)
  624. PS_DEPTH_COUNT, //_MMIO(0x2350)
  625. GEN8_CS_CHICKEN1,//_MMIO(0x2580)
  626. _MMIO(0x2690),
  627. _MMIO(0x2694),
  628. _MMIO(0x2698),
  629. _MMIO(0x2754),
  630. _MMIO(0x28a0),
  631. _MMIO(0x4de0),
  632. _MMIO(0x4de4),
  633. _MMIO(0x4dfc),
  634. GEN7_COMMON_SLICE_CHICKEN1,//_MMIO(0x7010)
  635. _MMIO(0x7014),
  636. HDC_CHICKEN0,//_MMIO(0x7300)
  637. GEN8_HDC_CHICKEN1,//_MMIO(0x7304)
  638. _MMIO(0x7700),
  639. _MMIO(0x7704),
  640. _MMIO(0x7708),
  641. _MMIO(0x770c),
  642. _MMIO(0x83a8),
  643. _MMIO(0xb110),
  644. GEN8_L3SQCREG4,//_MMIO(0xb118)
  645. _MMIO(0xe100),
  646. _MMIO(0xe18c),
  647. _MMIO(0xe48c),
  648. _MMIO(0xe5f4),
  649. _MMIO(0x64844),
  650. };
  651. /* a simple bsearch */
  652. static inline bool in_whitelist(u32 reg)
  653. {
  654. int left = 0, right = ARRAY_SIZE(force_nonpriv_white_list);
  655. i915_reg_t *array = force_nonpriv_white_list;
  656. while (left < right) {
  657. int mid = (left + right)/2;
  658. if (reg > array[mid].reg)
  659. left = mid + 1;
  660. else if (reg < array[mid].reg)
  661. right = mid;
  662. else
  663. return true;
  664. }
  665. return false;
  666. }
  667. static int force_nonpriv_write(struct intel_vgpu *vgpu,
  668. unsigned int offset, void *p_data, unsigned int bytes)
  669. {
  670. u32 reg_nonpriv = (*(u32 *)p_data) & REG_GENMASK(25, 2);
  671. const struct intel_engine_cs *engine =
  672. intel_gvt_render_mmio_to_engine(vgpu->gvt, offset);
  673. if (bytes != 4 || !IS_ALIGNED(offset, bytes) || !engine) {
  674. gvt_err("vgpu(%d) Invalid FORCE_NONPRIV offset %x(%dB)\n",
  675. vgpu->id, offset, bytes);
  676. return -EINVAL;
  677. }
  678. if (!in_whitelist(reg_nonpriv) &&
  679. reg_nonpriv != i915_mmio_reg_offset(RING_NOPID(engine->mmio_base))) {
  680. gvt_err("vgpu(%d) Invalid FORCE_NONPRIV write %x at offset %x\n",
  681. vgpu->id, reg_nonpriv, offset);
  682. } else
  683. intel_vgpu_default_mmio_write(vgpu, offset, p_data, bytes);
  684. return 0;
  685. }
  686. static int ddi_buf_ctl_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
  687. void *p_data, unsigned int bytes)
  688. {
  689. write_vreg(vgpu, offset, p_data, bytes);
  690. if (vgpu_vreg(vgpu, offset) & DDI_BUF_CTL_ENABLE) {
  691. vgpu_vreg(vgpu, offset) &= ~DDI_BUF_IS_IDLE;
  692. } else {
  693. vgpu_vreg(vgpu, offset) |= DDI_BUF_IS_IDLE;
  694. if (offset == i915_mmio_reg_offset(DDI_BUF_CTL(PORT_E)))
  695. vgpu_vreg_t(vgpu, DP_TP_STATUS(PORT_E))
  696. &= ~DP_TP_STATUS_AUTOTRAIN_DONE;
  697. }
  698. return 0;
  699. }
  700. static int fdi_rx_iir_mmio_write(struct intel_vgpu *vgpu,
  701. unsigned int offset, void *p_data, unsigned int bytes)
  702. {
  703. vgpu_vreg(vgpu, offset) &= ~*(u32 *)p_data;
  704. return 0;
  705. }
  706. #define FDI_LINK_TRAIN_PATTERN1 0
  707. #define FDI_LINK_TRAIN_PATTERN2 1
  708. static int fdi_auto_training_started(struct intel_vgpu *vgpu)
  709. {
  710. u32 ddi_buf_ctl = vgpu_vreg_t(vgpu, DDI_BUF_CTL(PORT_E));
  711. u32 rx_ctl = vgpu_vreg(vgpu, _FDI_RXA_CTL);
  712. u32 tx_ctl = vgpu_vreg_t(vgpu, DP_TP_CTL(PORT_E));
  713. if ((ddi_buf_ctl & DDI_BUF_CTL_ENABLE) &&
  714. (rx_ctl & FDI_RX_ENABLE) &&
  715. (rx_ctl & FDI_AUTO_TRAINING) &&
  716. (tx_ctl & DP_TP_CTL_ENABLE) &&
  717. (tx_ctl & DP_TP_CTL_FDI_AUTOTRAIN))
  718. return 1;
  719. else
  720. return 0;
  721. }
  722. static int check_fdi_rx_train_status(struct intel_vgpu *vgpu,
  723. enum pipe pipe, unsigned int train_pattern)
  724. {
  725. i915_reg_t fdi_rx_imr, fdi_tx_ctl, fdi_rx_ctl;
  726. unsigned int fdi_rx_check_bits, fdi_tx_check_bits;
  727. unsigned int fdi_rx_train_bits, fdi_tx_train_bits;
  728. unsigned int fdi_iir_check_bits;
  729. fdi_rx_imr = FDI_RX_IMR(pipe);
  730. fdi_tx_ctl = FDI_TX_CTL(pipe);
  731. fdi_rx_ctl = FDI_RX_CTL(pipe);
  732. if (train_pattern == FDI_LINK_TRAIN_PATTERN1) {
  733. fdi_rx_train_bits = FDI_LINK_TRAIN_PATTERN_1_CPT;
  734. fdi_tx_train_bits = FDI_LINK_TRAIN_PATTERN_1;
  735. fdi_iir_check_bits = FDI_RX_BIT_LOCK;
  736. } else if (train_pattern == FDI_LINK_TRAIN_PATTERN2) {
  737. fdi_rx_train_bits = FDI_LINK_TRAIN_PATTERN_2_CPT;
  738. fdi_tx_train_bits = FDI_LINK_TRAIN_PATTERN_2;
  739. fdi_iir_check_bits = FDI_RX_SYMBOL_LOCK;
  740. } else {
  741. gvt_vgpu_err("Invalid train pattern %d\n", train_pattern);
  742. return -EINVAL;
  743. }
  744. fdi_rx_check_bits = FDI_RX_ENABLE | fdi_rx_train_bits;
  745. fdi_tx_check_bits = FDI_TX_ENABLE | fdi_tx_train_bits;
  746. /* If imr bit has been masked */
  747. if (vgpu_vreg_t(vgpu, fdi_rx_imr) & fdi_iir_check_bits)
  748. return 0;
  749. if (((vgpu_vreg_t(vgpu, fdi_tx_ctl) & fdi_tx_check_bits)
  750. == fdi_tx_check_bits)
  751. && ((vgpu_vreg_t(vgpu, fdi_rx_ctl) & fdi_rx_check_bits)
  752. == fdi_rx_check_bits))
  753. return 1;
  754. else
  755. return 0;
  756. }
  757. #define INVALID_INDEX (~0U)
  758. static unsigned int calc_index(unsigned int offset, unsigned int start,
  759. unsigned int next, unsigned int end, i915_reg_t i915_end)
  760. {
  761. unsigned int range = next - start;
  762. if (!end)
  763. end = i915_mmio_reg_offset(i915_end);
  764. if (offset < start || offset > end)
  765. return INVALID_INDEX;
  766. offset -= start;
  767. return offset / range;
  768. }
  769. #define FDI_RX_CTL_TO_PIPE(offset) \
  770. calc_index(offset, _FDI_RXA_CTL, _FDI_RXB_CTL, 0, FDI_RX_CTL(PIPE_C))
  771. #define FDI_TX_CTL_TO_PIPE(offset) \
  772. calc_index(offset, _FDI_TXA_CTL, _FDI_TXB_CTL, 0, FDI_TX_CTL(PIPE_C))
  773. #define FDI_RX_IMR_TO_PIPE(offset) \
  774. calc_index(offset, _FDI_RXA_IMR, _FDI_RXB_IMR, 0, FDI_RX_IMR(PIPE_C))
  775. static int update_fdi_rx_iir_status(struct intel_vgpu *vgpu,
  776. unsigned int offset, void *p_data, unsigned int bytes)
  777. {
  778. i915_reg_t fdi_rx_iir;
  779. unsigned int index;
  780. int ret;
  781. if (FDI_RX_CTL_TO_PIPE(offset) != INVALID_INDEX)
  782. index = FDI_RX_CTL_TO_PIPE(offset);
  783. else if (FDI_TX_CTL_TO_PIPE(offset) != INVALID_INDEX)
  784. index = FDI_TX_CTL_TO_PIPE(offset);
  785. else if (FDI_RX_IMR_TO_PIPE(offset) != INVALID_INDEX)
  786. index = FDI_RX_IMR_TO_PIPE(offset);
  787. else {
  788. gvt_vgpu_err("Unsupported registers %x\n", offset);
  789. return -EINVAL;
  790. }
  791. write_vreg(vgpu, offset, p_data, bytes);
  792. fdi_rx_iir = FDI_RX_IIR(index);
  793. ret = check_fdi_rx_train_status(vgpu, index, FDI_LINK_TRAIN_PATTERN1);
  794. if (ret < 0)
  795. return ret;
  796. if (ret)
  797. vgpu_vreg_t(vgpu, fdi_rx_iir) |= FDI_RX_BIT_LOCK;
  798. ret = check_fdi_rx_train_status(vgpu, index, FDI_LINK_TRAIN_PATTERN2);
  799. if (ret < 0)
  800. return ret;
  801. if (ret)
  802. vgpu_vreg_t(vgpu, fdi_rx_iir) |= FDI_RX_SYMBOL_LOCK;
  803. if (offset == _FDI_RXA_CTL)
  804. if (fdi_auto_training_started(vgpu))
  805. vgpu_vreg_t(vgpu, DP_TP_STATUS(PORT_E)) |=
  806. DP_TP_STATUS_AUTOTRAIN_DONE;
  807. return 0;
  808. }
  809. #define DP_TP_CTL_TO_PORT(offset) \
  810. calc_index(offset, _DP_TP_CTL_A, _DP_TP_CTL_B, 0, DP_TP_CTL(PORT_E))
  811. static int dp_tp_ctl_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
  812. void *p_data, unsigned int bytes)
  813. {
  814. i915_reg_t status_reg;
  815. unsigned int index;
  816. u32 data;
  817. write_vreg(vgpu, offset, p_data, bytes);
  818. index = DP_TP_CTL_TO_PORT(offset);
  819. data = (vgpu_vreg(vgpu, offset) & GENMASK(10, 8)) >> 8;
  820. if (data == 0x2) {
  821. status_reg = DP_TP_STATUS(index);
  822. vgpu_vreg_t(vgpu, status_reg) |= (1 << 25);
  823. }
  824. return 0;
  825. }
  826. static int dp_tp_status_mmio_write(struct intel_vgpu *vgpu,
  827. unsigned int offset, void *p_data, unsigned int bytes)
  828. {
  829. u32 reg_val;
  830. u32 sticky_mask;
  831. reg_val = *((u32 *)p_data);
  832. sticky_mask = GENMASK(27, 26) | (1 << 24);
  833. vgpu_vreg(vgpu, offset) = (reg_val & ~sticky_mask) |
  834. (vgpu_vreg(vgpu, offset) & sticky_mask);
  835. vgpu_vreg(vgpu, offset) &= ~(reg_val & sticky_mask);
  836. return 0;
  837. }
  838. static int pch_adpa_mmio_write(struct intel_vgpu *vgpu,
  839. unsigned int offset, void *p_data, unsigned int bytes)
  840. {
  841. u32 data;
  842. write_vreg(vgpu, offset, p_data, bytes);
  843. data = vgpu_vreg(vgpu, offset);
  844. if (data & ADPA_CRT_HOTPLUG_FORCE_TRIGGER)
  845. vgpu_vreg(vgpu, offset) &= ~ADPA_CRT_HOTPLUG_FORCE_TRIGGER;
  846. return 0;
  847. }
  848. static int south_chicken2_mmio_write(struct intel_vgpu *vgpu,
  849. unsigned int offset, void *p_data, unsigned int bytes)
  850. {
  851. u32 data;
  852. write_vreg(vgpu, offset, p_data, bytes);
  853. data = vgpu_vreg(vgpu, offset);
  854. if (data & FDI_MPHY_IOSFSB_RESET_CTL)
  855. vgpu_vreg(vgpu, offset) |= FDI_MPHY_IOSFSB_RESET_STATUS;
  856. else
  857. vgpu_vreg(vgpu, offset) &= ~FDI_MPHY_IOSFSB_RESET_STATUS;
  858. return 0;
  859. }
  860. #define DSPSURF_TO_PIPE(offset) \
  861. calc_index(offset, _DSPASURF, _DSPBSURF, 0, DSPSURF(PIPE_C))
  862. static int pri_surf_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
  863. void *p_data, unsigned int bytes)
  864. {
  865. struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915;
  866. u32 pipe = DSPSURF_TO_PIPE(offset);
  867. int event = SKL_FLIP_EVENT(pipe, PLANE_PRIMARY);
  868. write_vreg(vgpu, offset, p_data, bytes);
  869. vgpu_vreg_t(vgpu, DSPSURFLIVE(pipe)) = vgpu_vreg(vgpu, offset);
  870. vgpu_vreg_t(vgpu, PIPE_FLIPCOUNT_G4X(pipe))++;
  871. if (vgpu_vreg_t(vgpu, DSPCNTR(pipe)) & PLANE_CTL_ASYNC_FLIP)
  872. intel_vgpu_trigger_virtual_event(vgpu, event);
  873. else
  874. set_bit(event, vgpu->irq.flip_done_event[pipe]);
  875. return 0;
  876. }
  877. #define SPRSURF_TO_PIPE(offset) \
  878. calc_index(offset, _SPRA_SURF, _SPRB_SURF, 0, SPRSURF(PIPE_C))
  879. static int spr_surf_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
  880. void *p_data, unsigned int bytes)
  881. {
  882. u32 pipe = SPRSURF_TO_PIPE(offset);
  883. int event = SKL_FLIP_EVENT(pipe, PLANE_SPRITE0);
  884. write_vreg(vgpu, offset, p_data, bytes);
  885. vgpu_vreg_t(vgpu, SPRSURFLIVE(pipe)) = vgpu_vreg(vgpu, offset);
  886. if (vgpu_vreg_t(vgpu, SPRCTL(pipe)) & PLANE_CTL_ASYNC_FLIP)
  887. intel_vgpu_trigger_virtual_event(vgpu, event);
  888. else
  889. set_bit(event, vgpu->irq.flip_done_event[pipe]);
  890. return 0;
  891. }
  892. static int reg50080_mmio_write(struct intel_vgpu *vgpu,
  893. unsigned int offset, void *p_data,
  894. unsigned int bytes)
  895. {
  896. struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915;
  897. enum pipe pipe = REG_50080_TO_PIPE(offset);
  898. enum plane_id plane = REG_50080_TO_PLANE(offset);
  899. int event = SKL_FLIP_EVENT(pipe, plane);
  900. write_vreg(vgpu, offset, p_data, bytes);
  901. if (plane == PLANE_PRIMARY) {
  902. vgpu_vreg_t(vgpu, DSPSURFLIVE(pipe)) = vgpu_vreg(vgpu, offset);
  903. vgpu_vreg_t(vgpu, PIPE_FLIPCOUNT_G4X(pipe))++;
  904. } else {
  905. vgpu_vreg_t(vgpu, SPRSURFLIVE(pipe)) = vgpu_vreg(vgpu, offset);
  906. }
  907. if ((vgpu_vreg(vgpu, offset) & REG50080_FLIP_TYPE_MASK) == REG50080_FLIP_TYPE_ASYNC)
  908. intel_vgpu_trigger_virtual_event(vgpu, event);
  909. else
  910. set_bit(event, vgpu->irq.flip_done_event[pipe]);
  911. return 0;
  912. }
  913. static int trigger_aux_channel_interrupt(struct intel_vgpu *vgpu,
  914. unsigned int reg)
  915. {
  916. struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915;
  917. enum intel_gvt_event_type event;
  918. if (reg == i915_mmio_reg_offset(DP_AUX_CH_CTL(AUX_CH_A)))
  919. event = AUX_CHANNEL_A;
  920. else if (reg == _PCH_DPB_AUX_CH_CTL ||
  921. reg == i915_mmio_reg_offset(DP_AUX_CH_CTL(AUX_CH_B)))
