gtt.c 77 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926
  1. /*
  2. * GTT virtualization
  3. *
  4. * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
  5. *
  6. * Permission is hereby granted, free of charge, to any person obtaining a
  7. * copy of this software and associated documentation files (the "Software"),
  8. * to deal in the Software without restriction, including without limitation
  9. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  10. * and/or sell copies of the Software, and to permit persons to whom the
  11. * Software is furnished to do so, subject to the following conditions:
  12. *
  13. * The above copyright notice and this permission notice (including the next
  14. * paragraph) shall be included in all copies or substantial portions of the
  15. * Software.
  16. *
  17. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  18. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  19. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  20. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  21. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  22. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  23. * SOFTWARE.
  24. *
  25. * Authors:
  26. * Zhi Wang <[email protected]>
  27. * Zhenyu Wang <[email protected]>
  28. * Xiao Zheng <[email protected]>
  29. *
  30. * Contributors:
  31. * Min He <[email protected]>
  32. * Bing Niu <[email protected]>
  33. *
  34. */
  35. #include "i915_drv.h"
  36. #include "gvt.h"
  37. #include "i915_pvinfo.h"
  38. #include "trace.h"
  39. #include "gt/intel_gt_regs.h"
  40. #if defined(VERBOSE_DEBUG)
  41. #define gvt_vdbg_mm(fmt, args...) gvt_dbg_mm(fmt, ##args)
  42. #else
  43. #define gvt_vdbg_mm(fmt, args...)
  44. #endif
  45. static bool enable_out_of_sync = false;
  46. static int preallocated_oos_pages = 8192;
  47. static bool intel_gvt_is_valid_gfn(struct intel_vgpu *vgpu, unsigned long gfn)
  48. {
  49. struct kvm *kvm = vgpu->vfio_device.kvm;
  50. int idx;
  51. bool ret;
  52. if (!vgpu->attached)
  53. return false;
  54. idx = srcu_read_lock(&kvm->srcu);
  55. ret = kvm_is_visible_gfn(kvm, gfn);
  56. srcu_read_unlock(&kvm->srcu, idx);
  57. return ret;
  58. }
  59. /*
  60. * validate a gm address and related range size,
  61. * translate it to host gm address
  62. */
  63. bool intel_gvt_ggtt_validate_range(struct intel_vgpu *vgpu, u64 addr, u32 size)
  64. {
  65. if (size == 0)
  66. return vgpu_gmadr_is_valid(vgpu, addr);
  67. if (vgpu_gmadr_is_aperture(vgpu, addr) &&
  68. vgpu_gmadr_is_aperture(vgpu, addr + size - 1))
  69. return true;
  70. else if (vgpu_gmadr_is_hidden(vgpu, addr) &&
  71. vgpu_gmadr_is_hidden(vgpu, addr + size - 1))
  72. return true;
  73. gvt_dbg_mm("Invalid ggtt range at 0x%llx, size: 0x%x\n",
  74. addr, size);
  75. return false;
  76. }
  77. /* translate a guest gmadr to host gmadr */
  78. int intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu *vgpu, u64 g_addr, u64 *h_addr)
  79. {
  80. struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
  81. if (drm_WARN(&i915->drm, !vgpu_gmadr_is_valid(vgpu, g_addr),
  82. "invalid guest gmadr %llx\n", g_addr))
  83. return -EACCES;
  84. if (vgpu_gmadr_is_aperture(vgpu, g_addr))
  85. *h_addr = vgpu_aperture_gmadr_base(vgpu)
  86. + (g_addr - vgpu_aperture_offset(vgpu));
  87. else
  88. *h_addr = vgpu_hidden_gmadr_base(vgpu)
  89. + (g_addr - vgpu_hidden_offset(vgpu));
  90. return 0;
  91. }
  92. /* translate a host gmadr to guest gmadr */
  93. int intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu *vgpu, u64 h_addr, u64 *g_addr)
  94. {
  95. struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
  96. if (drm_WARN(&i915->drm, !gvt_gmadr_is_valid(vgpu->gvt, h_addr),
  97. "invalid host gmadr %llx\n", h_addr))
  98. return -EACCES;
  99. if (gvt_gmadr_is_aperture(vgpu->gvt, h_addr))
  100. *g_addr = vgpu_aperture_gmadr_base(vgpu)
  101. + (h_addr - gvt_aperture_gmadr_base(vgpu->gvt));
  102. else
  103. *g_addr = vgpu_hidden_gmadr_base(vgpu)
  104. + (h_addr - gvt_hidden_gmadr_base(vgpu->gvt));
  105. return 0;
  106. }
  107. int intel_gvt_ggtt_index_g2h(struct intel_vgpu *vgpu, unsigned long g_index,
  108. unsigned long *h_index)
  109. {
  110. u64 h_addr;
  111. int ret;
  112. ret = intel_gvt_ggtt_gmadr_g2h(vgpu, g_index << I915_GTT_PAGE_SHIFT,
  113. &h_addr);
  114. if (ret)
  115. return ret;
  116. *h_index = h_addr >> I915_GTT_PAGE_SHIFT;
  117. return 0;
  118. }
  119. int intel_gvt_ggtt_h2g_index(struct intel_vgpu *vgpu, unsigned long h_index,
  120. unsigned long *g_index)
  121. {
  122. u64 g_addr;
  123. int ret;
  124. ret = intel_gvt_ggtt_gmadr_h2g(vgpu, h_index << I915_GTT_PAGE_SHIFT,
  125. &g_addr);
  126. if (ret)
  127. return ret;
  128. *g_index = g_addr >> I915_GTT_PAGE_SHIFT;
  129. return 0;
  130. }
  131. #define gtt_type_is_entry(type) \
  132. (type > GTT_TYPE_INVALID && type < GTT_TYPE_PPGTT_ENTRY \
  133. && type != GTT_TYPE_PPGTT_PTE_ENTRY \
  134. && type != GTT_TYPE_PPGTT_ROOT_ENTRY)
  135. #define gtt_type_is_pt(type) \
  136. (type >= GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX)
  137. #define gtt_type_is_pte_pt(type) \
  138. (type == GTT_TYPE_PPGTT_PTE_PT)
  139. #define gtt_type_is_root_pointer(type) \
  140. (gtt_type_is_entry(type) && type > GTT_TYPE_PPGTT_ROOT_ENTRY)
  141. #define gtt_init_entry(e, t, p, v) do { \
  142. (e)->type = t; \
  143. (e)->pdev = p; \
  144. memcpy(&(e)->val64, &v, sizeof(v)); \
  145. } while (0)
  146. /*
  147. * Mappings between GTT_TYPE* enumerations.
  148. * Following information can be found according to the given type:
  149. * - type of next level page table
  150. * - type of entry inside this level page table
  151. * - type of entry with PSE set
  152. *
  153. * If the given type doesn't have such a kind of information,
  154. * e.g. give a l4 root entry type, then request to get its PSE type,
  155. * give a PTE page table type, then request to get its next level page
  156. * table type, as we know l4 root entry doesn't have a PSE bit,
  157. * and a PTE page table doesn't have a next level page table type,
  158. * GTT_TYPE_INVALID will be returned. This is useful when traversing a
  159. * page table.
  160. */
  161. struct gtt_type_table_entry {
  162. int entry_type;
  163. int pt_type;
  164. int next_pt_type;
  165. int pse_entry_type;
  166. };
  167. #define GTT_TYPE_TABLE_ENTRY(type, e_type, cpt_type, npt_type, pse_type) \
  168. [type] = { \
  169. .entry_type = e_type, \
  170. .pt_type = cpt_type, \
  171. .next_pt_type = npt_type, \
  172. .pse_entry_type = pse_type, \
  173. }
  174. static const struct gtt_type_table_entry gtt_type_table[] = {
  175. GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
  176. GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
  177. GTT_TYPE_INVALID,
  178. GTT_TYPE_PPGTT_PML4_PT,
  179. GTT_TYPE_INVALID),
  180. GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_PT,
  181. GTT_TYPE_PPGTT_PML4_ENTRY,
  182. GTT_TYPE_PPGTT_PML4_PT,
  183. GTT_TYPE_PPGTT_PDP_PT,
  184. GTT_TYPE_INVALID),
  185. GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_ENTRY,
  186. GTT_TYPE_PPGTT_PML4_ENTRY,
  187. GTT_TYPE_PPGTT_PML4_PT,
  188. GTT_TYPE_PPGTT_PDP_PT,
  189. GTT_TYPE_INVALID),
  190. GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_PT,
  191. GTT_TYPE_PPGTT_PDP_ENTRY,
  192. GTT_TYPE_PPGTT_PDP_PT,
  193. GTT_TYPE_PPGTT_PDE_PT,
  194. GTT_TYPE_PPGTT_PTE_1G_ENTRY),
  195. GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
  196. GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
  197. GTT_TYPE_INVALID,
  198. GTT_TYPE_PPGTT_PDE_PT,
  199. GTT_TYPE_PPGTT_PTE_1G_ENTRY),
  200. GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_ENTRY,
  201. GTT_TYPE_PPGTT_PDP_ENTRY,
  202. GTT_TYPE_PPGTT_PDP_PT,
  203. GTT_TYPE_PPGTT_PDE_PT,
  204. GTT_TYPE_PPGTT_PTE_1G_ENTRY),
  205. GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_PT,
  206. GTT_TYPE_PPGTT_PDE_ENTRY,
  207. GTT_TYPE_PPGTT_PDE_PT,
  208. GTT_TYPE_PPGTT_PTE_PT,
  209. GTT_TYPE_PPGTT_PTE_2M_ENTRY),
  210. GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_ENTRY,
  211. GTT_TYPE_PPGTT_PDE_ENTRY,
  212. GTT_TYPE_PPGTT_PDE_PT,
  213. GTT_TYPE_PPGTT_PTE_PT,
  214. GTT_TYPE_PPGTT_PTE_2M_ENTRY),
  215. /* We take IPS bit as 'PSE' for PTE level. */
  216. GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_PT,
  217. GTT_TYPE_PPGTT_PTE_4K_ENTRY,
  218. GTT_TYPE_PPGTT_PTE_PT,
  219. GTT_TYPE_INVALID,
  220. GTT_TYPE_PPGTT_PTE_64K_ENTRY),
  221. GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_4K_ENTRY,
  222. GTT_TYPE_PPGTT_PTE_4K_ENTRY,
  223. GTT_TYPE_PPGTT_PTE_PT,
  224. GTT_TYPE_INVALID,
  225. GTT_TYPE_PPGTT_PTE_64K_ENTRY),
  226. GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_64K_ENTRY,
  227. GTT_TYPE_PPGTT_PTE_4K_ENTRY,
  228. GTT_TYPE_PPGTT_PTE_PT,
  229. GTT_TYPE_INVALID,
  230. GTT_TYPE_PPGTT_PTE_64K_ENTRY),
  231. GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_2M_ENTRY,
  232. GTT_TYPE_PPGTT_PDE_ENTRY,
  233. GTT_TYPE_PPGTT_PDE_PT,
  234. GTT_TYPE_INVALID,
  235. GTT_TYPE_PPGTT_PTE_2M_ENTRY),
  236. GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_1G_ENTRY,
  237. GTT_TYPE_PPGTT_PDP_ENTRY,
  238. GTT_TYPE_PPGTT_PDP_PT,
  239. GTT_TYPE_INVALID,
  240. GTT_TYPE_PPGTT_PTE_1G_ENTRY),
  241. GTT_TYPE_TABLE_ENTRY(GTT_TYPE_GGTT_PTE,
  242. GTT_TYPE_GGTT_PTE,
  243. GTT_TYPE_INVALID,
  244. GTT_TYPE_INVALID,
  245. GTT_TYPE_INVALID),
  246. };
  247. static inline int get_next_pt_type(int type)
  248. {
  249. return gtt_type_table[type].next_pt_type;
  250. }
  251. static inline int get_pt_type(int type)
  252. {
  253. return gtt_type_table[type].pt_type;
  254. }
  255. static inline int get_entry_type(int type)
  256. {
  257. return gtt_type_table[type].entry_type;
  258. }
  259. static inline int get_pse_type(int type)
  260. {
  261. return gtt_type_table[type].pse_entry_type;
  262. }
  263. static u64 read_pte64(struct i915_ggtt *ggtt, unsigned long index)
  264. {
  265. void __iomem *addr = (gen8_pte_t __iomem *)ggtt->gsm + index;
  266. return readq(addr);
  267. }
  268. static void ggtt_invalidate(struct intel_gt *gt)
  269. {
  270. mmio_hw_access_pre(gt);
  271. intel_uncore_write(gt->uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
  272. mmio_hw_access_post(gt);
  273. }
  274. static void write_pte64(struct i915_ggtt *ggtt, unsigned long index, u64 pte)
  275. {
  276. void __iomem *addr = (gen8_pte_t __iomem *)ggtt->gsm + index;
  277. writeq(pte, addr);
  278. }
  279. static inline int gtt_get_entry64(void *pt,
  280. struct intel_gvt_gtt_entry *e,
  281. unsigned long index, bool hypervisor_access, unsigned long gpa,
  282. struct intel_vgpu *vgpu)
  283. {
  284. const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
  285. int ret;
  286. if (WARN_ON(info->gtt_entry_size != 8))
  287. return -EINVAL;
  288. if (hypervisor_access) {
  289. ret = intel_gvt_read_gpa(vgpu, gpa +
  290. (index << info->gtt_entry_size_shift),
  291. &e->val64, 8);
  292. if (WARN_ON(ret))
  293. return ret;
  294. } else if (!pt) {
  295. e->val64 = read_pte64(vgpu->gvt->gt->ggtt, index);
  296. } else {
  297. e->val64 = *((u64 *)pt + index);
  298. }
  299. return 0;
  300. }
  301. static inline int gtt_set_entry64(void *pt,
  302. struct intel_gvt_gtt_entry *e,
  303. unsigned long index, bool hypervisor_access, unsigned long gpa,
  304. struct intel_vgpu *vgpu)
  305. {
  306. const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
  307. int ret;
  308. if (WARN_ON(info->gtt_entry_size != 8))
  309. return -EINVAL;
  310. if (hypervisor_access) {
  311. ret = intel_gvt_write_gpa(vgpu, gpa +
  312. (index << info->gtt_entry_size_shift),
  313. &e->val64, 8);
  314. if (WARN_ON(ret))
  315. return ret;
  316. } else if (!pt) {
  317. write_pte64(vgpu->gvt->gt->ggtt, index, e->val64);
  318. } else {
  319. *((u64 *)pt + index) = e->val64;
  320. }
  321. return 0;
  322. }
  323. #define GTT_HAW 46
  324. #define ADDR_1G_MASK GENMASK_ULL(GTT_HAW - 1, 30)
  325. #define ADDR_2M_MASK GENMASK_ULL(GTT_HAW - 1, 21)
  326. #define ADDR_64K_MASK GENMASK_ULL(GTT_HAW - 1, 16)
  327. #define ADDR_4K_MASK GENMASK_ULL(GTT_HAW - 1, 12)
  328. #define GTT_SPTE_FLAG_MASK GENMASK_ULL(62, 52)
  329. #define GTT_SPTE_FLAG_64K_SPLITED BIT(52) /* splited 64K gtt entry */
  330. #define GTT_64K_PTE_STRIDE 16
  331. static unsigned long gen8_gtt_get_pfn(struct intel_gvt_gtt_entry *e)
  332. {
  333. unsigned long pfn;
  334. if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY)
  335. pfn = (e->val64 & ADDR_1G_MASK) >> PAGE_SHIFT;
  336. else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY)
  337. pfn = (e->val64 & ADDR_2M_MASK) >> PAGE_SHIFT;
  338. else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY)
  339. pfn = (e->val64 & ADDR_64K_MASK) >> PAGE_SHIFT;
  340. else
  341. pfn = (e->val64 & ADDR_4K_MASK) >> PAGE_SHIFT;
  342. return pfn;
  343. }
  344. static void gen8_gtt_set_pfn(struct intel_gvt_gtt_entry *e, unsigned long pfn)
  345. {
  346. if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
  347. e->val64 &= ~ADDR_1G_MASK;
  348. pfn &= (ADDR_1G_MASK >> PAGE_SHIFT);
  349. } else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) {
  350. e->val64 &= ~ADDR_2M_MASK;
  351. pfn &= (ADDR_2M_MASK >> PAGE_SHIFT);
  352. } else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY) {
  353. e->val64 &= ~ADDR_64K_MASK;
  354. pfn &= (ADDR_64K_MASK >> PAGE_SHIFT);
  355. } else {
  356. e->val64 &= ~ADDR_4K_MASK;
  357. pfn &= (ADDR_4K_MASK >> PAGE_SHIFT);
  358. }
  359. e->val64 |= (pfn << PAGE_SHIFT);
  360. }
  361. static bool gen8_gtt_test_pse(struct intel_gvt_gtt_entry *e)
  362. {
  363. return !!(e->val64 & _PAGE_PSE);
  364. }
  365. static void gen8_gtt_clear_pse(struct intel_gvt_gtt_entry *e)
  366. {
  367. if (gen8_gtt_test_pse(e)) {
  368. switch (e->type) {
  369. case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
  370. e->val64 &= ~_PAGE_PSE;
  371. e->type = GTT_TYPE_PPGTT_PDE_ENTRY;
  372. break;
  373. case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
  374. e->type = GTT_TYPE_PPGTT_PDP_ENTRY;
  375. e->val64 &= ~_PAGE_PSE;
  376. break;
  377. default:
  378. WARN_ON(1);
  379. }
  380. }
  381. }
  382. static bool gen8_gtt_test_ips(struct intel_gvt_gtt_entry *e)
  383. {
  384. if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY))
  385. return false;
  386. return !!(e->val64 & GEN8_PDE_IPS_64K);
  387. }
  388. static void gen8_gtt_clear_ips(struct intel_gvt_gtt_entry *e)
  389. {
  390. if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY))
  391. return;
  392. e->val64 &= ~GEN8_PDE_IPS_64K;
  393. }
  394. static bool gen8_gtt_test_present(struct intel_gvt_gtt_entry *e)
  395. {
  396. /*
  397. * i915 writes PDP root pointer registers without present bit,
  398. * it also works, so we need to treat root pointer entry
  399. * specifically.