  922. event = AUX_CHANNEL_B;
  923. else if (reg == _PCH_DPC_AUX_CH_CTL ||
  924. reg == i915_mmio_reg_offset(DP_AUX_CH_CTL(AUX_CH_C)))
  925. event = AUX_CHANNEL_C;
  926. else if (reg == _PCH_DPD_AUX_CH_CTL ||
  927. reg == i915_mmio_reg_offset(DP_AUX_CH_CTL(AUX_CH_D)))
  928. event = AUX_CHANNEL_D;
  929. else {
  930. drm_WARN_ON(&dev_priv->drm, true);
  931. return -EINVAL;
  932. }
  933. intel_vgpu_trigger_virtual_event(vgpu, event);
  934. return 0;
  935. }
  936. static int dp_aux_ch_ctl_trans_done(struct intel_vgpu *vgpu, u32 value,
  937. unsigned int reg, int len, bool data_valid)
  938. {
  939. /* mark transaction done */
  940. value |= DP_AUX_CH_CTL_DONE;
  941. value &= ~DP_AUX_CH_CTL_SEND_BUSY;
  942. value &= ~DP_AUX_CH_CTL_RECEIVE_ERROR;
  943. if (data_valid)
  944. value &= ~DP_AUX_CH_CTL_TIME_OUT_ERROR;
  945. else
  946. value |= DP_AUX_CH_CTL_TIME_OUT_ERROR;
  947. /* message size */
  948. value &= ~(0xf << 20);
  949. value |= (len << 20);
  950. vgpu_vreg(vgpu, reg) = value;
  951. if (value & DP_AUX_CH_CTL_INTERRUPT)
  952. return trigger_aux_channel_interrupt(vgpu, reg);
  953. return 0;
  954. }
  955. static void dp_aux_ch_ctl_link_training(struct intel_vgpu_dpcd_data *dpcd,
  956. u8 t)
  957. {
  958. if ((t & DPCD_TRAINING_PATTERN_SET_MASK) == DPCD_TRAINING_PATTERN_1) {
  959. /* training pattern 1 for CR */
  960. /* set LANE0_CR_DONE, LANE1_CR_DONE */
  961. dpcd->data[DPCD_LANE0_1_STATUS] |= DPCD_LANES_CR_DONE;
  962. /* set LANE2_CR_DONE, LANE3_CR_DONE */
  963. dpcd->data[DPCD_LANE2_3_STATUS] |= DPCD_LANES_CR_DONE;
  964. } else if ((t & DPCD_TRAINING_PATTERN_SET_MASK) ==
  965. DPCD_TRAINING_PATTERN_2) {
  966. /* training pattern 2 for EQ */
  967. /* Set CHANNEL_EQ_DONE and SYMBOL_LOCKED for Lane0_1 */
  968. dpcd->data[DPCD_LANE0_1_STATUS] |= DPCD_LANES_EQ_DONE;
  969. dpcd->data[DPCD_LANE0_1_STATUS] |= DPCD_SYMBOL_LOCKED;
  970. /* Set CHANNEL_EQ_DONE and SYMBOL_LOCKED for Lane2_3 */
  971. dpcd->data[DPCD_LANE2_3_STATUS] |= DPCD_LANES_EQ_DONE;
  972. dpcd->data[DPCD_LANE2_3_STATUS] |= DPCD_SYMBOL_LOCKED;
  973. /* set INTERLANE_ALIGN_DONE */
  974. dpcd->data[DPCD_LANE_ALIGN_STATUS_UPDATED] |=
  975. DPCD_INTERLANE_ALIGN_DONE;
  976. } else if ((t & DPCD_TRAINING_PATTERN_SET_MASK) ==
  977. DPCD_LINK_TRAINING_DISABLED) {
  978. /* finish link training */
  979. /* set sink status as synchronized */
  980. dpcd->data[DPCD_SINK_STATUS] = DPCD_SINK_IN_SYNC;
  981. }
  982. }
  983. #define _REG_HSW_DP_AUX_CH_CTL(dp) \
  984. ((dp) ? (_PCH_DPB_AUX_CH_CTL + ((dp)-1)*0x100) : 0x64010)
  985. #define _REG_SKL_DP_AUX_CH_CTL(dp) (0x64010 + (dp) * 0x100)
  986. #define OFFSET_TO_DP_AUX_PORT(offset) (((offset) & 0xF00) >> 8)
  987. #define dpy_is_valid_port(port) \
  988. (((port) >= PORT_A) && ((port) < I915_MAX_PORTS))
  989. static int dp_aux_ch_ctl_mmio_write(struct intel_vgpu *vgpu,
  990. unsigned int offset, void *p_data, unsigned int bytes)
  991. {
  992. struct intel_vgpu_display *display = &vgpu->display;
  993. int msg, addr, ctrl, op, len;
  994. int port_index = OFFSET_TO_DP_AUX_PORT(offset);
  995. struct intel_vgpu_dpcd_data *dpcd = NULL;
  996. struct intel_vgpu_port *port = NULL;
  997. u32 data;
  998. if (!dpy_is_valid_port(port_index)) {
  999. gvt_vgpu_err("Unsupported DP port access!\n");
  1000. return 0;
  1001. }
  1002. write_vreg(vgpu, offset, p_data, bytes);
  1003. data = vgpu_vreg(vgpu, offset);
  1004. if ((GRAPHICS_VER(vgpu->gvt->gt->i915) >= 9)
  1005. && offset != _REG_SKL_DP_AUX_CH_CTL(port_index)) {
  1006. /* SKL DPB/C/D aux ctl register changed */
  1007. return 0;
  1008. } else if (IS_BROADWELL(vgpu->gvt->gt->i915) &&
  1009. offset != _REG_HSW_DP_AUX_CH_CTL(port_index)) {
  1010. /* write to the data registers */
  1011. return 0;
  1012. }
  1013. if (!(data & DP_AUX_CH_CTL_SEND_BUSY)) {
  1014. /* just want to clear the sticky bits */
  1015. vgpu_vreg(vgpu, offset) = 0;
  1016. return 0;
  1017. }
  1018. port = &display->ports[port_index];
  1019. dpcd = port->dpcd;
  1020. /* read out message from DATA1 register */
  1021. msg = vgpu_vreg(vgpu, offset + 4);
  1022. addr = (msg >> 8) & 0xffff;
  1023. ctrl = (msg >> 24) & 0xff;
  1024. len = msg & 0xff;
  1025. op = ctrl >> 4;
  1026. if (op == GVT_AUX_NATIVE_WRITE) {
  1027. int t;
  1028. u8 buf[16];
  1029. if ((addr + len + 1) >= DPCD_SIZE) {
  1030. /*
  1031. * Write request exceeds what we supported,
  1032. * DCPD spec: When a Source Device is writing a DPCD
  1033. * address not supported by the Sink Device, the Sink
  1034. * Device shall reply with AUX NACK and “M” equal to
  1035. * zero.
  1036. */
  1037. /* NAK the write */
  1038. vgpu_vreg(vgpu, offset + 4) = AUX_NATIVE_REPLY_NAK;
  1039. dp_aux_ch_ctl_trans_done(vgpu, data, offset, 2, true);
  1040. return 0;
  1041. }
  1042. /*
  1043. * Write request format: Headr (command + address + size) occupies
  1044. * 4 bytes, followed by (len + 1) bytes of data. See details at
  1045. * intel_dp_aux_transfer().
  1046. */
  1047. if ((len + 1 + 4) > AUX_BURST_SIZE) {
  1048. gvt_vgpu_err("dp_aux_header: len %d is too large\n", len);
  1049. return -EINVAL;
  1050. }
  1051. /* unpack data from vreg to buf */
  1052. for (t = 0; t < 4; t++) {
  1053. u32 r = vgpu_vreg(vgpu, offset + 8 + t * 4);
  1054. buf[t * 4] = (r >> 24) & 0xff;
  1055. buf[t * 4 + 1] = (r >> 16) & 0xff;
  1056. buf[t * 4 + 2] = (r >> 8) & 0xff;
  1057. buf[t * 4 + 3] = r & 0xff;
  1058. }
  1059. /* write to virtual DPCD */
  1060. if (dpcd && dpcd->data_valid) {
  1061. for (t = 0; t <= len; t++) {
  1062. int p = addr + t;
  1063. dpcd->data[p] = buf[t];
  1064. /* check for link training */
  1065. if (p == DPCD_TRAINING_PATTERN_SET)
  1066. dp_aux_ch_ctl_link_training(dpcd,
  1067. buf[t]);
  1068. }
  1069. }
  1070. /* ACK the write */
  1071. vgpu_vreg(vgpu, offset + 4) = 0;
  1072. dp_aux_ch_ctl_trans_done(vgpu, data, offset, 1,
  1073. dpcd && dpcd->data_valid);
  1074. return 0;
  1075. }
  1076. if (op == GVT_AUX_NATIVE_READ) {
  1077. int idx, i, ret = 0;
  1078. if ((addr + len + 1) >= DPCD_SIZE) {
  1079. /*
  1080. * read request exceeds what we supported
  1081. * DPCD spec: A Sink Device receiving a Native AUX CH
  1082. * read request for an unsupported DPCD address must
  1083. * reply with an AUX ACK and read data set equal to
  1084. * zero instead of replying with AUX NACK.
  1085. */
  1086. /* ACK the READ*/
  1087. vgpu_vreg(vgpu, offset + 4) = 0;
  1088. vgpu_vreg(vgpu, offset + 8) = 0;
  1089. vgpu_vreg(vgpu, offset + 12) = 0;
  1090. vgpu_vreg(vgpu, offset + 16) = 0;
  1091. vgpu_vreg(vgpu, offset + 20) = 0;
  1092. dp_aux_ch_ctl_trans_done(vgpu, data, offset, len + 2,
  1093. true);
  1094. return 0;
  1095. }
  1096. for (idx = 1; idx <= 5; idx++) {
  1097. /* clear the data registers */
  1098. vgpu_vreg(vgpu, offset + 4 * idx) = 0;
  1099. }
  1100. /*
  1101. * Read reply format: ACK (1 byte) plus (len + 1) bytes of data.
  1102. */
  1103. if ((len + 2) > AUX_BURST_SIZE) {
  1104. gvt_vgpu_err("dp_aux_header: len %d is too large\n", len);
  1105. return -EINVAL;
  1106. }
  1107. /* read from virtual DPCD to vreg */
  1108. /* first 4 bytes: [ACK][addr][addr+1][addr+2] */
  1109. if (dpcd && dpcd->data_valid) {
  1110. for (i = 1; i <= (len + 1); i++) {
  1111. int t;
  1112. t = dpcd->data[addr + i - 1];
  1113. t <<= (24 - 8 * (i % 4));
  1114. ret |= t;
  1115. if ((i % 4 == 3) || (i == (len + 1))) {
  1116. vgpu_vreg(vgpu, offset +
  1117. (i / 4 + 1) * 4) = ret;
  1118. ret = 0;
  1119. }
  1120. }
  1121. }
  1122. dp_aux_ch_ctl_trans_done(vgpu, data, offset, len + 2,
  1123. dpcd && dpcd->data_valid);
  1124. return 0;
  1125. }
  1126. /* i2c transaction starts */
  1127. intel_gvt_i2c_handle_aux_ch_write(vgpu, port_index, offset, p_data);
  1128. if (data & DP_AUX_CH_CTL_INTERRUPT)
  1129. trigger_aux_channel_interrupt(vgpu, offset);
  1130. return 0;
  1131. }
  1132. static int mbctl_write(struct intel_vgpu *vgpu, unsigned int offset,
  1133. void *p_data, unsigned int bytes)
  1134. {
  1135. *(u32 *)p_data &= (~GEN6_MBCTL_ENABLE_BOOT_FETCH);
  1136. write_vreg(vgpu, offset, p_data, bytes);
  1137. return 0;
  1138. }
  1139. static int vga_control_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
  1140. void *p_data, unsigned int bytes)
  1141. {
  1142. bool vga_disable;
  1143. write_vreg(vgpu, offset, p_data, bytes);
  1144. vga_disable = vgpu_vreg(vgpu, offset) & VGA_DISP_DISABLE;
  1145. gvt_dbg_core("vgpu%d: %s VGA mode\n", vgpu->id,
  1146. vga_disable ? "Disable" : "Enable");
  1147. return 0;
  1148. }
  1149. static u32 read_virtual_sbi_register(struct intel_vgpu *vgpu,
  1150. unsigned int sbi_offset)
  1151. {
  1152. struct intel_vgpu_display *display = &vgpu->display;
  1153. int num = display->sbi.number;
  1154. int i;
  1155. for (i = 0; i < num; ++i)
  1156. if (display->sbi.registers[i].offset == sbi_offset)
  1157. break;
  1158. if (i == num)
  1159. return 0;
  1160. return display->sbi.registers[i].value;
  1161. }
  1162. static void write_virtual_sbi_register(struct intel_vgpu *vgpu,
  1163. unsigned int offset, u32 value)
  1164. {
  1165. struct intel_vgpu_display *display = &vgpu->display;
  1166. int num = display->sbi.number;
  1167. int i;
  1168. for (i = 0; i < num; ++i) {
  1169. if (display->sbi.registers[i].offset == offset)
  1170. break;
  1171. }
  1172. if (i == num) {
  1173. if (num == SBI_REG_MAX) {
  1174. gvt_vgpu_err("SBI caching meets maximum limits\n");
  1175. return;
  1176. }
  1177. display->sbi.number++;
  1178. }
  1179. display->sbi.registers[i].offset = offset;
  1180. display->sbi.registers[i].value = value;
  1181. }
  1182. static int sbi_data_mmio_read(struct intel_vgpu *vgpu, unsigned int offset,
  1183. void *p_data, unsigned int bytes)
  1184. {
  1185. if (((vgpu_vreg_t(vgpu, SBI_CTL_STAT) & SBI_OPCODE_MASK) >>
  1186. SBI_OPCODE_SHIFT) == SBI_CMD_CRRD) {
  1187. unsigned int sbi_offset = (vgpu_vreg_t(vgpu, SBI_ADDR) &
  1188. SBI_ADDR_OFFSET_MASK) >> SBI_ADDR_OFFSET_SHIFT;
  1189. vgpu_vreg(vgpu, offset) = read_virtual_sbi_register(vgpu,
  1190. sbi_offset);
  1191. }
  1192. read_vreg(vgpu, offset, p_data, bytes);
  1193. return 0;
  1194. }
  1195. static int sbi_ctl_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
  1196. void *p_data, unsigned int bytes)
  1197. {
  1198. u32 data;
  1199. write_vreg(vgpu, offset, p_data, bytes);
  1200. data = vgpu_vreg(vgpu, offset);
  1201. data &= ~(SBI_STAT_MASK << SBI_STAT_SHIFT);
  1202. data |= SBI_READY;
  1203. data &= ~(SBI_RESPONSE_MASK << SBI_RESPONSE_SHIFT);
  1204. data |= SBI_RESPONSE_SUCCESS;
  1205. vgpu_vreg(vgpu, offset) = data;
  1206. if (((vgpu_vreg_t(vgpu, SBI_CTL_STAT) & SBI_OPCODE_MASK) >>
  1207. SBI_OPCODE_SHIFT) == SBI_CMD_CRWR) {
  1208. unsigned int sbi_offset = (vgpu_vreg_t(vgpu, SBI_ADDR) &
  1209. SBI_ADDR_OFFSET_MASK) >> SBI_ADDR_OFFSET_SHIFT;
  1210. write_virtual_sbi_register(vgpu, sbi_offset,
  1211. vgpu_vreg_t(vgpu, SBI_DATA));
  1212. }
  1213. return 0;
  1214. }
  1215. #define _vgtif_reg(x) \
  1216. (VGT_PVINFO_PAGE + offsetof(struct vgt_if, x))
  1217. static int pvinfo_mmio_read(struct intel_vgpu *vgpu, unsigned int offset,
  1218. void *p_data, unsigned int bytes)
  1219. {
  1220. bool invalid_read = false;
  1221. read_vreg(vgpu, offset, p_data, bytes);
  1222. switch (offset) {
  1223. case _vgtif_reg(magic) ... _vgtif_reg(vgt_id):
  1224. if (offset + bytes > _vgtif_reg(vgt_id) + 4)
  1225. invalid_read = true;
  1226. break;
  1227. case _vgtif_reg(avail_rs.mappable_gmadr.base) ...