  400. */
  401. if (e->type == GTT_TYPE_PPGTT_ROOT_L3_ENTRY
  402. || e->type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
  403. return (e->val64 != 0);
  404. else
  405. return (e->val64 & GEN8_PAGE_PRESENT);
  406. }
  407. static void gtt_entry_clear_present(struct intel_gvt_gtt_entry *e)
  408. {
  409. e->val64 &= ~GEN8_PAGE_PRESENT;
  410. }
  411. static void gtt_entry_set_present(struct intel_gvt_gtt_entry *e)
  412. {
  413. e->val64 |= GEN8_PAGE_PRESENT;
  414. }
  415. static bool gen8_gtt_test_64k_splited(struct intel_gvt_gtt_entry *e)
  416. {
  417. return !!(e->val64 & GTT_SPTE_FLAG_64K_SPLITED);
  418. }
  419. static void gen8_gtt_set_64k_splited(struct intel_gvt_gtt_entry *e)
  420. {
  421. e->val64 |= GTT_SPTE_FLAG_64K_SPLITED;
  422. }
  423. static void gen8_gtt_clear_64k_splited(struct intel_gvt_gtt_entry *e)
  424. {
  425. e->val64 &= ~GTT_SPTE_FLAG_64K_SPLITED;
  426. }
  427. /*
  428. * Per-platform GMA routines.
  429. */
  430. static unsigned long gma_to_ggtt_pte_index(unsigned long gma)
  431. {
  432. unsigned long x = (gma >> I915_GTT_PAGE_SHIFT);
  433. trace_gma_index(__func__, gma, x);
  434. return x;
  435. }
  436. #define DEFINE_PPGTT_GMA_TO_INDEX(prefix, ename, exp) \
  437. static unsigned long prefix##_gma_to_##ename##_index(unsigned long gma) \
  438. { \
  439. unsigned long x = (exp); \
  440. trace_gma_index(__func__, gma, x); \
  441. return x; \
  442. }
  443. DEFINE_PPGTT_GMA_TO_INDEX(gen8, pte, (gma >> 12 & 0x1ff));
  444. DEFINE_PPGTT_GMA_TO_INDEX(gen8, pde, (gma >> 21 & 0x1ff));
  445. DEFINE_PPGTT_GMA_TO_INDEX(gen8, l3_pdp, (gma >> 30 & 0x3));
  446. DEFINE_PPGTT_GMA_TO_INDEX(gen8, l4_pdp, (gma >> 30 & 0x1ff));
  447. DEFINE_PPGTT_GMA_TO_INDEX(gen8, pml4, (gma >> 39 & 0x1ff));
  448. static const struct intel_gvt_gtt_pte_ops gen8_gtt_pte_ops = {
  449. .get_entry = gtt_get_entry64,
  450. .set_entry = gtt_set_entry64,
  451. .clear_present = gtt_entry_clear_present,
  452. .set_present = gtt_entry_set_present,
  453. .test_present = gen8_gtt_test_present,
  454. .test_pse = gen8_gtt_test_pse,
  455. .clear_pse = gen8_gtt_clear_pse,
  456. .clear_ips = gen8_gtt_clear_ips,
  457. .test_ips = gen8_gtt_test_ips,
  458. .clear_64k_splited = gen8_gtt_clear_64k_splited,
  459. .set_64k_splited = gen8_gtt_set_64k_splited,
  460. .test_64k_splited = gen8_gtt_test_64k_splited,
  461. .get_pfn = gen8_gtt_get_pfn,
  462. .set_pfn = gen8_gtt_set_pfn,
  463. };
  464. static const struct intel_gvt_gtt_gma_ops gen8_gtt_gma_ops = {
  465. .gma_to_ggtt_pte_index = gma_to_ggtt_pte_index,
  466. .gma_to_pte_index = gen8_gma_to_pte_index,
  467. .gma_to_pde_index = gen8_gma_to_pde_index,
  468. .gma_to_l3_pdp_index = gen8_gma_to_l3_pdp_index,
  469. .gma_to_l4_pdp_index = gen8_gma_to_l4_pdp_index,
  470. .gma_to_pml4_index = gen8_gma_to_pml4_index,
  471. };
  472. /* Update entry type per pse and ips bit. */
  473. static void update_entry_type_for_real(const struct intel_gvt_gtt_pte_ops *pte_ops,
  474. struct intel_gvt_gtt_entry *entry, bool ips)
  475. {
  476. switch (entry->type) {
  477. case GTT_TYPE_PPGTT_PDE_ENTRY:
  478. case GTT_TYPE_PPGTT_PDP_ENTRY:
  479. if (pte_ops->test_pse(entry))
  480. entry->type = get_pse_type(entry->type);
  481. break;
  482. case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
  483. if (ips)
  484. entry->type = get_pse_type(entry->type);
  485. break;
  486. default:
  487. GEM_BUG_ON(!gtt_type_is_entry(entry->type));
  488. }
  489. GEM_BUG_ON(entry->type == GTT_TYPE_INVALID);
  490. }
  491. /*
  492. * MM helpers.
  493. */
  494. static void _ppgtt_get_root_entry(struct intel_vgpu_mm *mm,
  495. struct intel_gvt_gtt_entry *entry, unsigned long index,
  496. bool guest)
  497. {
  498. const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
  499. GEM_BUG_ON(mm->type != INTEL_GVT_MM_PPGTT);
  500. entry->type = mm->ppgtt_mm.root_entry_type;
  501. pte_ops->get_entry(guest ? mm->ppgtt_mm.guest_pdps :
  502. mm->ppgtt_mm.shadow_pdps,
  503. entry, index, false, 0, mm->vgpu);
  504. update_entry_type_for_real(pte_ops, entry, false);
  505. }
  506. static inline void ppgtt_get_guest_root_entry(struct intel_vgpu_mm *mm,
  507. struct intel_gvt_gtt_entry *entry, unsigned long index)
  508. {
  509. _ppgtt_get_root_entry(mm, entry, index, true);
  510. }
  511. static inline void ppgtt_get_shadow_root_entry(struct intel_vgpu_mm *mm,
  512. struct intel_gvt_gtt_entry *entry, unsigned long index)
  513. {
  514. _ppgtt_get_root_entry(mm, entry, index, false);
  515. }
  516. static void _ppgtt_set_root_entry(struct intel_vgpu_mm *mm,
  517. struct intel_gvt_gtt_entry *entry, unsigned long index,
  518. bool guest)
  519. {
  520. const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
  521. pte_ops->set_entry(guest ? mm->ppgtt_mm.guest_pdps :
  522. mm->ppgtt_mm.shadow_pdps,
  523. entry, index, false, 0, mm->vgpu);
  524. }
  525. static inline void ppgtt_set_shadow_root_entry(struct intel_vgpu_mm *mm,
  526. struct intel_gvt_gtt_entry *entry, unsigned long index)
  527. {
  528. _ppgtt_set_root_entry(mm, entry, index, false);
  529. }
  530. static void ggtt_get_guest_entry(struct intel_vgpu_mm *mm,
  531. struct intel_gvt_gtt_entry *entry, unsigned long index)
  532. {
  533. const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
  534. GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
  535. entry->type = GTT_TYPE_GGTT_PTE;
  536. pte_ops->get_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
  537. false, 0, mm->vgpu);
  538. }
  539. static void ggtt_set_guest_entry(struct intel_vgpu_mm *mm,
  540. struct intel_gvt_gtt_entry *entry, unsigned long index)
  541. {
  542. const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
  543. GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
  544. pte_ops->set_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
  545. false, 0, mm->vgpu);
  546. }
  547. static void ggtt_get_host_entry(struct intel_vgpu_mm *mm,
  548. struct intel_gvt_gtt_entry *entry, unsigned long index)
  549. {
  550. const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
  551. GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
  552. pte_ops->get_entry(NULL, entry, index, false, 0, mm->vgpu);
  553. }
  554. static void ggtt_set_host_entry(struct intel_vgpu_mm *mm,
  555. struct intel_gvt_gtt_entry *entry, unsigned long index)
  556. {
  557. const struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
  558. unsigned long offset = index;
  559. GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
  560. if (vgpu_gmadr_is_aperture(mm->vgpu, index << I915_GTT_PAGE_SHIFT)) {
  561. offset -= (vgpu_aperture_gmadr_base(mm->vgpu) >> PAGE_SHIFT);
  562. mm->ggtt_mm.host_ggtt_aperture[offset] = entry->val64;
  563. } else if (vgpu_gmadr_is_hidden(mm->vgpu, index << I915_GTT_PAGE_SHIFT)) {
  564. offset -= (vgpu_hidden_gmadr_base(mm->vgpu) >> PAGE_SHIFT);
  565. mm->ggtt_mm.host_ggtt_hidden[offset] = entry->val64;
  566. }
  567. pte_ops->set_entry(NULL, entry, index, false, 0, mm->vgpu);
  568. }
  569. /*
  570. * PPGTT shadow page table helpers.
  571. */
  572. static inline int ppgtt_spt_get_entry(
  573. struct intel_vgpu_ppgtt_spt *spt,
  574. void *page_table, int type,
  575. struct intel_gvt_gtt_entry *e, unsigned long index,
  576. bool guest)
  577. {
  578. struct intel_gvt *gvt = spt->vgpu->gvt;
  579. const struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
  580. int ret;
  581. e->type = get_entry_type(type);
  582. if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
  583. return -EINVAL;
  584. ret = ops->get_entry(page_table, e, index, guest,
  585. spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
  586. spt->vgpu);
  587. if (ret)
  588. return ret;
  589. update_entry_type_for_real(ops, e, guest ?
  590. spt->guest_page.pde_ips : false);
  591. gvt_vdbg_mm("read ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
  592. type, e->type, index, e->val64);
  593. return 0;
  594. }
  595. static inline int ppgtt_spt_set_entry(
  596. struct intel_vgpu_ppgtt_spt *spt,
  597. void *page_table, int type,
  598. struct intel_gvt_gtt_entry *e, unsigned long index,
  599. bool guest)
  600. {
  601. struct intel_gvt *gvt = spt->vgpu->gvt;
  602. const struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
  603. if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
  604. return -EINVAL;
  605. gvt_vdbg_mm("set ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
  606. type, e->type, index, e->val64);
  607. return ops->set_entry(page_table, e, index, guest,
  608. spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
  609. spt->vgpu);
  610. }
  611. #define ppgtt_get_guest_entry(spt, e, index) \
  612. ppgtt_spt_get_entry(spt, NULL, \
  613. spt->guest_page.type, e, index, true)
  614. #define ppgtt_set_guest_entry(spt, e, index) \
  615. ppgtt_spt_set_entry(spt, NULL, \
  616. spt->guest_page.type, e, index, true)
  617. #define ppgtt_get_shadow_entry(spt, e, index) \
  618. ppgtt_spt_get_entry(spt, spt->shadow_page.vaddr, \
  619. spt->shadow_page.type, e, index, false)
  620. #define ppgtt_set_shadow_entry(spt, e, index) \
  621. ppgtt_spt_set_entry(spt, spt->shadow_page.vaddr, \
  622. spt->shadow_page.type, e, index, false)
  623. static void *alloc_spt(gfp_t gfp_mask)
  624. {
  625. struct intel_vgpu_ppgtt_spt *spt;
  626. spt = kzalloc(sizeof(*spt), gfp_mask);
  627. if (!spt)
  628. return NULL;
  629. spt->shadow_page.page = alloc_page(gfp_mask);
  630. if (!spt->shadow_page.page) {
  631. kfree(spt);
  632. return NULL;
  633. }
  634. return spt;
  635. }
  636. static void free_spt(struct intel_vgpu_ppgtt_spt *spt)
  637. {
  638. __free_page(spt->shadow_page.page);
  639. kfree(spt);
  640. }
  641. static int detach_oos_page(struct intel_vgpu *vgpu,
  642. struct intel_vgpu_oos_page *oos_page);
  643. static void ppgtt_free_spt(struct intel_vgpu_ppgtt_spt *spt)
  644. {
  645. struct device *kdev = spt->vgpu->gvt->gt->i915->drm.dev;
  646. trace_spt_free(spt->vgpu->id, spt, spt->guest_page.type);
  647. dma_unmap_page(kdev, spt->shadow_page.mfn << I915_GTT_PAGE_SHIFT, 4096,
  648. DMA_BIDIRECTIONAL);
  649. radix_tree_delete(&spt->vgpu->gtt.spt_tree, spt->shadow_page.mfn);
  650. if (spt->guest_page.gfn) {
  651. if (spt->guest_page.oos_page)
  652. detach_oos_page(spt->vgpu, spt->guest_page.oos_page);
  653. intel_vgpu_unregister_page_track(spt->vgpu, spt->guest_page.gfn);
  654. }
  655. list_del_init(&spt->post_shadow_list);
  656. free_spt(spt);
  657. }
  658. static void ppgtt_free_all_spt(struct intel_vgpu *vgpu)
  659. {
  660. struct intel_vgpu_ppgtt_spt *spt, *spn;
  661. struct radix_tree_iter iter;
  662. LIST_HEAD(all_spt);
  663. void __rcu **slot;
  664. rcu_read_lock();
  665. radix_tree_for_each_slot(slot, &vgpu->gtt.spt_tree, &iter, 0) {
  666. spt = radix_tree_deref_slot(slot);
  667. list_move(&spt->post_shadow_list, &all_spt);
  668. }
  669. rcu_read_unlock();
  670. list_for_each_entry_safe(spt, spn, &all_spt, post_shadow_list)
  671. ppgtt_free_spt(spt);
  672. }
  673. static int ppgtt_handle_guest_write_page_table_bytes(
  674. struct intel_vgpu_ppgtt_spt *spt,
  675. u64 pa, void *p_data, int bytes);
  676. static int ppgtt_write_protection_handler(
  677. struct intel_vgpu_page_track *page_track,
  678. u64 gpa, void *data, int bytes)
  679. {
  680. struct intel_vgpu_ppgtt_spt *spt = page_track->priv_data;
  681. int ret;
  682. if (bytes != 4 && bytes != 8)
  683. return -EINVAL;
  684. ret = ppgtt_handle_guest_write_page_table_bytes(spt, gpa, data, bytes);
  685. if (ret)
  686. return ret;
  687. return ret;
  688. }
  689. /* Find a spt by guest gfn. */
  690. static struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_gfn(
  691. struct intel_vgpu *vgpu, unsigned long gfn)
  692. {
  693. struct intel_vgpu_page_track *track;
  694. track = intel_vgpu_find_page_track(vgpu, gfn);
  695. if (track && track->handler == ppgtt_write_protection_handler)
  696. return track->priv_data;
  697. return NULL;
  698. }
  699. /* Find the spt by shadow page mfn. */
  700. static inline struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_mfn(
  701. struct intel_vgpu *vgpu, unsigned long mfn)
  702. {
  703. return radix_tree_lookup(&vgpu->gtt.spt_tree, mfn);
  704. }
  705. static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt);
  706. /* Allocate shadow page table without guest page. */
  707. static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt(
  708. struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type)
  709. {
  710. struct device *kdev = vgpu->gvt->gt->i915->drm.dev;
  711. struct intel_vgpu_ppgtt_spt *spt = NULL;
  712. dma_addr_t daddr;
  713. int ret;
  714. retry:
  715. spt = alloc_spt(GFP_KERNEL | __GFP_ZERO);
  716. if (!spt) {
  717. if (reclaim_one_ppgtt_mm(vgpu->gvt))
  718. goto retry;
  719. gvt_vgpu_err("fail to allocate ppgtt shadow page\n");
  720. return ERR_PTR(-ENOMEM);
  721. }
  722. spt->vgpu = vgpu;
  723. atomic_set(&spt->refcount, 1);
  724. INIT_LIST_HEAD(&spt->post_shadow_list);
  725. /*
  726. * Init shadow_page.