  1228. _vgtif_reg(avail_rs.fence_num):
  1229. if (offset + bytes >
  1230. _vgtif_reg(avail_rs.fence_num) + 4)
  1231. invalid_read = true;
  1232. break;
  1233. case 0x78010: /* vgt_caps */
  1234. case 0x7881c:
  1235. break;
  1236. default:
  1237. invalid_read = true;
  1238. break;
  1239. }
  1240. if (invalid_read)
  1241. gvt_vgpu_err("invalid pvinfo read: [%x:%x] = %x\n",
  1242. offset, bytes, *(u32 *)p_data);
  1243. vgpu->pv_notified = true;
  1244. return 0;
  1245. }
  1246. static int handle_g2v_notification(struct intel_vgpu *vgpu, int notification)
  1247. {
  1248. enum intel_gvt_gtt_type root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY;
  1249. struct intel_vgpu_mm *mm;
  1250. u64 *pdps;
  1251. pdps = (u64 *)&vgpu_vreg64_t(vgpu, vgtif_reg(pdp[0]));
  1252. switch (notification) {
  1253. case VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE:
  1254. root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY;
  1255. fallthrough;
  1256. case VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE:
  1257. mm = intel_vgpu_get_ppgtt_mm(vgpu, root_entry_type, pdps);
  1258. return PTR_ERR_OR_ZERO(mm);
  1259. case VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY:
  1260. case VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY:
  1261. return intel_vgpu_put_ppgtt_mm(vgpu, pdps);
  1262. case VGT_G2V_EXECLIST_CONTEXT_CREATE:
  1263. case VGT_G2V_EXECLIST_CONTEXT_DESTROY:
  1264. case 1: /* Remove this in guest driver. */
  1265. break;
  1266. default:
  1267. gvt_vgpu_err("Invalid PV notification %d\n", notification);
  1268. }
  1269. return 0;
  1270. }
  1271. static int send_display_ready_uevent(struct intel_vgpu *vgpu, int ready)
  1272. {
  1273. struct kobject *kobj = &vgpu->gvt->gt->i915->drm.primary->kdev->kobj;
  1274. char *env[3] = {NULL, NULL, NULL};
  1275. char vmid_str[20];
  1276. char display_ready_str[20];
  1277. snprintf(display_ready_str, 20, "GVT_DISPLAY_READY=%d", ready);
  1278. env[0] = display_ready_str;
  1279. snprintf(vmid_str, 20, "VMID=%d", vgpu->id);
  1280. env[1] = vmid_str;
  1281. return kobject_uevent_env(kobj, KOBJ_ADD, env);
  1282. }
  1283. static int pvinfo_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
  1284. void *p_data, unsigned int bytes)
  1285. {
  1286. u32 data = *(u32 *)p_data;
  1287. bool invalid_write = false;
  1288. switch (offset) {
  1289. case _vgtif_reg(display_ready):
  1290. send_display_ready_uevent(vgpu, data ? 1 : 0);
  1291. break;
  1292. case _vgtif_reg(g2v_notify):
  1293. handle_g2v_notification(vgpu, data);
  1294. break;
  1295. /* add xhot and yhot to handled list to avoid error log */
  1296. case _vgtif_reg(cursor_x_hot):
  1297. case _vgtif_reg(cursor_y_hot):
  1298. case _vgtif_reg(pdp[0].lo):
  1299. case _vgtif_reg(pdp[0].hi):
  1300. case _vgtif_reg(pdp[1].lo):
  1301. case _vgtif_reg(pdp[1].hi):
  1302. case _vgtif_reg(pdp[2].lo):
  1303. case _vgtif_reg(pdp[2].hi):
  1304. case _vgtif_reg(pdp[3].lo):
  1305. case _vgtif_reg(pdp[3].hi):
  1306. case _vgtif_reg(execlist_context_descriptor_lo):
  1307. case _vgtif_reg(execlist_context_descriptor_hi):
  1308. break;
  1309. case _vgtif_reg(rsv5[0])..._vgtif_reg(rsv5[3]):
  1310. invalid_write = true;
  1311. enter_failsafe_mode(vgpu, GVT_FAILSAFE_INSUFFICIENT_RESOURCE);
  1312. break;
  1313. default:
  1314. invalid_write = true;
  1315. gvt_vgpu_err("invalid pvinfo write offset %x bytes %x data %x\n",
  1316. offset, bytes, data);
  1317. break;
  1318. }
  1319. if (!invalid_write)
  1320. write_vreg(vgpu, offset, p_data, bytes);
  1321. return 0;
  1322. }
  1323. static int pf_write(struct intel_vgpu *vgpu,
  1324. unsigned int offset, void *p_data, unsigned int bytes)
  1325. {
  1326. struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
  1327. u32 val = *(u32 *)p_data;
  1328. if ((offset == _PS_1A_CTRL || offset == _PS_2A_CTRL ||
  1329. offset == _PS_1B_CTRL || offset == _PS_2B_CTRL ||
  1330. offset == _PS_1C_CTRL) && (val & PS_PLANE_SEL_MASK) != 0) {
  1331. drm_WARN_ONCE(&i915->drm, true,
  1332. "VM(%d): guest is trying to scaling a plane\n",
  1333. vgpu->id);
  1334. return 0;
  1335. }
  1336. return intel_vgpu_default_mmio_write(vgpu, offset, p_data, bytes);
  1337. }
  1338. static int power_well_ctl_mmio_write(struct intel_vgpu *vgpu,
  1339. unsigned int offset, void *p_data, unsigned int bytes)
  1340. {
  1341. write_vreg(vgpu, offset, p_data, bytes);
  1342. if (vgpu_vreg(vgpu, offset) &
  1343. HSW_PWR_WELL_CTL_REQ(HSW_PW_CTL_IDX_GLOBAL))
  1344. vgpu_vreg(vgpu, offset) |=
  1345. HSW_PWR_WELL_CTL_STATE(HSW_PW_CTL_IDX_GLOBAL);
  1346. else
  1347. vgpu_vreg(vgpu, offset) &=
  1348. ~HSW_PWR_WELL_CTL_STATE(HSW_PW_CTL_IDX_GLOBAL);
  1349. return 0;
  1350. }
  1351. static int gen9_dbuf_ctl_mmio_write(struct intel_vgpu *vgpu,
  1352. unsigned int offset, void *p_data, unsigned int bytes)
  1353. {
  1354. write_vreg(vgpu, offset, p_data, bytes);
  1355. if (vgpu_vreg(vgpu, offset) & DBUF_POWER_REQUEST)
  1356. vgpu_vreg(vgpu, offset) |= DBUF_POWER_STATE;
  1357. else
  1358. vgpu_vreg(vgpu, offset) &= ~DBUF_POWER_STATE;
  1359. return 0;
  1360. }
  1361. static int fpga_dbg_mmio_write(struct intel_vgpu *vgpu,
  1362. unsigned int offset, void *p_data, unsigned int bytes)
  1363. {
  1364. write_vreg(vgpu, offset, p_data, bytes);
  1365. if (vgpu_vreg(vgpu, offset) & FPGA_DBG_RM_NOCLAIM)
  1366. vgpu_vreg(vgpu, offset) &= ~FPGA_DBG_RM_NOCLAIM;
  1367. return 0;
  1368. }
  1369. static int dma_ctrl_write(struct intel_vgpu *vgpu, unsigned int offset,
  1370. void *p_data, unsigned int bytes)
  1371. {
  1372. struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
  1373. u32 mode;
  1374. write_vreg(vgpu, offset, p_data, bytes);
  1375. mode = vgpu_vreg(vgpu, offset);
  1376. if (GFX_MODE_BIT_SET_IN_MASK(mode, START_DMA)) {
  1377. drm_WARN_ONCE(&i915->drm, 1,
  1378. "VM(%d): iGVT-g doesn't support GuC\n",
  1379. vgpu->id);
  1380. return 0;
  1381. }
  1382. return 0;
  1383. }
  1384. static int gen9_trtte_write(struct intel_vgpu *vgpu, unsigned int offset,
  1385. void *p_data, unsigned int bytes)
  1386. {
  1387. struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
  1388. u32 trtte = *(u32 *)p_data;
  1389. if ((trtte & 1) && (trtte & (1 << 1)) == 0) {
  1390. drm_WARN(&i915->drm, 1,
  1391. "VM(%d): Use physical address for TRTT!\n",
  1392. vgpu->id);
  1393. return -EINVAL;
  1394. }
  1395. write_vreg(vgpu, offset, p_data, bytes);
  1396. return 0;
  1397. }
  1398. static int gen9_trtt_chicken_write(struct intel_vgpu *vgpu, unsigned int offset,
  1399. void *p_data, unsigned int bytes)
  1400. {
  1401. write_vreg(vgpu, offset, p_data, bytes);
  1402. return 0;
  1403. }
  1404. static int dpll_status_read(struct intel_vgpu *vgpu, unsigned int offset,
  1405. void *p_data, unsigned int bytes)
  1406. {
  1407. u32 v = 0;
  1408. if (vgpu_vreg(vgpu, 0x46010) & (1 << 31))
  1409. v |= (1 << 0);
  1410. if (vgpu_vreg(vgpu, 0x46014) & (1 << 31))
  1411. v |= (1 << 8);
  1412. if (vgpu_vreg(vgpu, 0x46040) & (1 << 31))
  1413. v |= (1 << 16);
  1414. if (vgpu_vreg(vgpu, 0x46060) & (1 << 31))
  1415. v |= (1 << 24);
  1416. vgpu_vreg(vgpu, offset) = v;
  1417. return intel_vgpu_default_mmio_read(vgpu, offset, p_data, bytes);
  1418. }
  1419. static int mailbox_write(struct intel_vgpu *vgpu, unsigned int offset,
  1420. void *p_data, unsigned int bytes)
  1421. {
  1422. u32 value = *(u32 *)p_data;
  1423. u32 cmd = value & 0xff;
  1424. u32 *data0 = &vgpu_vreg_t(vgpu, GEN6_PCODE_DATA);
  1425. switch (cmd) {
  1426. case GEN9_PCODE_READ_MEM_LATENCY:
  1427. if (IS_SKYLAKE(vgpu->gvt->gt->i915) ||
  1428. IS_KABYLAKE(vgpu->gvt->gt->i915) ||
  1429. IS_COFFEELAKE(vgpu->gvt->gt->i915) ||
  1430. IS_COMETLAKE(vgpu->gvt->gt->i915)) {
  1431. /**
  1432. * "Read memory latency" command on gen9.
  1433. * Below memory latency values are read
  1434. * from skylake platform.
  1435. */
  1436. if (!*data0)
  1437. *data0 = 0x1e1a1100;
  1438. else
  1439. *data0 = 0x61514b3d;
  1440. } else if (IS_BROXTON(vgpu->gvt->gt->i915)) {
  1441. /**
  1442. * "Read memory latency" command on gen9.
  1443. * Below memory latency values are read
  1444. * from Broxton MRB.
  1445. */
  1446. if (!*data0)
  1447. *data0 = 0x16080707;
  1448. else
  1449. *data0 = 0x16161616;
  1450. }
  1451. break;
  1452. case SKL_PCODE_CDCLK_CONTROL:
  1453. if (IS_SKYLAKE(vgpu->gvt->gt->i915) ||
  1454. IS_KABYLAKE(vgpu->gvt->gt->i915) ||
  1455. IS_COFFEELAKE(vgpu->gvt->gt->i915) ||
  1456. IS_COMETLAKE(vgpu->gvt->gt->i915))
  1457. *data0 = SKL_CDCLK_READY_FOR_CHANGE;
  1458. break;
  1459. case GEN6_PCODE_READ_RC6VIDS:
  1460. *data0 |= 0x1;
  1461. break;
  1462. }
  1463. gvt_dbg_core("VM(%d) write %x to mailbox, return data0 %x\n",
  1464. vgpu->id, value, *data0);
  1465. /**
  1466. * PCODE_READY clear means ready for pcode read/write,
  1467. * PCODE_ERROR_MASK clear means no error happened. In GVT-g we
  1468. * always emulate as pcode read/write success and ready for access
  1469. * anytime, since we don't touch real physical registers here.
  1470. */
  1471. value &= ~(GEN6_PCODE_READY | GEN6_PCODE_ERROR_MASK);
  1472. return intel_vgpu_default_mmio_write(vgpu, offset, &value, bytes);
  1473. }
  1474. static int hws_pga_write(struct intel_vgpu *vgpu, unsigned int offset,
  1475. void *p_data, unsigned int bytes)
  1476. {
  1477. u32 value = *(u32 *)p_data;
  1478. const struct intel_engine_cs *engine =
  1479. intel_gvt_render_mmio_to_engine(vgpu->gvt, offset);
  1480. if (value != 0 &&
  1481. !intel_gvt_ggtt_validate_range(vgpu, value, I915_GTT_PAGE_SIZE)) {
  1482. gvt_vgpu_err("write invalid HWSP address, reg:0x%x, value:0x%x\n",
  1483. offset, value);
  1484. return -EINVAL;
  1485. }
  1486. /*
  1487. * Need to emulate all the HWSP register write to ensure host can
  1488. * update the VM CSB status correctly. Here listed registers can
  1489. * support BDW, SKL or other platforms with same HWSP registers.
  1490. */
  1491. if (unlikely(!engine)) {
  1492. gvt_vgpu_err("access unknown hardware status page register:0x%x\n",
  1493. offset);
  1494. return -EINVAL;
  1495. }
  1496. vgpu->hws_pga[engine->id] = value;
  1497. gvt_dbg_mmio("VM(%d) write: 0x%x to HWSP: 0x%x\n",
  1498. vgpu->id, value, offset);
  1499. return intel_vgpu_default_mmio_write(vgpu, offset, &value, bytes);
  1500. }
  1501. static int skl_power_well_ctl_write(struct intel_vgpu *vgpu,
  1502. unsigned int offset, void *p_data, unsigned int bytes)
  1503. {
  1504. u32 v = *(u32 *)p_data;
  1505. if (IS_BROXTON(vgpu->gvt->gt->i915))
  1506. v &= (1 << 31) | (1 << 29);
  1507. else
  1508. v &= (1 << 31) | (1 << 29) | (1 << 9) |
  1509. (1 << 7) | (1 << 5) | (1 << 3) | (1 << 1);
  1510. v |= (v >> 1);
  1511. return intel_vgpu_default_mmio_write(vgpu, offset, &v, bytes);
  1512. }
  1513. static int skl_lcpll_write(struct intel_vgpu *vgpu, unsigned int offset,
  1514. void *p_data, unsigned int bytes)
  1515. {
  1516. u32 v = *(u32 *)p_data;
  1517. /* other bits are MBZ. */
  1518. v &= (1 << 31) | (1 << 30);
  1519. v & (1 << 31) ? (v |= (1 << 30)) : (v &= ~(1 << 30));
  1520. vgpu_vreg(vgpu, offset) = v;
  1521. return 0;
  1522. }
  1523. static int bxt_de_pll_enable_write(struct intel_vgpu *vgpu,
  1524. unsigned int offset, void *p_data, unsigned int bytes)
  1525. {
  1526. u32 v = *(u32 *)p_data;
  1527. if (v & BXT_DE_PLL_PLL_ENABLE)
  1528. v |= BXT_DE_PLL_LOCK;
  1529. vgpu_vreg(vgpu, offset) = v;
  1530. return 0;
  1531. }
  1532. static int bxt_port_pll_enable_write(struct intel_vgpu *vgpu,
  1533. unsigned int offset, void *p_data, unsigned int bytes)
  1534. {
  1535. u32 v = *(u32 *)p_data;
  1536. if (v & PORT_PLL_ENABLE)
  1537. v |= PORT_PLL_LOCK;
  1538. vgpu_vreg(vgpu, offset) = v;
  1539. return 0;
  1540. }
  1541. static int bxt_phy_ctl_family_write(struct intel_vgpu *vgpu,
  1542. unsigned int offset, void *p_data, unsigned int bytes)
  1543. {
  1544. u32 v = *(u32 *)p_data;
  1545. u32 data = v & COMMON_RESET_DIS ? BXT_PHY_LANE_ENABLED : 0;
  1546. switch (offset) {
  1547. case _PHY_CTL_FAMILY_EDP:
  1548. vgpu_vreg(vgpu, _BXT_PHY_CTL_DDI_A) = data;
  1549. break;
  1550. case _PHY_CTL_FAMILY_DDI:
  1551. vgpu_vreg(vgpu, _BXT_PHY_CTL_DDI_B) = data;
  1552. vgpu_vreg(vgpu, _BXT_PHY_CTL_DDI_C) = data;
  1553. break;
  1554. }
  1555. vgpu_vreg(vgpu, offset) = v;
  1556. return 0;
  1557. }
  1558. static int bxt_port_tx_dw3_read(struct intel_vgpu *vgpu,
  1559. unsigned int offset, void *p_data, unsigned int bytes)
  1560. {
  1561. u32 v = vgpu_vreg(vgpu, offset);
  1562. v &= ~UNIQUE_TRANGE_EN_METHOD;
  1563. vgpu_vreg(vgpu, offset) = v;
  1564. return intel_vgpu_default_mmio_read(vgpu, offset, p_data, bytes);
  1565. }
  1566. static int bxt_pcs_dw12_grp_write(struct intel_vgpu *vgpu,
  1567. unsigned int offset, void *p_data, unsigned int bytes)
  1568. {
  1569. u32 v = *(u32 *)p_data;
  1570. if (offset == _PORT_PCS_DW12_GRP_A || offset == _PORT_PCS_DW12_GRP_B) {
  1571. vgpu_vreg(vgpu, offset - 0x600) = v;
  1572. vgpu_vreg(vgpu, offset - 0x800) = v;
  1573. } else {
  1574. vgpu_vreg(vgpu, offset - 0x400) = v;
  1575. vgpu_vreg(vgpu, offset - 0x600) = v;
  1576. }
  1577. vgpu_vreg(vgpu, offset) = v;
  1578. return 0;
  1579. }
  1580. static int bxt_gt_disp_pwron_write(struct intel_vgpu *vgpu,
  1581. unsigned int offset, void *p_data, unsigned int bytes)
  1582. {
  1583. u32 v = *(u32 *)p_data;
  1584. if (v & BIT(0)) {
  1585. vgpu_vreg_t(vgpu, BXT_PORT_CL1CM_DW0(DPIO_PHY0)) &=
  1586. ~PHY_RESERVED;
  1587. vgpu_vreg_t(vgpu, BXT_PORT_CL1CM_DW0(DPIO_PHY0)) |=
  1588. PHY_POWER_GOOD;
  1589. }
  1590. if (v & BIT(1)) {
  1591. vgpu_vreg_t(vgpu, BXT_PORT_CL1CM_DW0(DPIO_PHY1)) &=
  1592. ~PHY_RESERVED;
  1593. vgpu_vreg_t(vgpu, BXT_PORT_CL1CM_DW0(DPIO_PHY1)) |=
  1594. PHY_POWER_GOOD;
  1595. }
  1596. vgpu_vreg(vgpu, offset) = v;
  1597. return 0;
  1598. }
  1599. static int edp_psr_imr_iir_write(struct intel_vgpu *vgpu,
  1600. unsigned int offset, void *p_data, unsigned int bytes)
  1601. {
  1602. vgpu_vreg(vgpu, offset) = 0;
  1603. return 0;
  1604. }
  1605. /*
  1606. * FixMe:
  1607. * If guest fills non-priv batch buffer on ApolloLake/Broxton as Mesa i965 did:
  1608. * 717e7539124d (i965: Use a WC map and memcpy for the batch instead of pwrite.)
  1609. * Due to the missing flush of bb filled by VM vCPU, host GPU hangs on executing
  1610. * these MI_BATCH_BUFFER.
  1611. * Temporarily workaround this by setting SNOOP bit for PAT3 used by PPGTT
  1612. * PML4 PTE: PAT(0) PCD(1) PWT(1).
  1613. * The performance is still expected to be low, will need further improvement.
  1614. */
  1615. static int bxt_ppat_low_write(struct intel_vgpu *vgpu, unsigned int offset,
  1616. void *p_data, unsigned int bytes)
  1617. {
  1618. u64 pat =
  1619. GEN8_PPAT(0, CHV_PPAT_SNOOP) |
  1620. GEN8_PPAT(1, 0) |
  1621. GEN8_PPAT(2, 0) |
  1622. GEN8_PPAT(3, CHV_PPAT_SNOOP) |
  1623. GEN8_PPAT(4, CHV_PPAT_SNOOP) |
  1624. GEN8_PPAT(5, CHV_PPAT_SNOOP) |
  1625. GEN8_PPAT(6, CHV_PPAT_SNOOP) |
  1626. GEN8_PPAT(7, CHV_PPAT_SNOOP);
  1627. vgpu_vreg(vgpu, offset) = lower_32_bits(pat);
  1628. return 0;
  1629. }
  1630. static int guc_status_read(struct intel_vgpu *vgpu,
  1631. unsigned int offset, void *p_data,
  1632. unsigned int bytes)
  1633. {
  1634. /* keep MIA_IN_RESET before clearing */
  1635. read_vreg(vgpu, offset, p_data, bytes);
  1636. vgpu_vreg(vgpu, offset) &= ~GS_MIA_IN_RESET;
  1637. return 0;
  1638. }
  1639. static int mmio_read_from_hw(struct intel_vgpu *vgpu,
  1640. unsigned int offset, void *p_data, unsigned int bytes)
  1641. {
  1642. struct intel_gvt *gvt = vgpu->gvt;
  1643. const struct intel_engine_cs *engine =
  1644. intel_gvt_render_mmio_to_engine(gvt, offset);
  1645. /**
  1646. * Read HW reg in following case
  1647. * a. the offset isn't a ring mmio
  1648. * b. the offset's ring is running on hw.
  1649. * c. the offset is ring time stamp mmio
  1650. */
  1651. if (!engine ||
  1652. vgpu == gvt->scheduler.engine_owner[engine->id] ||
  1653. offset == i915_mmio_reg_offset(RING_TIMESTAMP(engine->mmio_base)) ||
  1654. offset == i915_mmio_reg_offset(RING_TIMESTAMP_UDW(engine->mmio_base))) {
  1655. mmio_hw_access_pre(gvt->gt);
  1656. vgpu_vreg(vgpu, offset) =
  1657. intel_uncore_read(gvt->gt->uncore, _MMIO(offset));
  1658. mmio_hw_access_post(gvt->gt);
  1659. }
  1660. return intel_vgpu_default_mmio_read(vgpu, offset, p_data, bytes);
  1661. }
  1662. static int elsp_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
  1663. void *p_data, unsigned int bytes)
  1664. {
  1665. struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
  1666. const struct intel_engine_cs *engine = intel_gvt_render_mmio_to_engine(vgpu->gvt, offset);
  1667. struct intel_vgpu_execlist *execlist;
  1668. u32 data = *(u32 *)p_data;
  1669. int ret = 0;
  1670. if (drm_WARN_ON(&i915->drm, !engine))
  1671. return -EINVAL;
  1672. /*
  1673. * Due to d3_entered is used to indicate skipping PPGTT invalidation on
  1674. * vGPU reset, it's set on D0->D3 on PCI config write, and cleared after
  1675. * vGPU reset if in resuming.
  1676. * In S0ix exit, the device power state also transite from D3 to D0 as
  1677. * S3 resume, but no vGPU reset (triggered by QEMU devic model). After
  1678. * S0ix exit, all engines continue to work. However the d3_entered
  1679. * remains set which will break next vGPU reset logic (miss the expected
  1680. * PPGTT invalidation).
  1681. * Engines can only work in D0. Thus the 1st elsp write gives GVT a
  1682. * chance to clear d3_entered.
  1683. */
  1684. if (vgpu->d3_entered)
  1685. vgpu->d3_entered = false;
  1686. execlist = &vgpu->submission.execlist[engine->id];
  1687. execlist->elsp_dwords.data[3 - execlist->elsp_dwords.index] = data;
  1688. if (execlist->elsp_dwords.index == 3) {
  1689. ret = intel_vgpu_submit_execlist(vgpu, engine);
  1690. if(ret)
  1691. gvt_vgpu_err("fail submit workload on ring %s\n",
  1692. engine->name);
  1693. }
  1694. ++execlist->elsp_dwords.index;
  1695. execlist->elsp_dwords.index &= 0x3;
  1696. return ret;
  1697. }
  1698. static int ring_mode_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
  1699. void *p_data, unsigned int bytes)
  1700. {
  1701. u32 data = *(u32 *)p_data;
  1702. const struct intel_engine_cs *engine =
  1703. intel_gvt_render_mmio_to_engine(vgpu->gvt, offset);
  1704. bool enable_execlist;
  1705. int ret;
  1706. (*(u32 *)p_data) &= ~_MASKED_BIT_ENABLE(1);
  1707. if (IS_COFFEELAKE(vgpu->gvt->gt->i915) ||
  1708. IS_COMETLAKE(vgpu->gvt->gt->i915))
  1709. (*(u32 *)p_data) &= ~_MASKED_BIT_ENABLE(2);
  1710. write_vreg(vgpu, offset, p_data, bytes);
  1711. if (IS_MASKED_BITS_ENABLED(data, 1)) {
  1712. enter_failsafe_mode(vgpu, GVT_FAILSAFE_UNSUPPORTED_GUEST);
  1713. return 0;
  1714. }
  1715. if ((IS_COFFEELAKE(vgpu->gvt->gt->i915) ||
  1716. IS_COMETLAKE(vgpu->gvt->gt->i915)) &&
  1717. IS_MASKED_BITS_ENABLED(data, 2)) {
  1718. enter_failsafe_mode(vgpu, GVT_FAILSAFE_UNSUPPORTED_GUEST);
  1719. return 0;
  1720. }
  1721. /* when PPGTT mode enabled, we will check if guest has called
  1722. * pvinfo, if not, we will treat this guest as non-gvtg-aware
  1723. * guest, and stop emulating its cfg space, mmio, gtt, etc.
  1724. */
  1725. if ((IS_MASKED_BITS_ENABLED(data, GFX_PPGTT_ENABLE) ||
  1726. IS_MASKED_BITS_ENABLED(data, GFX_RUN_LIST_ENABLE)) &&
  1727. !vgpu->pv_notified) {
  1728. enter_failsafe_mode(vgpu, GVT_FAILSAFE_UNSUPPORTED_GUEST);
  1729. return 0;
  1730. }
  1731. if (IS_MASKED_BITS_ENABLED(data, GFX_RUN_LIST_ENABLE) ||
  1732. IS_MASKED_BITS_DISABLED(data, GFX_RUN_LIST_ENABLE)) {
  1733. enable_execlist = !!(data & GFX_RUN_LIST_ENABLE);
  1734. gvt_dbg_core("EXECLIST %s on ring %s\n",
  1735. (enable_execlist ? "enabling" : "disabling"),
  1736. engine->name);
  1737. if (!enable_execlist)
  1738. return 0;
  1739. ret = intel_vgpu_select_submission_ops(vgpu,
  1740. engine->mask,
  1741. INTEL_VGPU_EXECLIST_SUBMISSION);
  1742. if (ret)
  1743. return ret;
  1744. intel_vgpu_start_schedule(vgpu);
  1745. }
  1746. return 0;
  1747. }
  1748. static int gvt_reg_tlb_control_handler(struct intel_vgpu *vgpu,
  1749. unsigned int offset, void *p_data, unsigned int bytes)
  1750. {
  1751. unsigned int id = 0;
  1752. write_vreg(vgpu, offset, p_data, bytes);
  1753. vgpu_vreg(vgpu, offset) = 0;
  1754. switch (offset) {
  1755. case 0x4260:
  1756. id = RCS0;
  1757. break;
  1758. case 0x4264:
  1759. id = VCS0;
  1760. break;
  1761. case 0x4268:
  1762. id = VCS1;
  1763. break;
  1764. case 0x426c:
  1765. id = BCS0;
  1766. break;
  1767. case 0x4270:
  1768. id = VECS0;
  1769. break;
  1770. default:
  1771. return -EINVAL;
  1772. }
  1773. set_bit(id, (void *)vgpu->submission.tlb_handle_pending);
  1774. return 0;
  1775. }
  1776. static int ring_reset_ctl_write(struct intel_vgpu *vgpu,
  1777. unsigned int offset, void *p_data, unsigned int bytes)
  1778. {
  1779. u32 data;
  1780. write_vreg(vgpu, offset, p_data, bytes);
  1781. data = vgpu_vreg(vgpu, offset);
  1782. if (IS_MASKED_BITS_ENABLED(data, RESET_CTL_REQUEST_RESET))
  1783. data |= RESET_CTL_READY_TO_RESET;
  1784. else if (data & _MASKED_BIT_DISABLE(RESET_CTL_REQUEST_RESET))
  1785. data &= ~RESET_CTL_READY_TO_RESET;
  1786. vgpu_vreg(vgpu, offset) = data;
  1787. return 0;
  1788. }
  1789. static int csfe_chicken1_mmio_write(struct intel_vgpu *vgpu,
  1790. unsigned int offset, void *p_data,
  1791. unsigned int bytes)
  1792. {
  1793. u32 data = *(u32 *)p_data;
  1794. (*(u32 *)p_data) &= ~_MASKED_BIT_ENABLE(0x18);
  1795. write_vreg(vgpu, offset, p_data, bytes);
  1796. if (IS_MASKED_BITS_ENABLED(data, 0x10) ||
  1797. IS_MASKED_BITS_ENABLED(data, 0x8))
  1798. enter_failsafe_mode(vgpu, GVT_FAILSAFE_UNSUPPORTED_GUEST);