  727. */
  728. spt->shadow_page.type = type;
  729. daddr = dma_map_page(kdev, spt->shadow_page.page,
  730. 0, 4096, DMA_BIDIRECTIONAL);
  731. if (dma_mapping_error(kdev, daddr)) {
  732. gvt_vgpu_err("fail to map dma addr\n");
  733. ret = -EINVAL;
  734. goto err_free_spt;
  735. }
  736. spt->shadow_page.vaddr = page_address(spt->shadow_page.page);
  737. spt->shadow_page.mfn = daddr >> I915_GTT_PAGE_SHIFT;
  738. ret = radix_tree_insert(&vgpu->gtt.spt_tree, spt->shadow_page.mfn, spt);
  739. if (ret)
  740. goto err_unmap_dma;
  741. return spt;
  742. err_unmap_dma:
  743. dma_unmap_page(kdev, daddr, PAGE_SIZE, DMA_BIDIRECTIONAL);
  744. err_free_spt:
  745. free_spt(spt);
  746. return ERR_PTR(ret);
  747. }
  748. /* Allocate shadow page table associated with specific gfn. */
  749. static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt_gfn(
  750. struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type,
  751. unsigned long gfn, bool guest_pde_ips)
  752. {
  753. struct intel_vgpu_ppgtt_spt *spt;
  754. int ret;
  755. spt = ppgtt_alloc_spt(vgpu, type);
  756. if (IS_ERR(spt))
  757. return spt;
  758. /*
  759. * Init guest_page.
  760. */
  761. ret = intel_vgpu_register_page_track(vgpu, gfn,
  762. ppgtt_write_protection_handler, spt);
  763. if (ret) {
  764. ppgtt_free_spt(spt);
  765. return ERR_PTR(ret);
  766. }
  767. spt->guest_page.type = type;
  768. spt->guest_page.gfn = gfn;
  769. spt->guest_page.pde_ips = guest_pde_ips;
  770. trace_spt_alloc(vgpu->id, spt, type, spt->shadow_page.mfn, gfn);
  771. return spt;
  772. }
  773. #define pt_entry_size_shift(spt) \
  774. ((spt)->vgpu->gvt->device_info.gtt_entry_size_shift)
  775. #define pt_entries(spt) \
  776. (I915_GTT_PAGE_SIZE >> pt_entry_size_shift(spt))
  777. #define for_each_present_guest_entry(spt, e, i) \
  778. for (i = 0; i < pt_entries(spt); \
  779. i += spt->guest_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \
  780. if (!ppgtt_get_guest_entry(spt, e, i) && \
  781. spt->vgpu->gvt->gtt.pte_ops->test_present(e))
  782. #define for_each_present_shadow_entry(spt, e, i) \
  783. for (i = 0; i < pt_entries(spt); \
  784. i += spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \
  785. if (!ppgtt_get_shadow_entry(spt, e, i) && \
  786. spt->vgpu->gvt->gtt.pte_ops->test_present(e))
  787. #define for_each_shadow_entry(spt, e, i) \
  788. for (i = 0; i < pt_entries(spt); \
  789. i += (spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1)) \
  790. if (!ppgtt_get_shadow_entry(spt, e, i))
  791. static inline void ppgtt_get_spt(struct intel_vgpu_ppgtt_spt *spt)
  792. {
  793. int v = atomic_read(&spt->refcount);
  794. trace_spt_refcount(spt->vgpu->id, "inc", spt, v, (v + 1));
  795. atomic_inc(&spt->refcount);
  796. }
  797. static inline int ppgtt_put_spt(struct intel_vgpu_ppgtt_spt *spt)
  798. {
  799. int v = atomic_read(&spt->refcount);
  800. trace_spt_refcount(spt->vgpu->id, "dec", spt, v, (v - 1));
  801. return atomic_dec_return(&spt->refcount);
  802. }
  803. static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt);
  804. static int ppgtt_invalidate_spt_by_shadow_entry(struct intel_vgpu *vgpu,
  805. struct intel_gvt_gtt_entry *e)
  806. {
  807. struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
  808. const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
  809. struct intel_vgpu_ppgtt_spt *s;
  810. enum intel_gvt_gtt_type cur_pt_type;
  811. GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(e->type)));
  812. if (e->type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY
  813. && e->type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
  814. cur_pt_type = get_next_pt_type(e->type);
  815. if (!gtt_type_is_pt(cur_pt_type) ||
  816. !gtt_type_is_pt(cur_pt_type + 1)) {
  817. drm_WARN(&i915->drm, 1,
  818. "Invalid page table type, cur_pt_type is: %d\n",
  819. cur_pt_type);
  820. return -EINVAL;
  821. }
  822. cur_pt_type += 1;
  823. if (ops->get_pfn(e) ==
  824. vgpu->gtt.scratch_pt[cur_pt_type].page_mfn)
  825. return 0;
  826. }
  827. s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
  828. if (!s) {
  829. gvt_vgpu_err("fail to find shadow page: mfn: 0x%lx\n",
  830. ops->get_pfn(e));
  831. return -ENXIO;
  832. }
  833. return ppgtt_invalidate_spt(s);
  834. }
  835. static inline void ppgtt_invalidate_pte(struct intel_vgpu_ppgtt_spt *spt,
  836. struct intel_gvt_gtt_entry *entry)
  837. {
  838. struct intel_vgpu *vgpu = spt->vgpu;
  839. const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
  840. unsigned long pfn;
  841. int type;
  842. pfn = ops->get_pfn(entry);
  843. type = spt->shadow_page.type;
  844. /* Uninitialized spte or unshadowed spte. */
  845. if (!pfn || pfn == vgpu->gtt.scratch_pt[type].page_mfn)
  846. return;
  847. intel_gvt_dma_unmap_guest_page(vgpu, pfn << PAGE_SHIFT);
  848. }
  849. static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt)
  850. {
  851. struct intel_vgpu *vgpu = spt->vgpu;
  852. struct intel_gvt_gtt_entry e;
  853. unsigned long index;
  854. int ret;
  855. trace_spt_change(spt->vgpu->id, "die", spt,
  856. spt->guest_page.gfn, spt->shadow_page.type);
  857. if (ppgtt_put_spt(spt) > 0)
  858. return 0;
  859. for_each_present_shadow_entry(spt, &e, index) {
  860. switch (e.type) {
  861. case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
  862. gvt_vdbg_mm("invalidate 4K entry\n");
  863. ppgtt_invalidate_pte(spt, &e);
  864. break;
  865. case GTT_TYPE_PPGTT_PTE_64K_ENTRY:
  866. /* We don't setup 64K shadow entry so far. */
  867. WARN(1, "suspicious 64K gtt entry\n");
  868. continue;
  869. case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
  870. gvt_vdbg_mm("invalidate 2M entry\n");
  871. continue;
  872. case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
  873. WARN(1, "GVT doesn't support 1GB page\n");
  874. continue;
  875. case GTT_TYPE_PPGTT_PML4_ENTRY:
  876. case GTT_TYPE_PPGTT_PDP_ENTRY:
  877. case GTT_TYPE_PPGTT_PDE_ENTRY:
  878. gvt_vdbg_mm("invalidate PMUL4/PDP/PDE entry\n");
  879. ret = ppgtt_invalidate_spt_by_shadow_entry(
  880. spt->vgpu, &e);
  881. if (ret)
  882. goto fail;
  883. break;
  884. default:
  885. GEM_BUG_ON(1);
  886. }
  887. }
  888. trace_spt_change(spt->vgpu->id, "release", spt,
  889. spt->guest_page.gfn, spt->shadow_page.type);
  890. ppgtt_free_spt(spt);
  891. return 0;
  892. fail:
  893. gvt_vgpu_err("fail: shadow page %p shadow entry 0x%llx type %d\n",
  894. spt, e.val64, e.type);
  895. return ret;
  896. }
  897. static bool vgpu_ips_enabled(struct intel_vgpu *vgpu)
  898. {
  899. struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915;
  900. if (GRAPHICS_VER(dev_priv) == 9) {
  901. u32 ips = vgpu_vreg_t(vgpu, GEN8_GAMW_ECO_DEV_RW_IA) &
  902. GAMW_ECO_ENABLE_64K_IPS_FIELD;
  903. return ips == GAMW_ECO_ENABLE_64K_IPS_FIELD;
  904. } else if (GRAPHICS_VER(dev_priv) >= 11) {
  905. /* 64K paging only controlled by IPS bit in PTE now. */
  906. return true;