  1799. return 0;
  1800. }
  1801. #define MMIO_F(reg, s, f, am, rm, d, r, w) do { \
  1802. ret = setup_mmio_info(gvt, i915_mmio_reg_offset(reg), \
  1803. s, f, am, rm, d, r, w); \
  1804. if (ret) \
  1805. return ret; \
  1806. } while (0)
  1807. #define MMIO_DH(reg, d, r, w) \
  1808. MMIO_F(reg, 4, 0, 0, 0, d, r, w)
  1809. #define MMIO_DFH(reg, d, f, r, w) \
  1810. MMIO_F(reg, 4, f, 0, 0, d, r, w)
  1811. #define MMIO_GM(reg, d, r, w) \
  1812. MMIO_F(reg, 4, F_GMADR, 0xFFFFF000, 0, d, r, w)
  1813. #define MMIO_GM_RDR(reg, d, r, w) \
  1814. MMIO_F(reg, 4, F_GMADR | F_CMD_ACCESS, 0xFFFFF000, 0, d, r, w)
  1815. #define MMIO_RO(reg, d, f, rm, r, w) \
  1816. MMIO_F(reg, 4, F_RO | f, 0, rm, d, r, w)
  1817. #define MMIO_RING_F(prefix, s, f, am, rm, d, r, w) do { \
  1818. MMIO_F(prefix(RENDER_RING_BASE), s, f, am, rm, d, r, w); \
  1819. MMIO_F(prefix(BLT_RING_BASE), s, f, am, rm, d, r, w); \
  1820. MMIO_F(prefix(GEN6_BSD_RING_BASE), s, f, am, rm, d, r, w); \
  1821. MMIO_F(prefix(VEBOX_RING_BASE), s, f, am, rm, d, r, w); \
  1822. if (HAS_ENGINE(gvt->gt, VCS1)) \
  1823. MMIO_F(prefix(GEN8_BSD2_RING_BASE), s, f, am, rm, d, r, w); \
  1824. } while (0)
  1825. #define MMIO_RING_DFH(prefix, d, f, r, w) \
  1826. MMIO_RING_F(prefix, 4, f, 0, 0, d, r, w)
  1827. #define MMIO_RING_GM(prefix, d, r, w) \
  1828. MMIO_RING_F(prefix, 4, F_GMADR, 0xFFFF0000, 0, d, r, w)
  1829. #define MMIO_RING_GM_RDR(prefix, d, r, w) \
  1830. MMIO_RING_F(prefix, 4, F_GMADR | F_CMD_ACCESS, 0xFFFF0000, 0, d, r, w)
  1831. #define MMIO_RING_RO(prefix, d, f, rm, r, w) \
  1832. MMIO_RING_F(prefix, 4, F_RO | f, 0, rm, d, r, w)
  1833. static int init_generic_mmio_info(struct intel_gvt *gvt)
  1834. {
  1835. struct drm_i915_private *dev_priv = gvt->gt->i915;
  1836. int ret;
  1837. MMIO_RING_DFH(RING_IMR, D_ALL, 0, NULL,
  1838. intel_vgpu_reg_imr_handler);
  1839. MMIO_DFH(SDEIMR, D_ALL, 0, NULL, intel_vgpu_reg_imr_handler);
  1840. MMIO_DFH(SDEIER, D_ALL, 0, NULL, intel_vgpu_reg_ier_handler);
  1841. MMIO_DFH(SDEIIR, D_ALL, 0, NULL, intel_vgpu_reg_iir_handler);
  1842. MMIO_RING_DFH(RING_HWSTAM, D_ALL, 0, NULL, NULL);
  1843. MMIO_DH(GEN8_GAMW_ECO_DEV_RW_IA, D_BDW_PLUS, NULL,
  1844. gamw_echo_dev_rw_ia_write);
  1845. MMIO_GM_RDR(BSD_HWS_PGA_GEN7, D_ALL, NULL, NULL);
  1846. MMIO_GM_RDR(BLT_HWS_PGA_GEN7, D_ALL, NULL, NULL);
  1847. MMIO_GM_RDR(VEBOX_HWS_PGA_GEN7, D_ALL, NULL, NULL);
  1848. #define RING_REG(base) _MMIO((base) + 0x28)
  1849. MMIO_RING_DFH(RING_REG, D_ALL, F_CMD_ACCESS, NULL, NULL);
  1850. #undef RING_REG
  1851. #define RING_REG(base) _MMIO((base) + 0x134)
  1852. MMIO_RING_DFH(RING_REG, D_ALL, F_CMD_ACCESS, NULL, NULL);
  1853. #undef RING_REG
  1854. #define RING_REG(base) _MMIO((base) + 0x6c)
  1855. MMIO_RING_DFH(RING_REG, D_ALL, 0, mmio_read_from_hw, NULL);
  1856. #undef RING_REG
  1857. MMIO_DH(GEN7_SC_INSTDONE, D_BDW_PLUS, mmio_read_from_hw, NULL);
  1858. MMIO_GM_RDR(_MMIO(0x2148), D_ALL, NULL, NULL);
  1859. MMIO_GM_RDR(CCID(RENDER_RING_BASE), D_ALL, NULL, NULL);
  1860. MMIO_GM_RDR(_MMIO(0x12198), D_ALL, NULL, NULL);
  1861. MMIO_RING_DFH(RING_TAIL, D_ALL, 0, NULL, NULL);
  1862. MMIO_RING_DFH(RING_HEAD, D_ALL, 0, NULL, NULL);
  1863. MMIO_RING_DFH(RING_CTL, D_ALL, 0, NULL, NULL);
  1864. MMIO_RING_DFH(RING_ACTHD, D_ALL, 0, mmio_read_from_hw, NULL);
  1865. MMIO_RING_GM(RING_START, D_ALL, NULL, NULL);
  1866. /* RING MODE */
  1867. #define RING_REG(base) _MMIO((base) + 0x29c)
  1868. MMIO_RING_DFH(RING_REG, D_ALL,
  1869. F_MODE_MASK | F_CMD_ACCESS | F_CMD_WRITE_PATCH, NULL,
  1870. ring_mode_mmio_write);
  1871. #undef RING_REG
  1872. MMIO_RING_DFH(RING_MI_MODE, D_ALL, F_MODE_MASK | F_CMD_ACCESS,
  1873. NULL, NULL);
  1874. MMIO_RING_DFH(RING_INSTPM, D_ALL, F_MODE_MASK | F_CMD_ACCESS,
  1875. NULL, NULL);
  1876. MMIO_RING_DFH(RING_TIMESTAMP, D_ALL, F_CMD_ACCESS,
  1877. mmio_read_from_hw, NULL);
  1878. MMIO_RING_DFH(RING_TIMESTAMP_UDW, D_ALL, F_CMD_ACCESS,
  1879. mmio_read_from_hw, NULL);
  1880. MMIO_DFH(GEN7_GT_MODE, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
  1881. MMIO_DFH(CACHE_MODE_0_GEN7, D_ALL, F_MODE_MASK | F_CMD_ACCESS,
  1882. NULL, NULL);
  1883. MMIO_DFH(CACHE_MODE_1, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
  1884. MMIO_DFH(CACHE_MODE_0, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
  1885. MMIO_DFH(_MMIO(0x2124), D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
  1886. MMIO_DFH(_MMIO(0x20dc), D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
  1887. MMIO_DFH(_3D_CHICKEN3, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
  1888. MMIO_DFH(_MMIO(0x2088), D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
  1889. MMIO_DFH(FF_SLICE_CS_CHICKEN2, D_ALL,
  1890. F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
  1891. MMIO_DFH(_MMIO(0x2470), D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
  1892. MMIO_DFH(GAM_ECOCHK, D_ALL, F_CMD_ACCESS, NULL, NULL);
  1893. MMIO_DFH(GEN7_COMMON_SLICE_CHICKEN1, D_ALL, F_MODE_MASK | F_CMD_ACCESS,
  1894. NULL, NULL);
  1895. MMIO_DFH(COMMON_SLICE_CHICKEN2, D_ALL, F_MODE_MASK | F_CMD_ACCESS,
  1896. NULL, NULL);
  1897. MMIO_DFH(_MMIO(0x9030), D_ALL, F_CMD_ACCESS, NULL, NULL);
  1898. MMIO_DFH(_MMIO(0x20a0), D_ALL, F_CMD_ACCESS, NULL, NULL);
  1899. MMIO_DFH(_MMIO(0x2420), D_ALL, F_CMD_ACCESS, NULL, NULL);
  1900. MMIO_DFH(_MMIO(0x2430), D_ALL, F_CMD_ACCESS, NULL, NULL);
  1901. MMIO_DFH(_MMIO(0x2434), D_ALL, F_CMD_ACCESS, NULL, NULL);
  1902. MMIO_DFH(_MMIO(0x2438), D_ALL, F_CMD_ACCESS, NULL, NULL);
  1903. MMIO_DFH(_MMIO(0x243c), D_ALL, F_CMD_ACCESS, NULL, NULL);
  1904. MMIO_DFH(_MMIO(0x7018), D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
  1905. MMIO_DFH(HALF_SLICE_CHICKEN3, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
  1906. MMIO_DFH(GEN7_HALF_SLICE_CHICKEN1, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
  1907. /* display */
  1908. MMIO_DH(PIPECONF(PIPE_A), D_ALL, NULL, pipeconf_mmio_write);
  1909. MMIO_DH(PIPECONF(PIPE_B), D_ALL, NULL, pipeconf_mmio_write);
  1910. MMIO_DH(PIPECONF(PIPE_C), D_ALL, NULL, pipeconf_mmio_write);
  1911. MMIO_DH(PIPECONF(_PIPE_EDP), D_ALL, NULL, pipeconf_mmio_write);
  1912. MMIO_DH(DSPSURF(PIPE_A), D_ALL, NULL, pri_surf_mmio_write);
  1913. MMIO_DH(REG_50080(PIPE_A, PLANE_PRIMARY), D_ALL, NULL,
  1914. reg50080_mmio_write);
  1915. MMIO_DH(DSPSURF(PIPE_B), D_ALL, NULL, pri_surf_mmio_write);
  1916. MMIO_DH(REG_50080(PIPE_B, PLANE_PRIMARY), D_ALL, NULL,
  1917. reg50080_mmio_write);
  1918. MMIO_DH(DSPSURF(PIPE_C), D_ALL, NULL, pri_surf_mmio_write);
  1919. MMIO_DH(REG_50080(PIPE_C, PLANE_PRIMARY), D_ALL, NULL,
  1920. reg50080_mmio_write);
  1921. MMIO_DH(SPRSURF(PIPE_A), D_ALL, NULL, spr_surf_mmio_write);
  1922. MMIO_DH(REG_50080(PIPE_A, PLANE_SPRITE0), D_ALL, NULL,
  1923. reg50080_mmio_write);
  1924. MMIO_DH(SPRSURF(PIPE_B), D_ALL, NULL, spr_surf_mmio_write);
  1925. MMIO_DH(REG_50080(PIPE_B, PLANE_SPRITE0), D_ALL, NULL,
  1926. reg50080_mmio_write);
  1927. MMIO_DH(SPRSURF(PIPE_C), D_ALL, NULL, spr_surf_mmio_write);
  1928. MMIO_DH(REG_50080(PIPE_C, PLANE_SPRITE0), D_ALL, NULL,
  1929. reg50080_mmio_write);
  1930. MMIO_F(PCH_GMBUS0, 4 * 4, 0, 0, 0, D_ALL, gmbus_mmio_read,
  1931. gmbus_mmio_write);
  1932. MMIO_F(PCH_GPIO_BASE, 6 * 4, F_UNALIGN, 0, 0, D_ALL, NULL, NULL);
  1933. MMIO_F(_MMIO(_PCH_DPB_AUX_CH_CTL), 6 * 4, 0, 0, 0, D_PRE_SKL, NULL,
  1934. dp_aux_ch_ctl_mmio_write);
  1935. MMIO_F(_MMIO(_PCH_DPC_AUX_CH_CTL), 6 * 4, 0, 0, 0, D_PRE_SKL, NULL,
  1936. dp_aux_ch_ctl_mmio_write);
  1937. MMIO_F(_MMIO(_PCH_DPD_AUX_CH_CTL), 6 * 4, 0, 0, 0, D_PRE_SKL, NULL,
  1938. dp_aux_ch_ctl_mmio_write);
  1939. MMIO_DH(PCH_ADPA, D_PRE_SKL, NULL, pch_adpa_mmio_write);
  1940. MMIO_DH(_MMIO(_PCH_TRANSACONF), D_ALL, NULL, transconf_mmio_write);
  1941. MMIO_DH(_MMIO(_PCH_TRANSBCONF), D_ALL, NULL, transconf_mmio_write);
  1942. MMIO_DH(FDI_RX_IIR(PIPE_A), D_ALL, NULL, fdi_rx_iir_mmio_write);
  1943. MMIO_DH(FDI_RX_IIR(PIPE_B), D_ALL, NULL, fdi_rx_iir_mmio_write);
  1944. MMIO_DH(FDI_RX_IIR(PIPE_C), D_ALL, NULL, fdi_rx_iir_mmio_write);
  1945. MMIO_DH(FDI_RX_IMR(PIPE_A), D_ALL, NULL, update_fdi_rx_iir_status);
  1946. MMIO_DH(FDI_RX_IMR(PIPE_B), D_ALL, NULL, update_fdi_rx_iir_status);
  1947. MMIO_DH(FDI_RX_IMR(PIPE_C), D_ALL, NULL, update_fdi_rx_iir_status);
  1948. MMIO_DH(FDI_RX_CTL(PIPE_A), D_ALL, NULL, update_fdi_rx_iir_status);
  1949. MMIO_DH(FDI_RX_CTL(PIPE_B), D_ALL, NULL, update_fdi_rx_iir_status);
  1950. MMIO_DH(FDI_RX_CTL(PIPE_C), D_ALL, NULL, update_fdi_rx_iir_status);
  1951. MMIO_DH(PCH_PP_CONTROL, D_ALL, NULL, pch_pp_control_mmio_write);
  1952. MMIO_DH(_MMIO(0xe651c), D_ALL, dpy_reg_mmio_read, NULL);
  1953. MMIO_DH(_MMIO(0xe661c), D_ALL, dpy_reg_mmio_read, NULL);
  1954. MMIO_DH(_MMIO(0xe671c), D_ALL, dpy_reg_mmio_read, NULL);
  1955. MMIO_DH(_MMIO(0xe681c), D_ALL, dpy_reg_mmio_read, NULL);
  1956. MMIO_DH(_MMIO(0xe6c04), D_ALL, dpy_reg_mmio_read, NULL);
  1957. MMIO_DH(_MMIO(0xe6e1c), D_ALL, dpy_reg_mmio_read, NULL);
  1958. MMIO_RO(PCH_PORT_HOTPLUG, D_ALL, 0,
  1959. PORTA_HOTPLUG_STATUS_MASK
  1960. | PORTB_HOTPLUG_STATUS_MASK
  1961. | PORTC_HOTPLUG_STATUS_MASK
  1962. | PORTD_HOTPLUG_STATUS_MASK,
  1963. NULL, NULL);
  1964. MMIO_DH(LCPLL_CTL, D_ALL, NULL, lcpll_ctl_mmio_write);
  1965. MMIO_DH(SOUTH_CHICKEN2, D_ALL, NULL, south_chicken2_mmio_write);
  1966. MMIO_DH(SFUSE_STRAP, D_ALL, NULL, NULL);
  1967. MMIO_DH(SBI_DATA, D_ALL, sbi_data_mmio_read, NULL);
  1968. MMIO_DH(SBI_CTL_STAT, D_ALL, NULL, sbi_ctl_mmio_write);
  1969. MMIO_F(_MMIO(_DPA_AUX_CH_CTL), 6 * 4, 0, 0, 0, D_ALL, NULL,
  1970. dp_aux_ch_ctl_mmio_write);
  1971. MMIO_DH(DDI_BUF_CTL(PORT_A), D_ALL, NULL, ddi_buf_ctl_mmio_write);
  1972. MMIO_DH(DDI_BUF_CTL(PORT_B), D_ALL, NULL, ddi_buf_ctl_mmio_write);
  1973. MMIO_DH(DDI_BUF_CTL(PORT_C), D_ALL, NULL, ddi_buf_ctl_mmio_write);
  1974. MMIO_DH(DDI_BUF_CTL(PORT_D), D_ALL, NULL, ddi_buf_ctl_mmio_write);
  1975. MMIO_DH(DDI_BUF_CTL(PORT_E), D_ALL, NULL, ddi_buf_ctl_mmio_write);
  1976. MMIO_DH(DP_TP_CTL(PORT_A), D_ALL, NULL, dp_tp_ctl_mmio_write);
  1977. MMIO_DH(DP_TP_CTL(PORT_B), D_ALL, NULL, dp_tp_ctl_mmio_write);
  1978. MMIO_DH(DP_TP_CTL(PORT_C), D_ALL, NULL, dp_tp_ctl_mmio_write);
  1979. MMIO_DH(DP_TP_CTL(PORT_D), D_ALL, NULL, dp_tp_ctl_mmio_write);
  1980. MMIO_DH(DP_TP_CTL(PORT_E), D_ALL, NULL, dp_tp_ctl_mmio_write);
  1981. MMIO_DH(DP_TP_STATUS(PORT_A), D_ALL, NULL, dp_tp_status_mmio_write);
  1982. MMIO_DH(DP_TP_STATUS(PORT_B), D_ALL, NULL, dp_tp_status_mmio_write);
  1983. MMIO_DH(DP_TP_STATUS(PORT_C), D_ALL, NULL, dp_tp_status_mmio_write);
  1984. MMIO_DH(DP_TP_STATUS(PORT_D), D_ALL, NULL, dp_tp_status_mmio_write);
  1985. MMIO_DH(DP_TP_STATUS(PORT_E), D_ALL, NULL, NULL);
  1986. MMIO_DH(_MMIO(_TRANS_DDI_FUNC_CTL_A), D_ALL, NULL, NULL);
  1987. MMIO_DH(_MMIO(_TRANS_DDI_FUNC_CTL_B), D_ALL, NULL, NULL);
  1988. MMIO_DH(_MMIO(_TRANS_DDI_FUNC_CTL_C), D_ALL, NULL, NULL);
  1989. MMIO_DH(_MMIO(_TRANS_DDI_FUNC_CTL_EDP), D_ALL, NULL, NULL);
  1990. MMIO_DH(FORCEWAKE, D_ALL, NULL, NULL);
  1991. MMIO_DFH(GTFIFODBG, D_ALL, F_CMD_ACCESS, NULL, NULL);
  1992. MMIO_DFH(GTFIFOCTL, D_ALL, F_CMD_ACCESS, NULL, NULL);
  1993. MMIO_DH(FORCEWAKE_MT, D_PRE_SKL, NULL, mul_force_wake_write);
  1994. MMIO_DH(FORCEWAKE_ACK_HSW, D_BDW, NULL, NULL);
  1995. MMIO_DH(GEN6_RC_CONTROL, D_ALL, NULL, NULL);
  1996. MMIO_DH(GEN6_RC_STATE, D_ALL, NULL, NULL);
  1997. MMIO_DH(HSW_PWR_WELL_CTL1, D_BDW, NULL, power_well_ctl_mmio_write);
  1998. MMIO_DH(HSW_PWR_WELL_CTL2, D_BDW, NULL, power_well_ctl_mmio_write);
  1999. MMIO_DH(HSW_PWR_WELL_CTL3, D_BDW, NULL, power_well_ctl_mmio_write);
  2000. MMIO_DH(HSW_PWR_WELL_CTL4, D_BDW, NULL, power_well_ctl_mmio_write);
  2001. MMIO_DH(HSW_PWR_WELL_CTL5, D_BDW, NULL, power_well_ctl_mmio_write);
  2002. MMIO_DH(HSW_PWR_WELL_CTL6, D_BDW, NULL, power_well_ctl_mmio_write);
  2003. MMIO_DH(GEN6_GDRST, D_ALL, NULL, gdrst_mmio_write);
  2004. MMIO_F(FENCE_REG_GEN6_LO(0), 0x80, 0, 0, 0, D_ALL, fence_mmio_read, fence_mmio_write);
  2005. MMIO_DH(CPU_VGACNTRL, D_ALL, NULL, vga_control_mmio_write);
  2006. MMIO_DH(GEN7_ERR_INT, D_ALL, NULL, NULL);
  2007. MMIO_DH(GFX_FLSH_CNTL_GEN6, D_ALL, NULL, NULL);
  2008. MMIO_DH(GEN6_MBCTL, D_ALL, NULL, mbctl_write);
  2009. MMIO_DFH(GEN7_UCGCTL4, D_ALL, F_CMD_ACCESS, NULL, NULL);
  2010. MMIO_DH(FPGA_DBG, D_ALL, NULL, fpga_dbg_mmio_write);
  2011. MMIO_DFH(_MMIO(0x215c), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
  2012. MMIO_DFH(_MMIO(0x2178), D_ALL, F_CMD_ACCESS, NULL, NULL);
  2013. MMIO_DFH(_MMIO(0x217c), D_ALL, F_CMD_ACCESS, NULL, NULL);
  2014. MMIO_DFH(_MMIO(0x12178), D_ALL, F_CMD_ACCESS, NULL, NULL);
  2015. MMIO_DFH(_MMIO(0x1217c), D_ALL, F_CMD_ACCESS, NULL, NULL);
  2016. MMIO_F(_MMIO(0x2290), 8, F_CMD_ACCESS, 0, 0, D_BDW_PLUS, NULL, NULL);
  2017. MMIO_F(_MMIO(0x5200), 32, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
  2018. MMIO_F(_MMIO(0x5240), 32, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
  2019. MMIO_F(_MMIO(0x5280), 16, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
  2020. MMIO_DFH(_MMIO(0x1c17c), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
  2021. MMIO_DFH(_MMIO(0x1c178), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
  2022. MMIO_DFH(BCS_SWCTRL, D_ALL, F_CMD_ACCESS, NULL, NULL);
  2023. MMIO_F(HS_INVOCATION_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
  2024. MMIO_F(DS_INVOCATION_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
  2025. MMIO_F(IA_VERTICES_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
  2026. MMIO_F(IA_PRIMITIVES_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
  2027. MMIO_F(VS_INVOCATION_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
  2028. MMIO_F(GS_INVOCATION_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
  2029. MMIO_F(GS_PRIMITIVES_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
  2030. MMIO_F(CL_INVOCATION_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
  2031. MMIO_F(CL_PRIMITIVES_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
  2032. MMIO_F(PS_INVOCATION_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
  2033. MMIO_F(PS_DEPTH_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
  2034. MMIO_DH(_MMIO(0x4260), D_BDW_PLUS, NULL, gvt_reg_tlb_control_handler);
  2035. MMIO_DH(_MMIO(0x4264), D_BDW_PLUS, NULL, gvt_reg_tlb_control_handler);
  2036. MMIO_DH(_MMIO(0x4268), D_BDW_PLUS, NULL, gvt_reg_tlb_control_handler);
  2037. MMIO_DH(_MMIO(0x426c), D_BDW_PLUS, NULL, gvt_reg_tlb_control_handler);
  2038. MMIO_DH(_MMIO(0x4270), D_BDW_PLUS, NULL, gvt_reg_tlb_control_handler);
  2039. MMIO_DFH(_MMIO(0x4094), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
  2040. MMIO_DFH(ARB_MODE, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
  2041. MMIO_RING_GM(RING_BBADDR, D_ALL, NULL, NULL);
  2042. MMIO_DFH(_MMIO(0x2220), D_ALL, F_CMD_ACCESS, NULL, NULL);
  2043. MMIO_DFH(_MMIO(0x12220), D_ALL, F_CMD_ACCESS, NULL, NULL);
  2044. MMIO_DFH(_MMIO(0x22220), D_ALL, F_CMD_ACCESS, NULL, NULL);
  2045. MMIO_RING_DFH(RING_SYNC_1, D_ALL, F_CMD_ACCESS, NULL, NULL);
  2046. MMIO_RING_DFH(RING_SYNC_0, D_ALL, F_CMD_ACCESS, NULL, NULL);
  2047. MMIO_DFH(_MMIO(0x22178), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
  2048. MMIO_DFH(_MMIO(0x1a178), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
  2049. MMIO_DFH(_MMIO(0x1a17c), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
  2050. MMIO_DFH(_MMIO(0x2217c), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
  2051. MMIO_DH(EDP_PSR_IMR, D_BDW_PLUS, NULL, edp_psr_imr_iir_write);
  2052. MMIO_DH(EDP_PSR_IIR, D_BDW_PLUS, NULL, edp_psr_imr_iir_write);
  2053. MMIO_DH(GUC_STATUS, D_ALL, guc_status_read, NULL);
  2054. return 0;
  2055. }
  2056. static int init_bdw_mmio_info(struct intel_gvt *gvt)
  2057. {
  2058. int ret;
  2059. MMIO_DH(GEN8_GT_IMR(0), D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler);
  2060. MMIO_DH(GEN8_GT_IER(0), D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler);
  2061. MMIO_DH(GEN8_GT_IIR(0), D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler);
  2062. MMIO_DH(GEN8_GT_IMR(1), D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler);
  2063. MMIO_DH(GEN8_GT_IER(1), D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler);
  2064. MMIO_DH(GEN8_GT_IIR(1), D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler);
  2065. MMIO_DH(GEN8_GT_IMR(2), D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler);
  2066. MMIO_DH(GEN8_GT_IER(2), D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler);
  2067. MMIO_DH(GEN8_GT_IIR(2), D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler);
  2068. MMIO_DH(GEN8_GT_IMR(3), D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler);
  2069. MMIO_DH(GEN8_GT_IER(3), D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler);
  2070. MMIO_DH(GEN8_GT_IIR(3), D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler);
  2071. MMIO_DH(GEN8_DE_PIPE_IMR(PIPE_A), D_BDW_PLUS, NULL,
  2072. intel_vgpu_reg_imr_handler);
  2073. MMIO_DH(GEN8_DE_PIPE_IER(PIPE_A), D_BDW_PLUS, NULL,
  2074. intel_vgpu_reg_ier_handler);
  2075. MMIO_DH(GEN8_DE_PIPE_IIR(PIPE_A), D_BDW_PLUS, NULL,
  2076. intel_vgpu_reg_iir_handler);
  2077. MMIO_DH(GEN8_DE_PIPE_IMR(PIPE_B), D_BDW_PLUS, NULL,
  2078. intel_vgpu_reg_imr_handler);
  2079. MMIO_DH(GEN8_DE_PIPE_IER(PIPE_B), D_BDW_PLUS, NULL,
  2080. intel_vgpu_reg_ier_handler);
  2081. MMIO_DH(GEN8_DE_PIPE_IIR(PIPE_B), D_BDW_PLUS, NULL,
  2082. intel_vgpu_reg_iir_handler);
  2083. MMIO_DH(GEN8_DE_PIPE_IMR(PIPE_C), D_BDW_PLUS, NULL,
  2084. intel_vgpu_reg_imr_handler);
  2085. MMIO_DH(GEN8_DE_PIPE_IER(PIPE_C), D_BDW_PLUS, NULL,
  2086. intel_vgpu_reg_ier_handler);
  2087. MMIO_DH(GEN8_DE_PIPE_IIR(PIPE_C), D_BDW_PLUS, NULL,
  2088. intel_vgpu_reg_iir_handler);
  2089. MMIO_DH(GEN8_DE_PORT_IMR, D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler);
  2090. MMIO_DH(GEN8_DE_PORT_IER, D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler);
  2091. MMIO_DH(GEN8_DE_PORT_IIR, D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler);
  2092. MMIO_DH(GEN8_DE_MISC_IMR, D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler);
  2093. MMIO_DH(GEN8_DE_MISC_IER, D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler);
  2094. MMIO_DH(GEN8_DE_MISC_IIR, D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler);
  2095. MMIO_DH(GEN8_PCU_IMR, D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler);
  2096. MMIO_DH(GEN8_PCU_IER, D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler);
  2097. MMIO_DH(GEN8_PCU_IIR, D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler);
  2098. MMIO_DH(GEN8_MASTER_IRQ, D_BDW_PLUS, NULL,
  2099. intel_vgpu_reg_master_irq_handler);
  2100. MMIO_RING_DFH(RING_ACTHD_UDW, D_BDW_PLUS, 0,
  2101. mmio_read_from_hw, NULL);
  2102. #define RING_REG(base) _MMIO((base) + 0xd0)
  2103. MMIO_RING_F(RING_REG, 4, F_RO, 0,
  2104. ~_MASKED_BIT_ENABLE(RESET_CTL_REQUEST_RESET), D_BDW_PLUS, NULL,
  2105. ring_reset_ctl_write);
  2106. #undef RING_REG
  2107. #define RING_REG(base) _MMIO((base) + 0x230)
  2108. MMIO_RING_DFH(RING_REG, D_BDW_PLUS, 0, NULL, elsp_mmio_write);
  2109. #undef RING_REG
  2110. #define RING_REG(base) _MMIO((base) + 0x234)
  2111. MMIO_RING_F(RING_REG, 8, F_RO, 0, ~0, D_BDW_PLUS,
  2112. NULL, NULL);
  2113. #undef RING_REG
  2114. #define RING_REG(base) _MMIO((base) + 0x244)
  2115. MMIO_RING_DFH(RING_REG, D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
  2116. #undef RING_REG
  2117. #define RING_REG(base) _MMIO((base) + 0x370)
  2118. MMIO_RING_F(RING_REG, 48, F_RO, 0, ~0, D_BDW_PLUS, NULL, NULL);
  2119. #undef RING_REG
  2120. #define RING_REG(base) _MMIO((base) + 0x3a0)
  2121. MMIO_RING_DFH(RING_REG, D_BDW_PLUS, F_MODE_MASK, NULL, NULL);
  2122. #undef RING_REG
  2123. MMIO_DH(GEN6_PCODE_MAILBOX, D_BDW_PLUS, NULL, mailbox_write);
  2124. #define RING_REG(base) _MMIO((base) + 0x270)
  2125. MMIO_RING_F(RING_REG, 32, F_CMD_ACCESS, 0, 0, D_BDW_PLUS, NULL, NULL);
  2126. #undef RING_REG
  2127. MMIO_RING_GM(RING_HWS_PGA, D_BDW_PLUS, NULL, hws_pga_write);
  2128. MMIO_DFH(HDC_CHICKEN0, D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
  2129. MMIO_DFH(GEN8_ROW_CHICKEN, D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS,
  2130. NULL, NULL);
  2131. MMIO_DFH(GEN7_ROW_CHICKEN2, D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS,
  2132. NULL, NULL);
  2133. MMIO_DFH(GEN8_UCGCTL6, D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
  2134. MMIO_DFH(_MMIO(0xb1f0), D_BDW, F_CMD_ACCESS, NULL, NULL);
  2135. MMIO_DFH(_MMIO(0xb1c0), D_BDW, F_CMD_ACCESS, NULL, NULL);
  2136. MMIO_DFH(GEN8_L3SQCREG4, D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
  2137. MMIO_DFH(_MMIO(0xb100), D_BDW, F_CMD_ACCESS, NULL, NULL);
  2138. MMIO_DFH(_MMIO(0xb10c), D_BDW, F_CMD_ACCESS, NULL, NULL);
  2139. MMIO_F(_MMIO(0x24d0), 48, F_CMD_ACCESS | F_CMD_WRITE_PATCH, 0, 0,
  2140. D_BDW_PLUS, NULL, force_nonpriv_write);
  2141. MMIO_DFH(_MMIO(0x83a4), D_BDW, F_CMD_ACCESS, NULL, NULL);
  2142. MMIO_DFH(_MMIO(0x8430), D_BDW, F_CMD_ACCESS, NULL, NULL);
  2143. MMIO_DFH(_MMIO(0xe194), D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
  2144. MMIO_DFH(_MMIO(0xe188), D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
  2145. MMIO_DFH(HALF_SLICE_CHICKEN2, D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
  2146. MMIO_DFH(_MMIO(0x2580), D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
  2147. MMIO_DFH(_MMIO(0x2248), D_BDW, F_CMD_ACCESS, NULL, NULL);
  2148. MMIO_DFH(_MMIO(0xe220), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
  2149. MMIO_DFH(_MMIO(0xe230), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
  2150. MMIO_DFH(_MMIO(0xe240), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
  2151. MMIO_DFH(_MMIO(0xe260), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
  2152. MMIO_DFH(_MMIO(0xe270), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
  2153. MMIO_DFH(_MMIO(0xe280), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
  2154. MMIO_DFH(_MMIO(0xe2a0), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
  2155. MMIO_DFH(_MMIO(0xe2b0), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
  2156. MMIO_DFH(_MMIO(0xe2c0), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
  2157. MMIO_DFH(_MMIO(0x21f0), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
  2158. return 0;
  2159. }
  2160. static int init_skl_mmio_info(struct intel_gvt *gvt)
  2161. {
  2162. struct drm_i915_private *dev_priv = gvt->gt->i915;
  2163. int ret;
  2164. MMIO_DH(FORCEWAKE_RENDER_GEN9, D_SKL_PLUS, NULL, mul_force_wake_write);
  2165. MMIO_DH(FORCEWAKE_ACK_RENDER_GEN9, D_SKL_PLUS, NULL, NULL);
  2166. MMIO_DH(FORCEWAKE_GT_GEN9, D_SKL_PLUS, NULL, mul_force_wake_write);
  2167. MMIO_DH(FORCEWAKE_ACK_GT_GEN9, D_SKL_PLUS, NULL, NULL);
  2168. MMIO_DH(FORCEWAKE_MEDIA_GEN9, D_SKL_PLUS, NULL, mul_force_wake_write);
  2169. MMIO_DH(FORCEWAKE_ACK_MEDIA_GEN9, D_SKL_PLUS, NULL, NULL);
  2170. MMIO_F(DP_AUX_CH_CTL(AUX_CH_B), 6 * 4, 0, 0, 0, D_SKL_PLUS, NULL,
  2171. dp_aux_ch_ctl_mmio_write);
  2172. MMIO_F(DP_AUX_CH_CTL(AUX_CH_C), 6 * 4, 0, 0, 0, D_SKL_PLUS, NULL,
  2173. dp_aux_ch_ctl_mmio_write);
  2174. MMIO_F(DP_AUX_CH_CTL(AUX_CH_D), 6 * 4, 0, 0, 0, D_SKL_PLUS, NULL,
  2175. dp_aux_ch_ctl_mmio_write);
  2176. MMIO_DH(HSW_PWR_WELL_CTL2, D_SKL_PLUS, NULL, skl_power_well_ctl_write);
  2177. MMIO_DH(DBUF_CTL_S(0), D_SKL_PLUS, NULL, gen9_dbuf_ctl_mmio_write);
  2178. MMIO_DFH(GEN9_GAMT_ECO_REG_RW_IA, D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
  2179. MMIO_DFH(MMCD_MISC_CTRL, D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
  2180. MMIO_DH(CHICKEN_PAR1_1, D_SKL_PLUS, NULL, NULL);
  2181. MMIO_DH(LCPLL1_CTL, D_SKL_PLUS, NULL, skl_lcpll_write);