  907. } else
  908. return false;
  909. }
  910. static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt);
  911. static struct intel_vgpu_ppgtt_spt *ppgtt_populate_spt_by_guest_entry(
  912. struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *we)
  913. {
  914. const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
  915. struct intel_vgpu_ppgtt_spt *spt = NULL;
  916. bool ips = false;
  917. int ret;
  918. GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(we->type)));
  919. if (we->type == GTT_TYPE_PPGTT_PDE_ENTRY)
  920. ips = vgpu_ips_enabled(vgpu) && ops->test_ips(we);
  921. spt = intel_vgpu_find_spt_by_gfn(vgpu, ops->get_pfn(we));
  922. if (spt) {
  923. ppgtt_get_spt(spt);
  924. if (ips != spt->guest_page.pde_ips) {
  925. spt->guest_page.pde_ips = ips;
  926. gvt_dbg_mm("reshadow PDE since ips changed\n");
  927. clear_page(spt->shadow_page.vaddr);
  928. ret = ppgtt_populate_spt(spt);
  929. if (ret) {
  930. ppgtt_put_spt(spt);
  931. goto err;
  932. }
  933. }
  934. } else {
  935. int type = get_next_pt_type(we->type);
  936. if (!gtt_type_is_pt(type)) {
  937. ret = -EINVAL;
  938. goto err;
  939. }
  940. spt = ppgtt_alloc_spt_gfn(vgpu, type, ops->get_pfn(we), ips);
  941. if (IS_ERR(spt)) {
  942. ret = PTR_ERR(spt);
  943. goto err;
  944. }
  945. ret = intel_vgpu_enable_page_track(vgpu, spt->guest_page.gfn);
  946. if (ret)
  947. goto err_free_spt;
  948. ret = ppgtt_populate_spt(spt);
  949. if (ret)
  950. goto err_free_spt;
  951. trace_spt_change(vgpu->id, "new", spt, spt->guest_page.gfn,
  952. spt->shadow_page.type);
  953. }
  954. return spt;
  955. err_free_spt:
  956. ppgtt_free_spt(spt);
  957. spt = NULL;
  958. err:
  959. gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
  960. spt, we->val64, we->type);
  961. return ERR_PTR(ret);
  962. }
  963. static inline void ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry *se,
  964. struct intel_vgpu_ppgtt_spt *s, struct intel_gvt_gtt_entry *ge)
  965. {
  966. const struct intel_gvt_gtt_pte_ops *ops = s->vgpu->gvt->gtt.pte_ops;
  967. se->type = ge->type;
  968. se->val64 = ge->val64;
  969. /* Because we always split 64KB pages, so clear IPS in shadow PDE. */
  970. if (se->type == GTT_TYPE_PPGTT_PDE_ENTRY)
  971. ops->clear_ips(se);
  972. ops->set_pfn(se, s->shadow_page.mfn);
  973. }
  974. /*
  975. * Check if can do 2M page
  976. * @vgpu: target vgpu
  977. * @entry: target pfn's gtt entry
  978. *
  979. * Return 1 if 2MB huge gtt shadowing is possible, 0 if miscondition,
  980. * negative if found err.
  981. */
  982. static int is_2MB_gtt_possible(struct intel_vgpu *vgpu,
  983. struct intel_gvt_gtt_entry *entry)
  984. {
  985. const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
  986. kvm_pfn_t pfn;
  987. int ret;
  988. if (!HAS_PAGE_SIZES(vgpu->gvt->gt->i915, I915_GTT_PAGE_SIZE_2M))
  989. return 0;
  990. if (!vgpu->attached)
  991. return -EINVAL;
  992. pfn = gfn_to_pfn(vgpu->vfio_device.kvm, ops->get_pfn(entry));
  993. if (is_error_noslot_pfn(pfn))
  994. return -EINVAL;
  995. if (!pfn_valid(pfn))
  996. return -EINVAL;
  997. ret = PageTransHuge(pfn_to_page(pfn));
  998. kvm_release_pfn_clean(pfn);
  999. return ret;
  1000. }
  1001. static int split_2MB_gtt_entry(struct intel_vgpu *vgpu,
  1002. struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
  1003. struct intel_gvt_gtt_entry *se)
  1004. {
  1005. const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
  1006. struct intel_vgpu_ppgtt_spt *sub_spt;
  1007. struct intel_gvt_gtt_entry sub_se;
  1008. unsigned long start_gfn;
  1009. dma_addr_t dma_addr;
  1010. unsigned long sub_index;
  1011. int ret;
  1012. gvt_dbg_mm("Split 2M gtt entry, index %lu\n", index);
  1013. start_gfn = ops->get_pfn(se);
  1014. sub_spt = ppgtt_alloc_spt(vgpu, GTT_TYPE_PPGTT_PTE_PT);
  1015. if (IS_ERR(sub_spt))
  1016. return PTR_ERR(sub_spt);
  1017. for_each_shadow_entry(sub_spt, &sub_se, sub_index) {
  1018. ret = intel_gvt_dma_map_guest_page(vgpu, start_gfn + sub_index,
  1019. PAGE_SIZE, &dma_addr);
  1020. if (ret)
  1021. goto err;
  1022. sub_se.val64 = se->val64;
  1023. /* Copy the PAT field from PDE. */
  1024. sub_se.val64 &= ~_PAGE_PAT;
  1025. sub_se.val64 |= (se->val64 & _PAGE_PAT_LARGE) >> 5;
  1026. ops->set_pfn(&sub_se, dma_addr >> PAGE_SHIFT);
  1027. ppgtt_set_shadow_entry(sub_spt, &sub_se, sub_index);
  1028. }
  1029. /* Clear dirty field. */
  1030. se->val64 &= ~_PAGE_DIRTY;
  1031. ops->clear_pse(se);
  1032. ops->clear_ips(se);
  1033. ops->set_pfn(se, sub_spt->shadow_page.mfn);
  1034. ppgtt_set_shadow_entry(spt, se, index);
  1035. return 0;
  1036. err:
  1037. /* Cancel the existing addess mappings of DMA addr. */
  1038. for_each_present_shadow_entry(sub_spt, &sub_se, sub_index) {
  1039. gvt_vdbg_mm("invalidate 4K entry\n");
  1040. ppgtt_invalidate_pte(sub_spt, &sub_se);
  1041. }
  1042. /* Release the new allocated spt. */
  1043. trace_spt_change(sub_spt->vgpu->id, "release", sub_spt,
  1044. sub_spt->guest_page.gfn, sub_spt->shadow_page.type);
  1045. ppgtt_free_spt(sub_spt);
  1046. return ret;
  1047. }
  1048. static int split_64KB_gtt_entry(struct intel_vgpu *vgpu,
  1049. struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
  1050. struct intel_gvt_gtt_entry *se)
  1051. {
  1052. const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
  1053. struct intel_gvt_gtt_entry entry = *se;
  1054. unsigned long start_gfn;
  1055. dma_addr_t dma_addr;
  1056. int i, ret;
  1057. gvt_vdbg_mm("Split 64K gtt entry, index %lu\n", index);
  1058. GEM_BUG_ON(index % GTT_64K_PTE_STRIDE);
  1059. start_gfn = ops->get_pfn(se);
  1060. entry.type = GTT_TYPE_PPGTT_PTE_4K_ENTRY;
  1061. ops->set_64k_splited(&entry);
  1062. for (i = 0; i < GTT_64K_PTE_STRIDE; i++) {
  1063. ret = intel_gvt_dma_map_guest_page(vgpu, start_gfn + i,
  1064. PAGE_SIZE, &dma_addr);
  1065. if (ret)
  1066. return ret;
  1067. ops->set_pfn(&entry, dma_addr >> PAGE_SHIFT);
  1068. ppgtt_set_shadow_entry(spt, &entry, index + i);
  1069. }
  1070. return 0;
  1071. }
  1072. static int ppgtt_populate_shadow_entry(struct intel_vgpu *vgpu,
  1073. struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
  1074. struct intel_gvt_gtt_entry *ge)
  1075. {
  1076. const struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
  1077. struct intel_gvt_gtt_entry se = *ge;
  1078. unsigned long gfn, page_size = PAGE_SIZE;
  1079. dma_addr_t dma_addr;
  1080. int ret;
  1081. if (!pte_ops->test_present(ge))
  1082. return 0;
  1083. gfn = pte_ops->get_pfn(ge);
  1084. switch (ge->type) {
  1085. case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
  1086. gvt_vdbg_mm("shadow 4K gtt entry\n");
  1087. break;
  1088. case GTT_TYPE_PPGTT_PTE_64K_ENTRY:
  1089. gvt_vdbg_mm("shadow 64K gtt entry\n");
  1090. /*
  1091. * The layout of 64K page is special, the page size is
  1092. * controlled by uper PDE. To be simple, we always split
  1093. * 64K page to smaller 4K pages in shadow PT.
  1094. */
  1095. return split_64KB_gtt_entry(vgpu, spt, index, &se);
  1096. case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
  1097. gvt_vdbg_mm("shadow 2M gtt entry\n");
  1098. ret = is_2MB_gtt_possible(vgpu, ge);
  1099. if (ret == 0)
  1100. return split_2MB_gtt_entry(vgpu, spt, index, &se);
  1101. else if (ret < 0)
  1102. return ret;
  1103. page_size = I915_GTT_PAGE_SIZE_2M;
  1104. break;
  1105. case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
  1106. gvt_vgpu_err("GVT doesn't support 1GB entry\n");
  1107. return -EINVAL;
  1108. default:
  1109. GEM_BUG_ON(1);
  1110. }
  1111. /* direct shadow */
  1112. ret = intel_gvt_dma_map_guest_page(vgpu, gfn, page_size, &dma_addr);
  1113. if (ret)
  1114. return -ENXIO;
  1115. pte_ops->set_pfn(&se, dma_addr >> PAGE_SHIFT);
  1116. ppgtt_set_shadow_entry(spt, &se, index);
  1117. return 0;
  1118. }
  1119. static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt)
  1120. {
  1121. struct intel_vgpu *vgpu = spt->vgpu;
  1122. struct intel_gvt *gvt = vgpu->gvt;
  1123. const struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
  1124. struct intel_vgpu_ppgtt_spt *s;
  1125. struct intel_gvt_gtt_entry se, ge;
  1126. unsigned long gfn, i;
  1127. int ret;
  1128. trace_spt_change(spt->vgpu->id, "born", spt,
  1129. spt->guest_page.gfn, spt->shadow_page.type);
  1130. for_each_present_guest_entry(spt, &ge, i) {
  1131. if (gtt_type_is_pt(get_next_pt_type(ge.type))) {
  1132. s = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
  1133. if (IS_ERR(s)) {
  1134. ret = PTR_ERR(s);
  1135. goto fail;
  1136. }
  1137. ppgtt_get_shadow_entry(spt, &se, i);
  1138. ppgtt_generate_shadow_entry(&se, s, &ge);
  1139. ppgtt_set_shadow_entry(spt, &se, i);
  1140. } else {
  1141. gfn = ops->get_pfn(&ge);
  1142. if (!intel_gvt_is_valid_gfn(vgpu, gfn)) {
  1143. ops->set_pfn(&se, gvt->gtt.scratch_mfn);
  1144. ppgtt_set_shadow_entry(spt, &se, i);
  1145. continue;
  1146. }
  1147. ret = ppgtt_populate_shadow_entry(vgpu, spt, i, &ge);
  1148. if (ret)
  1149. goto fail;
  1150. }
  1151. }
  1152. return 0;
  1153. fail:
  1154. gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
  1155. spt, ge.val64, ge.type);
  1156. return ret;
  1157. }
  1158. static int ppgtt_handle_guest_entry_removal(struct intel_vgpu_ppgtt_spt *spt,
  1159. struct intel_gvt_gtt_entry *se, unsigned long index)
  1160. {
  1161. struct intel_vgpu *vgpu = spt->vgpu;
  1162. const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
  1163. int ret;
  1164. trace_spt_guest_change(spt->vgpu->id, "remove", spt,
  1165. spt->shadow_page.type, se->val64, index);
  1166. gvt_vdbg_mm("destroy old shadow entry, type %d, index %lu, value %llx\n",
  1167. se->type, index, se->val64);
  1168. if (!ops->test_present(se))
  1169. return 0;
  1170. if (ops->get_pfn(se) ==
  1171. vgpu->gtt.scratch_pt[spt->shadow_page.type].page_mfn)
  1172. return 0;
  1173. if (gtt_type_is_pt(get_next_pt_type(se->type))) {
  1174. struct intel_vgpu_ppgtt_spt *s =
  1175. intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(se));
  1176. if (!s) {
  1177. gvt_vgpu_err("fail to find guest page\n");
  1178. ret = -ENXIO;
  1179. goto fail;
  1180. }
  1181. ret = ppgtt_invalidate_spt(s);
  1182. if (ret)
  1183. goto fail;
  1184. } else {
  1185. /* We don't setup 64K shadow entry so far. */
  1186. WARN(se->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY,
  1187. "suspicious 64K entry\n");
  1188. ppgtt_invalidate_pte(spt, se);
  1189. }
  1190. return 0;
  1191. fail:
  1192. gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
  1193. spt, se->val64, se->type);
  1194. return ret;
  1195. }
  1196. static int ppgtt_handle_guest_entry_add(struct intel_vgpu_ppgtt_spt *spt,
  1197. struct intel_gvt_gtt_entry *we, unsigned long index)
  1198. {
  1199. struct intel_vgpu *vgpu = spt->vgpu;
  1200. struct intel_gvt_gtt_entry m;
  1201. struct intel_vgpu_ppgtt_spt *s;
  1202. int ret;
  1203. trace_spt_guest_change(spt->vgpu->id, "add", spt, spt->shadow_page.type,
  1204. we->val64, index);
  1205. gvt_vdbg_mm("add shadow entry: type %d, index %lu, value %llx\n",
  1206. we->type, index, we->val64);
  1207. if (gtt_type_is_pt(get_next_pt_type(we->type))) {
  1208. s = ppgtt_populate_spt_by_guest_entry(vgpu, we);
  1209. if (IS_ERR(s)) {
  1210. ret = PTR_ERR(s);
  1211. goto fail;
  1212. }
  1213. ppgtt_get_shadow_entry(spt, &m, index);
  1214. ppgtt_generate_shadow_entry(&m, s, we);
  1215. ppgtt_set_shadow_entry(spt, &m, index);
  1216. } else {
  1217. ret = ppgtt_populate_shadow_entry(vgpu, spt, index, we);
  1218. if (ret)
  1219. goto fail;
  1220. }
  1221. return 0;
  1222. fail:
  1223. gvt_vgpu_err("fail: spt %p guest entry 0x%llx type %d\n",
  1224. spt, we->val64, we->type);
  1225. return ret;
  1226. }
  1227. static int sync_oos_page(struct intel_vgpu *vgpu,
  1228. struct intel_vgpu_oos_page *oos_page)
  1229. {
  1230. const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
  1231. struct intel_gvt *gvt = vgpu->gvt;
  1232. const struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
  1233. struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
  1234. struct intel_gvt_gtt_entry old, new;
  1235. int index;
  1236. int ret;
  1237. trace_oos_change(vgpu->id, "sync", oos_page->id,
  1238. spt, spt->guest_page.type);
  1239. old.type = new.type = get_entry_type(spt->guest_page.type);
  1240. old.val64 = new.val64 = 0;
  1241. for (index = 0; index < (I915_GTT_PAGE_SIZE >>
  1242. info->gtt_entry_size_shift); index++) {
  1243. ops->get_entry(oos_page->mem, &old, index, false, 0, vgpu);
  1244. ops->get_entry(NULL, &new, index, true,
  1245. spt->guest_page.gfn << PAGE_SHIFT, vgpu);