  2182. MMIO_DH(LCPLL2_CTL, D_SKL_PLUS, NULL, skl_lcpll_write);
  2183. MMIO_DH(DPLL_STATUS, D_SKL_PLUS, dpll_status_read, NULL);
  2184. MMIO_DH(SKL_PS_WIN_POS(PIPE_A, 0), D_SKL_PLUS, NULL, pf_write);
  2185. MMIO_DH(SKL_PS_WIN_POS(PIPE_A, 1), D_SKL_PLUS, NULL, pf_write);
  2186. MMIO_DH(SKL_PS_WIN_POS(PIPE_B, 0), D_SKL_PLUS, NULL, pf_write);
  2187. MMIO_DH(SKL_PS_WIN_POS(PIPE_B, 1), D_SKL_PLUS, NULL, pf_write);
  2188. MMIO_DH(SKL_PS_WIN_POS(PIPE_C, 0), D_SKL_PLUS, NULL, pf_write);
  2189. MMIO_DH(SKL_PS_WIN_POS(PIPE_C, 1), D_SKL_PLUS, NULL, pf_write);
  2190. MMIO_DH(SKL_PS_WIN_SZ(PIPE_A, 0), D_SKL_PLUS, NULL, pf_write);
  2191. MMIO_DH(SKL_PS_WIN_SZ(PIPE_A, 1), D_SKL_PLUS, NULL, pf_write);
  2192. MMIO_DH(SKL_PS_WIN_SZ(PIPE_B, 0), D_SKL_PLUS, NULL, pf_write);
  2193. MMIO_DH(SKL_PS_WIN_SZ(PIPE_B, 1), D_SKL_PLUS, NULL, pf_write);
  2194. MMIO_DH(SKL_PS_WIN_SZ(PIPE_C, 0), D_SKL_PLUS, NULL, pf_write);
  2195. MMIO_DH(SKL_PS_WIN_SZ(PIPE_C, 1), D_SKL_PLUS, NULL, pf_write);
  2196. MMIO_DH(SKL_PS_CTRL(PIPE_A, 0), D_SKL_PLUS, NULL, pf_write);
  2197. MMIO_DH(SKL_PS_CTRL(PIPE_A, 1), D_SKL_PLUS, NULL, pf_write);
  2198. MMIO_DH(SKL_PS_CTRL(PIPE_B, 0), D_SKL_PLUS, NULL, pf_write);
  2199. MMIO_DH(SKL_PS_CTRL(PIPE_B, 1), D_SKL_PLUS, NULL, pf_write);
  2200. MMIO_DH(SKL_PS_CTRL(PIPE_C, 0), D_SKL_PLUS, NULL, pf_write);
  2201. MMIO_DH(SKL_PS_CTRL(PIPE_C, 1), D_SKL_PLUS, NULL, pf_write);
  2202. MMIO_DH(PLANE_BUF_CFG(PIPE_A, 0), D_SKL_PLUS, NULL, NULL);
  2203. MMIO_DH(PLANE_BUF_CFG(PIPE_A, 1), D_SKL_PLUS, NULL, NULL);
  2204. MMIO_DH(PLANE_BUF_CFG(PIPE_A, 2), D_SKL_PLUS, NULL, NULL);
  2205. MMIO_DH(PLANE_BUF_CFG(PIPE_A, 3), D_SKL_PLUS, NULL, NULL);
  2206. MMIO_DH(PLANE_BUF_CFG(PIPE_B, 0), D_SKL_PLUS, NULL, NULL);
  2207. MMIO_DH(PLANE_BUF_CFG(PIPE_B, 1), D_SKL_PLUS, NULL, NULL);
  2208. MMIO_DH(PLANE_BUF_CFG(PIPE_B, 2), D_SKL_PLUS, NULL, NULL);
  2209. MMIO_DH(PLANE_BUF_CFG(PIPE_B, 3), D_SKL_PLUS, NULL, NULL);
  2210. MMIO_DH(PLANE_BUF_CFG(PIPE_C, 0), D_SKL_PLUS, NULL, NULL);
  2211. MMIO_DH(PLANE_BUF_CFG(PIPE_C, 1), D_SKL_PLUS, NULL, NULL);
  2212. MMIO_DH(PLANE_BUF_CFG(PIPE_C, 2), D_SKL_PLUS, NULL, NULL);
  2213. MMIO_DH(PLANE_BUF_CFG(PIPE_C, 3), D_SKL_PLUS, NULL, NULL);
  2214. MMIO_DH(CUR_BUF_CFG(PIPE_A), D_SKL_PLUS, NULL, NULL);
  2215. MMIO_DH(CUR_BUF_CFG(PIPE_B), D_SKL_PLUS, NULL, NULL);
  2216. MMIO_DH(CUR_BUF_CFG(PIPE_C), D_SKL_PLUS, NULL, NULL);
  2217. MMIO_DH(PLANE_WM_TRANS(PIPE_A, 0), D_SKL_PLUS, NULL, NULL);
  2218. MMIO_DH(PLANE_WM_TRANS(PIPE_A, 1), D_SKL_PLUS, NULL, NULL);
  2219. MMIO_DH(PLANE_WM_TRANS(PIPE_A, 2), D_SKL_PLUS, NULL, NULL);
  2220. MMIO_DH(PLANE_WM_TRANS(PIPE_B, 0), D_SKL_PLUS, NULL, NULL);
  2221. MMIO_DH(PLANE_WM_TRANS(PIPE_B, 1), D_SKL_PLUS, NULL, NULL);
  2222. MMIO_DH(PLANE_WM_TRANS(PIPE_B, 2), D_SKL_PLUS, NULL, NULL);
  2223. MMIO_DH(PLANE_WM_TRANS(PIPE_C, 0), D_SKL_PLUS, NULL, NULL);
  2224. MMIO_DH(PLANE_WM_TRANS(PIPE_C, 1), D_SKL_PLUS, NULL, NULL);
  2225. MMIO_DH(PLANE_WM_TRANS(PIPE_C, 2), D_SKL_PLUS, NULL, NULL);
  2226. MMIO_DH(CUR_WM_TRANS(PIPE_A), D_SKL_PLUS, NULL, NULL);
  2227. MMIO_DH(CUR_WM_TRANS(PIPE_B), D_SKL_PLUS, NULL, NULL);
  2228. MMIO_DH(CUR_WM_TRANS(PIPE_C), D_SKL_PLUS, NULL, NULL);
  2229. MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_A, 0), D_SKL_PLUS, NULL, NULL);
  2230. MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_A, 1), D_SKL_PLUS, NULL, NULL);
  2231. MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_A, 2), D_SKL_PLUS, NULL, NULL);
  2232. MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_A, 3), D_SKL_PLUS, NULL, NULL);
  2233. MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_B, 0), D_SKL_PLUS, NULL, NULL);
  2234. MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_B, 1), D_SKL_PLUS, NULL, NULL);
  2235. MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_B, 2), D_SKL_PLUS, NULL, NULL);
  2236. MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_B, 3), D_SKL_PLUS, NULL, NULL);
  2237. MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_C, 0), D_SKL_PLUS, NULL, NULL);
  2238. MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_C, 1), D_SKL_PLUS, NULL, NULL);
  2239. MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_C, 2), D_SKL_PLUS, NULL, NULL);
  2240. MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_C, 3), D_SKL_PLUS, NULL, NULL);
  2241. MMIO_DH(_MMIO(_REG_701C0(PIPE_A, 1)), D_SKL_PLUS, NULL, NULL);
  2242. MMIO_DH(_MMIO(_REG_701C0(PIPE_A, 2)), D_SKL_PLUS, NULL, NULL);
  2243. MMIO_DH(_MMIO(_REG_701C0(PIPE_A, 3)), D_SKL_PLUS, NULL, NULL);
  2244. MMIO_DH(_MMIO(_REG_701C0(PIPE_A, 4)), D_SKL_PLUS, NULL, NULL);
  2245. MMIO_DH(_MMIO(_REG_701C0(PIPE_B, 1)), D_SKL_PLUS, NULL, NULL);
  2246. MMIO_DH(_MMIO(_REG_701C0(PIPE_B, 2)), D_SKL_PLUS, NULL, NULL);
  2247. MMIO_DH(_MMIO(_REG_701C0(PIPE_B, 3)), D_SKL_PLUS, NULL, NULL);
  2248. MMIO_DH(_MMIO(_REG_701C0(PIPE_B, 4)), D_SKL_PLUS, NULL, NULL);
  2249. MMIO_DH(_MMIO(_REG_701C0(PIPE_C, 1)), D_SKL_PLUS, NULL, NULL);
  2250. MMIO_DH(_MMIO(_REG_701C0(PIPE_C, 2)), D_SKL_PLUS, NULL, NULL);
  2251. MMIO_DH(_MMIO(_REG_701C0(PIPE_C, 3)), D_SKL_PLUS, NULL, NULL);
  2252. MMIO_DH(_MMIO(_REG_701C0(PIPE_C, 4)), D_SKL_PLUS, NULL, NULL);
  2253. MMIO_DH(_MMIO(_REG_701C4(PIPE_A, 1)), D_SKL_PLUS, NULL, NULL);
  2254. MMIO_DH(_MMIO(_REG_701C4(PIPE_A, 2)), D_SKL_PLUS, NULL, NULL);
  2255. MMIO_DH(_MMIO(_REG_701C4(PIPE_A, 3)), D_SKL_PLUS, NULL, NULL);
  2256. MMIO_DH(_MMIO(_REG_701C4(PIPE_A, 4)), D_SKL_PLUS, NULL, NULL);
  2257. MMIO_DH(_MMIO(_REG_701C4(PIPE_B, 1)), D_SKL_PLUS, NULL, NULL);
  2258. MMIO_DH(_MMIO(_REG_701C4(PIPE_B, 2)), D_SKL_PLUS, NULL, NULL);
  2259. MMIO_DH(_MMIO(_REG_701C4(PIPE_B, 3)), D_SKL_PLUS, NULL, NULL);
  2260. MMIO_DH(_MMIO(_REG_701C4(PIPE_B, 4)), D_SKL_PLUS, NULL, NULL);
  2261. MMIO_DH(_MMIO(_REG_701C4(PIPE_C, 1)), D_SKL_PLUS, NULL, NULL);
  2262. MMIO_DH(_MMIO(_REG_701C4(PIPE_C, 2)), D_SKL_PLUS, NULL, NULL);
  2263. MMIO_DH(_MMIO(_REG_701C4(PIPE_C, 3)), D_SKL_PLUS, NULL, NULL);
  2264. MMIO_DH(_MMIO(_REG_701C4(PIPE_C, 4)), D_SKL_PLUS, NULL, NULL);
  2265. MMIO_DFH(BDW_SCRATCH1, D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
  2266. MMIO_F(GEN9_GFX_MOCS(0), 0x7f8, F_CMD_ACCESS, 0, 0, D_SKL_PLUS,
  2267. NULL, NULL);
  2268. MMIO_F(GEN7_L3CNTLREG2, 0x80, F_CMD_ACCESS, 0, 0, D_SKL_PLUS,
  2269. NULL, NULL);
  2270. MMIO_DFH(GEN7_FF_SLICE_CS_CHICKEN1, D_SKL_PLUS,
  2271. F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
  2272. MMIO_DFH(GEN9_CS_DEBUG_MODE1, D_SKL_PLUS, F_MODE_MASK | F_CMD_ACCESS,
  2273. NULL, NULL);
  2274. /* TRTT */
  2275. MMIO_DFH(TRVATTL3PTRDW(0), D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
  2276. MMIO_DFH(TRVATTL3PTRDW(1), D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
  2277. MMIO_DFH(TRVATTL3PTRDW(2), D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
  2278. MMIO_DFH(TRVATTL3PTRDW(3), D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
  2279. MMIO_DFH(TRVADR, D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
  2280. MMIO_DFH(TRTTE, D_SKL_PLUS, F_CMD_ACCESS | F_PM_SAVE,
  2281. NULL, gen9_trtte_write);
  2282. MMIO_DFH(_MMIO(0x4dfc), D_SKL_PLUS, F_PM_SAVE,
  2283. NULL, gen9_trtt_chicken_write);
  2284. MMIO_DFH(GEN8_GARBCNTL, D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
  2285. MMIO_DH(DMA_CTRL, D_SKL_PLUS, NULL, dma_ctrl_write);
  2286. #define CSFE_CHICKEN1_REG(base) _MMIO((base) + 0xD4)
  2287. MMIO_RING_DFH(CSFE_CHICKEN1_REG, D_SKL_PLUS, F_MODE_MASK | F_CMD_ACCESS,
  2288. NULL, csfe_chicken1_mmio_write);
  2289. #undef CSFE_CHICKEN1_REG
  2290. MMIO_DFH(GEN8_HDC_CHICKEN1, D_SKL_PLUS, F_MODE_MASK | F_CMD_ACCESS,
  2291. NULL, NULL);
  2292. MMIO_DFH(GEN9_WM_CHICKEN3, D_SKL_PLUS, F_MODE_MASK | F_CMD_ACCESS,
  2293. NULL, NULL);
  2294. MMIO_DFH(GAMT_CHKN_BIT_REG, D_KBL | D_CFL, F_CMD_ACCESS, NULL, NULL);
  2295. MMIO_DFH(_MMIO(0xe4cc), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
  2296. return 0;
  2297. }
  2298. static int init_bxt_mmio_info(struct intel_gvt *gvt)
  2299. {
  2300. int ret;
  2301. MMIO_DH(BXT_P_CR_GT_DISP_PWRON, D_BXT, NULL, bxt_gt_disp_pwron_write);
  2302. MMIO_DH(BXT_PHY_CTL_FAMILY(DPIO_PHY0), D_BXT,
  2303. NULL, bxt_phy_ctl_family_write);
  2304. MMIO_DH(BXT_PHY_CTL_FAMILY(DPIO_PHY1), D_BXT,
  2305. NULL, bxt_phy_ctl_family_write);
  2306. MMIO_DH(BXT_PORT_PLL_ENABLE(PORT_A), D_BXT,
  2307. NULL, bxt_port_pll_enable_write);
  2308. MMIO_DH(BXT_PORT_PLL_ENABLE(PORT_B), D_BXT,
  2309. NULL, bxt_port_pll_enable_write);
  2310. MMIO_DH(BXT_PORT_PLL_ENABLE(PORT_C), D_BXT, NULL,
  2311. bxt_port_pll_enable_write);
  2312. MMIO_DH(BXT_PORT_PCS_DW12_GRP(DPIO_PHY0, DPIO_CH0), D_BXT,
  2313. NULL, bxt_pcs_dw12_grp_write);
  2314. MMIO_DH(BXT_PORT_TX_DW3_LN0(DPIO_PHY0, DPIO_CH0), D_BXT,
  2315. bxt_port_tx_dw3_read, NULL);
  2316. MMIO_DH(BXT_PORT_PCS_DW12_GRP(DPIO_PHY0, DPIO_CH1), D_BXT,
  2317. NULL, bxt_pcs_dw12_grp_write);
  2318. MMIO_DH(BXT_PORT_TX_DW3_LN0(DPIO_PHY0, DPIO_CH1), D_BXT,
  2319. bxt_port_tx_dw3_read, NULL);
  2320. MMIO_DH(BXT_PORT_PCS_DW12_GRP(DPIO_PHY1, DPIO_CH0), D_BXT,
  2321. NULL, bxt_pcs_dw12_grp_write);
  2322. MMIO_DH(BXT_PORT_TX_DW3_LN0(DPIO_PHY1, DPIO_CH0), D_BXT,
  2323. bxt_port_tx_dw3_read, NULL);
  2324. MMIO_DH(BXT_DE_PLL_ENABLE, D_BXT, NULL, bxt_de_pll_enable_write);
  2325. MMIO_DFH(GEN8_L3SQCREG1, D_BXT, F_CMD_ACCESS, NULL, NULL);
  2326. MMIO_DFH(GEN8_L3CNTLREG, D_BXT, F_CMD_ACCESS, NULL, NULL);
  2327. MMIO_DFH(_MMIO(0x20D8), D_BXT, F_CMD_ACCESS, NULL, NULL);
  2328. MMIO_F(GEN8_RING_CS_GPR(RENDER_RING_BASE, 0), 0x40, F_CMD_ACCESS,
  2329. 0, 0, D_BXT, NULL, NULL);
  2330. MMIO_F(GEN8_RING_CS_GPR(GEN6_BSD_RING_BASE, 0), 0x40, F_CMD_ACCESS,
  2331. 0, 0, D_BXT, NULL, NULL);
  2332. MMIO_F(GEN8_RING_CS_GPR(BLT_RING_BASE, 0), 0x40, F_CMD_ACCESS,
  2333. 0, 0, D_BXT, NULL, NULL);
  2334. MMIO_F(GEN8_RING_CS_GPR(VEBOX_RING_BASE, 0), 0x40, F_CMD_ACCESS,
  2335. 0, 0, D_BXT, NULL, NULL);
  2336. MMIO_DFH(GEN9_CTX_PREEMPT_REG, D_BXT, F_CMD_ACCESS, NULL, NULL);
  2337. MMIO_DH(GEN8_PRIVATE_PAT_LO, D_BXT, NULL, bxt_ppat_low_write);
  2338. return 0;
  2339. }
  2340. static struct gvt_mmio_block *find_mmio_block(struct intel_gvt *gvt,
  2341. unsigned int offset)
  2342. {
  2343. struct gvt_mmio_block *block = gvt->mmio.mmio_block;
  2344. int num = gvt->mmio.num_mmio_block;
  2345. int i;
  2346. for (i = 0; i < num; i++, block++) {
  2347. if (offset >= i915_mmio_reg_offset(block->offset) &&
  2348. offset < i915_mmio_reg_offset(block->offset) + block->size)
  2349. return block;
  2350. }
  2351. return NULL;
  2352. }
  2353. /**
  2354. * intel_gvt_clean_mmio_info - clean up MMIO information table for GVT device
  2355. * @gvt: GVT device
  2356. *
  2357. * This function is called at the driver unloading stage, to clean up the MMIO
  2358. * information table of GVT device
  2359. *
  2360. */
  2361. void intel_gvt_clean_mmio_info(struct intel_gvt *gvt)
  2362. {
  2363. struct hlist_node *tmp;
  2364. struct intel_gvt_mmio_info *e;
  2365. int i;
  2366. hash_for_each_safe(gvt->mmio.mmio_info_table, i, tmp, e, node)
  2367. kfree(e);
  2368. kfree(gvt->mmio.mmio_block);
  2369. gvt->mmio.mmio_block = NULL;
  2370. gvt->mmio.num_mmio_block = 0;
  2371. vfree(gvt->mmio.mmio_attribute);
  2372. gvt->mmio.mmio_attribute = NULL;
  2373. }
  2374. static int handle_mmio(struct intel_gvt_mmio_table_iter *iter, u32 offset,
  2375. u32 size)
  2376. {
  2377. struct intel_gvt *gvt = iter->data;
  2378. struct intel_gvt_mmio_info *info, *p;
  2379. u32 start, end, i;
  2380. if (WARN_ON(!IS_ALIGNED(offset, 4)))
  2381. return -EINVAL;
  2382. start = offset;
  2383. end = offset + size;
  2384. for (i = start; i < end; i += 4) {
  2385. p = intel_gvt_find_mmio_info(gvt, i);
  2386. if (p) {
  2387. WARN(1, "dup mmio definition offset %x\n",
  2388. info->offset);
  2389. /* We return -EEXIST here to make GVT-g load fail.
  2390. * So duplicated MMIO can be found as soon as
  2391. * possible.
  2392. */
  2393. return -EEXIST;
  2394. }
  2395. info = kzalloc(sizeof(*info), GFP_KERNEL);
  2396. if (!info)
  2397. return -ENOMEM;
  2398. info->offset = i;
  2399. info->read = intel_vgpu_default_mmio_read;
  2400. info->write = intel_vgpu_default_mmio_write;
  2401. INIT_HLIST_NODE(&info->node);
  2402. hash_add(gvt->mmio.mmio_info_table, &info->node, info->offset);
  2403. gvt->mmio.num_tracked_mmio++;
  2404. }
  2405. return 0;
  2406. }
  2407. static int handle_mmio_block(struct intel_gvt_mmio_table_iter *iter,
  2408. u32 offset, u32 size)
  2409. {
  2410. struct intel_gvt *gvt = iter->data;
  2411. struct gvt_mmio_block *block = gvt->mmio.mmio_block;
  2412. void *ret;
  2413. ret = krealloc(block,
  2414. (gvt->mmio.num_mmio_block + 1) * sizeof(*block),
  2415. GFP_KERNEL);
  2416. if (!ret)
  2417. return -ENOMEM;
  2418. gvt->mmio.mmio_block = block = ret;
  2419. block += gvt->mmio.num_mmio_block;
  2420. memset(block, 0, sizeof(*block));
  2421. block->offset = _MMIO(offset);
  2422. block->size = size;
  2423. gvt->mmio.num_mmio_block++;
  2424. return 0;
  2425. }
  2426. static int handle_mmio_cb(struct intel_gvt_mmio_table_iter *iter, u32 offset,
  2427. u32 size)
  2428. {
  2429. if (size < 1024 || offset == i915_mmio_reg_offset(GEN9_GFX_MOCS(0)))
  2430. return handle_mmio(iter, offset, size);
  2431. else
  2432. return handle_mmio_block(iter, offset, size);
  2433. }
  2434. static int init_mmio_info(struct intel_gvt *gvt)
  2435. {
  2436. struct intel_gvt_mmio_table_iter iter = {
  2437. .i915 = gvt->gt->i915,
  2438. .data = gvt,
  2439. .handle_mmio_cb = handle_mmio_cb,
  2440. };
  2441. return intel_gvt_iterate_mmio_table(&iter);
  2442. }
  2443. static int init_mmio_block_handlers(struct intel_gvt *gvt)
  2444. {
  2445. struct gvt_mmio_block *block;
  2446. block = find_mmio_block(gvt, VGT_PVINFO_PAGE);
  2447. if (!block) {
  2448. WARN(1, "fail to assign handlers to mmio block %x\n",
  2449. i915_mmio_reg_offset(gvt->mmio.mmio_block->offset));
  2450. return -ENODEV;
  2451. }
  2452. block->read = pvinfo_mmio_read;
  2453. block->write = pvinfo_mmio_write;
  2454. return 0;
  2455. }
  2456. /**
  2457. * intel_gvt_setup_mmio_info - setup MMIO information table for GVT device
  2458. * @gvt: GVT device
  2459. *
  2460. * This function is called at the initialization stage, to setup the MMIO
  2461. * information table for GVT device
  2462. *
  2463. * Returns:
  2464. * zero on success, negative if failed.
  2465. */
  2466. int intel_gvt_setup_mmio_info(struct intel_gvt *gvt)
  2467. {
  2468. struct intel_gvt_device_info *info = &gvt->device_info;
  2469. struct drm_i915_private *i915 = gvt->gt->i915;
  2470. int size = info->mmio_size / 4 * sizeof(*gvt->mmio.mmio_attribute);
  2471. int ret;
  2472. gvt->mmio.mmio_attribute = vzalloc(size);
  2473. if (!gvt->mmio.mmio_attribute)
  2474. return -ENOMEM;
  2475. ret = init_mmio_info(gvt);
  2476. if (ret)
  2477. goto err;
  2478. ret = init_mmio_block_handlers(gvt);
  2479. if (ret)
  2480. goto err;
  2481. ret = init_generic_mmio_info(gvt);
  2482. if (ret)
  2483. goto err;
  2484. if (IS_BROADWELL(i915)) {
  2485. ret = init_bdw_mmio_info(gvt);
  2486. if (ret)
  2487. goto err;
  2488. } else if (IS_SKYLAKE(i915) ||
  2489. IS_KABYLAKE(i915) ||
  2490. IS_COFFEELAKE(i915) ||
  2491. IS_COMETLAKE(i915)) {
  2492. ret = init_bdw_mmio_info(gvt);
  2493. if (ret)
  2494. goto err;
  2495. ret = init_skl_mmio_info(gvt);
  2496. if (ret)
  2497. goto err;
  2498. } else if (IS_BROXTON(i915)) {
  2499. ret = init_bdw_mmio_info(gvt);
  2500. if (ret)
  2501. goto err;
  2502. ret = init_skl_mmio_info(gvt);
  2503. if (ret)
  2504. goto err;
  2505. ret = init_bxt_mmio_info(gvt);
  2506. if (ret)
  2507. goto err;
  2508. }
  2509. return 0;
  2510. err:
  2511. intel_gvt_clean_mmio_info(gvt);
  2512. return ret;
  2513. }
  2514. /**
  2515. * intel_gvt_for_each_tracked_mmio - iterate each tracked mmio
  2516. * @gvt: a GVT device
  2517. * @handler: the handler
  2518. * @data: private data given to handler
  2519. *
  2520. * Returns:
  2521. * Zero on success, negative error code if failed.
  2522. */
  2523. int intel_gvt_for_each_tracked_mmio(struct intel_gvt *gvt,
  2524. int (*handler)(struct intel_gvt *gvt, u32 offset, void *data),
  2525. void *data)
  2526. {
  2527. struct gvt_mmio_block *block = gvt->mmio.mmio_block;
  2528. struct intel_gvt_mmio_info *e;
  2529. int i, j, ret;
  2530. hash_for_each(gvt->mmio.mmio_info_table, i, e, node) {
  2531. ret = handler(gvt, e->offset, data);
  2532. if (ret)
  2533. return ret;
  2534. }
  2535. for (i = 0; i < gvt->mmio.num_mmio_block; i++, block++) {
  2536. /* pvinfo data doesn't come from hw mmio */
  2537. if (i915_mmio_reg_offset(block->offset) == VGT_PVINFO_PAGE)
  2538. continue;
  2539. for (j = 0; j < block->size; j += 4) {
  2540. ret = handler(gvt, i915_mmio_reg_offset(block->offset) + j, data);
  2541. if (ret)
  2542. return ret;
  2543. }
  2544. }
  2545. return 0;
  2546. }
  2547. /**
  2548. * intel_vgpu_default_mmio_read - default MMIO read handler
  2549. * @vgpu: a vGPU
  2550. * @offset: access offset
  2551. * @p_data: data return buffer
  2552. * @bytes: access data length
  2553. *
  2554. * Returns:
  2555. * Zero on success, negative error code if failed.
  2556. */
  2557. int intel_vgpu_default_mmio_read(struct intel_vgpu *vgpu, unsigned int offset,
  2558. void *p_data, unsigned int bytes)
  2559. {
  2560. read_vreg(vgpu, offset, p_data, bytes);
  2561. return 0;
  2562. }
  2563. /**
  2564. * intel_vgpu_default_mmio_write() - default MMIO write handler
  2565. * @vgpu: a vGPU
  2566. * @offset: access offset
  2567. * @p_data: write data buffer
  2568. * @bytes: access data length
  2569. *
  2570. * Returns:
  2571. * Zero on success, negative error code if failed.
  2572. */
  2573. int intel_vgpu_default_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
  2574. void *p_data, unsigned int bytes)
  2575. {
  2576. write_vreg(vgpu, offset, p_data, bytes);
  2577. return 0;
  2578. }
  2579. /**
  2580. * intel_vgpu_mask_mmio_write - write mask register
  2581. * @vgpu: a vGPU
  2582. * @offset: access offset
  2583. * @p_data: write data buffer
  2584. * @bytes: access data length
  2585. *
  2586. * Returns:
  2587. * Zero on success, negative error code if failed.
  2588. */
  2589. int intel_vgpu_mask_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
  2590. void *p_data, unsigned int bytes)
  2591. {
  2592. u32 mask, old_vreg;
  2593. old_vreg = vgpu_vreg(vgpu, offset);
  2594. write_vreg(vgpu, offset, p_data, bytes);
  2595. mask = vgpu_vreg(vgpu, offset) >> 16;
  2596. vgpu_vreg(vgpu, offset) = (old_vreg & ~mask) |
  2597. (vgpu_vreg(vgpu, offset) & mask);
  2598. return 0;
  2599. }
  2600. /**
  2601. * intel_gvt_in_force_nonpriv_whitelist - if a mmio is in whitelist to be
  2602. * force-nopriv register
  2603. *
  2604. * @gvt: a GVT device
  2605. * @offset: register offset
  2606. *
  2607. * Returns:
  2608. * True if the register is in force-nonpriv whitelist;
  2609. * False if outside;
  2610. */
  2611. bool intel_gvt_in_force_nonpriv_whitelist(struct intel_gvt *gvt,
  2612. unsigned int offset)
  2613. {
  2614. return in_whitelist(offset);
  2615. }
  2616. /**
  2617. * intel_vgpu_mmio_reg_rw - emulate tracked mmio registers
  2618. * @vgpu: a vGPU
  2619. * @offset: register offset
  2620. * @pdata: data buffer
  2621. * @bytes: data length
  2622. * @is_read: read or write
  2623. *
  2624. * Returns:
  2625. * Zero on success, negative error code if failed.
  2626. */
  2627. int intel_vgpu_mmio_reg_rw(struct intel_vgpu *vgpu, unsigned int offset,
  2628. void *pdata, unsigned int bytes, bool is_read)
  2629. {
  2630. struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
  2631. struct intel_gvt *gvt = vgpu->gvt;
  2632. struct intel_gvt_mmio_info *mmio_info;
  2633. struct gvt_mmio_block *mmio_block;
  2634. gvt_mmio_func func;
  2635. int ret;
  2636. if (drm_WARN_ON(&i915->drm, bytes > 8))
  2637. return -EINVAL;
  2638. /*
  2639. * Handle special MMIO blocks.
  2640. */
  2641. mmio_block = find_mmio_block(gvt, offset);
  2642. if (mmio_block) {
  2643. func = is_read ? mmio_block->read : mmio_block->write;
  2644. if (func)
  2645. return func(vgpu, offset, pdata, bytes);
  2646. goto default_rw;
  2647. }
  2648. /*
  2649. * Normal tracked MMIOs.
  2650. */
  2651. mmio_info = intel_gvt_find_mmio_info(gvt, offset);
  2652. if (!mmio_info) {
  2653. gvt_dbg_mmio("untracked MMIO %08x len %d\n", offset, bytes);
  2654. goto default_rw;
  2655. }
  2656. if (is_read)
  2657. return mmio_info->read(vgpu, offset, pdata, bytes);
  2658. else {
  2659. u64 ro_mask = mmio_info->ro_mask;
  2660. u32 old_vreg = 0;
  2661. u64 data = 0;
  2662. if (intel_gvt_mmio_has_mode_mask(gvt, mmio_info->offset)) {
  2663. old_vreg = vgpu_vreg(vgpu, offset);
  2664. }
  2665. if (likely(!ro_mask))
  2666. ret = mmio_info->write(vgpu, offset, pdata, bytes);
  2667. else if (!~ro_mask) {
  2668. gvt_vgpu_err("try to write RO reg %x\n", offset);
  2669. return 0;
  2670. } else {
  2671. /* keep the RO bits in the virtual register */
  2672. memcpy(&data, pdata, bytes);
  2673. data &= ~ro_mask;
  2674. data |= vgpu_vreg(vgpu, offset) & ro_mask;
  2675. ret = mmio_info->write(vgpu, offset, &data, bytes);
  2676. }
  2677. /* higher 16bits of mode ctl regs are mask bits for change */
  2678. if (intel_gvt_mmio_has_mode_mask(gvt, mmio_info->offset)) {
  2679. u32 mask = vgpu_vreg(vgpu, offset) >> 16;
  2680. vgpu_vreg(vgpu, offset) = (old_vreg & ~mask)
  2681. | (vgpu_vreg(vgpu, offset) & mask);
  2682. }
  2683. }
  2684. return ret;
  2685. default_rw:
  2686. return is_read ?
  2687. intel_vgpu_default_mmio_read(vgpu, offset, pdata, bytes) :
  2688. intel_vgpu_default_mmio_write(vgpu, offset, pdata, bytes);
  2689. }
  2690. void intel_gvt_restore_fence(struct intel_gvt *gvt)
  2691. {
  2692. struct intel_vgpu *vgpu;
  2693. int i, id;
  2694. idr_for_each_entry(&(gvt)->vgpu_idr, vgpu, id) {
  2695. mmio_hw_access_pre(gvt->gt);
  2696. for (i = 0; i < vgpu_fence_sz(vgpu); i++)
  2697. intel_vgpu_write_fence(vgpu, i, vgpu_vreg64(vgpu, fence_num_to_offset(i)));
  2698. mmio_hw_access_post(gvt->gt);
  2699. }
  2700. }
  2701. static int mmio_pm_restore_handler(struct intel_gvt *gvt, u32 offset, void *data)
  2702. {
  2703. struct intel_vgpu *vgpu = data;
  2704. struct drm_i915_private *dev_priv = gvt->gt->i915;
  2705. if (gvt->mmio.mmio_attribute[offset >> 2] & F_PM_SAVE)
  2706. intel_uncore_write(&dev_priv->uncore, _MMIO(offset), vgpu_vreg(vgpu, offset));
  2707. return 0;
  2708. }
  2709. void intel_gvt_restore_mmio(struct intel_gvt *gvt)
  2710. {
  2711. struct intel_vgpu *vgpu;
  2712. int id;
  2713. idr_for_each_entry(&(gvt)->vgpu_idr, vgpu, id) {
  2714. mmio_hw_access_pre(gvt->gt);
  2715. intel_gvt_for_each_tracked_mmio(gvt, mmio_pm_restore_handler, vgpu);
  2716. mmio_hw_access_post(gvt->gt);
  2717. }
  2718. }