  1246. if (old.val64 == new.val64
  1247. && !test_and_clear_bit(index, spt->post_shadow_bitmap))
  1248. continue;
  1249. trace_oos_sync(vgpu->id, oos_page->id,
  1250. spt, spt->guest_page.type,
  1251. new.val64, index);
  1252. ret = ppgtt_populate_shadow_entry(vgpu, spt, index, &new);
  1253. if (ret)
  1254. return ret;
  1255. ops->set_entry(oos_page->mem, &new, index, false, 0, vgpu);
  1256. }
  1257. spt->guest_page.write_cnt = 0;
  1258. list_del_init(&spt->post_shadow_list);
  1259. return 0;
  1260. }
  1261. static int detach_oos_page(struct intel_vgpu *vgpu,
  1262. struct intel_vgpu_oos_page *oos_page)
  1263. {
  1264. struct intel_gvt *gvt = vgpu->gvt;
  1265. struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
  1266. trace_oos_change(vgpu->id, "detach", oos_page->id,
  1267. spt, spt->guest_page.type);
  1268. spt->guest_page.write_cnt = 0;
  1269. spt->guest_page.oos_page = NULL;
  1270. oos_page->spt = NULL;
  1271. list_del_init(&oos_page->vm_list);
  1272. list_move_tail(&oos_page->list, &gvt->gtt.oos_page_free_list_head);
  1273. return 0;
  1274. }
  1275. static int attach_oos_page(struct intel_vgpu_oos_page *oos_page,
  1276. struct intel_vgpu_ppgtt_spt *spt)
  1277. {
  1278. struct intel_gvt *gvt = spt->vgpu->gvt;
  1279. int ret;
  1280. ret = intel_gvt_read_gpa(spt->vgpu,
  1281. spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
  1282. oos_page->mem, I915_GTT_PAGE_SIZE);
  1283. if (ret)
  1284. return ret;
  1285. oos_page->spt = spt;
  1286. spt->guest_page.oos_page = oos_page;
  1287. list_move_tail(&oos_page->list, &gvt->gtt.oos_page_use_list_head);
  1288. trace_oos_change(spt->vgpu->id, "attach", oos_page->id,
  1289. spt, spt->guest_page.type);
  1290. return 0;
  1291. }
  1292. static int ppgtt_set_guest_page_sync(struct intel_vgpu_ppgtt_spt *spt)
  1293. {
  1294. struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
  1295. int ret;
  1296. ret = intel_vgpu_enable_page_track(spt->vgpu, spt->guest_page.gfn);
  1297. if (ret)
  1298. return ret;
  1299. trace_oos_change(spt->vgpu->id, "set page sync", oos_page->id,
  1300. spt, spt->guest_page.type);
  1301. list_del_init(&oos_page->vm_list);
  1302. return sync_oos_page(spt->vgpu, oos_page);
  1303. }
  1304. static int ppgtt_allocate_oos_page(struct intel_vgpu_ppgtt_spt *spt)
  1305. {
  1306. struct intel_gvt *gvt = spt->vgpu->gvt;
  1307. struct intel_gvt_gtt *gtt = &gvt->gtt;
  1308. struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
  1309. int ret;
  1310. WARN(oos_page, "shadow PPGTT page has already has a oos page\n");
  1311. if (list_empty(&gtt->oos_page_free_list_head)) {
  1312. oos_page = container_of(gtt->oos_page_use_list_head.next,
  1313. struct intel_vgpu_oos_page, list);
  1314. ret = ppgtt_set_guest_page_sync(oos_page->spt);
  1315. if (ret)
  1316. return ret;
  1317. ret = detach_oos_page(spt->vgpu, oos_page);
  1318. if (ret)
  1319. return ret;
  1320. } else
  1321. oos_page = container_of(gtt->oos_page_free_list_head.next,
  1322. struct intel_vgpu_oos_page, list);
  1323. return attach_oos_page(oos_page, spt);
  1324. }
  1325. static int ppgtt_set_guest_page_oos(struct intel_vgpu_ppgtt_spt *spt)
  1326. {
  1327. struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
  1328. if (WARN(!oos_page, "shadow PPGTT page should have a oos page\n"))
  1329. return -EINVAL;
  1330. trace_oos_change(spt->vgpu->id, "set page out of sync", oos_page->id,
  1331. spt, spt->guest_page.type);
  1332. list_add_tail(&oos_page->vm_list, &spt->vgpu->gtt.oos_page_list_head);
  1333. return intel_vgpu_disable_page_track(spt->vgpu, spt->guest_page.gfn);
  1334. }
  1335. /**
  1336. * intel_vgpu_sync_oos_pages - sync all the out-of-synced shadow for vGPU
  1337. * @vgpu: a vGPU
  1338. *
  1339. * This function is called before submitting a guest workload to host,
  1340. * to sync all the out-of-synced shadow for vGPU
  1341. *
  1342. * Returns:
  1343. * Zero on success, negative error code if failed.
  1344. */
  1345. int intel_vgpu_sync_oos_pages(struct intel_vgpu *vgpu)
  1346. {
  1347. struct list_head *pos, *n;
  1348. struct intel_vgpu_oos_page *oos_page;
  1349. int ret;
  1350. if (!enable_out_of_sync)
  1351. return 0;
  1352. list_for_each_safe(pos, n, &vgpu->gtt.oos_page_list_head) {
  1353. oos_page = container_of(pos,
  1354. struct intel_vgpu_oos_page, vm_list);
  1355. ret = ppgtt_set_guest_page_sync(oos_page->spt);
  1356. if (ret)
  1357. return ret;
  1358. }
  1359. return 0;
  1360. }
  1361. /*
  1362. * The heart of PPGTT shadow page table.
  1363. */
  1364. static int ppgtt_handle_guest_write_page_table(
  1365. struct intel_vgpu_ppgtt_spt *spt,
  1366. struct intel_gvt_gtt_entry *we, unsigned long index)
  1367. {
  1368. struct intel_vgpu *vgpu = spt->vgpu;
  1369. int type = spt->shadow_page.type;
  1370. const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
  1371. struct intel_gvt_gtt_entry old_se;
  1372. int new_present;
  1373. int i, ret;
  1374. new_present = ops->test_present(we);
  1375. /*
  1376. * Adding the new entry first and then removing the old one, that can
  1377. * guarantee the ppgtt table is validated during the window between
  1378. * adding and removal.
  1379. */
  1380. ppgtt_get_shadow_entry(spt, &old_se, index);
  1381. if (new_present) {
  1382. ret = ppgtt_handle_guest_entry_add(spt, we, index);
  1383. if (ret)
  1384. goto fail;
  1385. }
  1386. ret = ppgtt_handle_guest_entry_removal(spt, &old_se, index);
  1387. if (ret)
  1388. goto fail;
  1389. if (!new_present) {
  1390. /* For 64KB splited entries, we need clear them all. */
  1391. if (ops->test_64k_splited(&old_se) &&
  1392. !(index % GTT_64K_PTE_STRIDE)) {
  1393. gvt_vdbg_mm("remove splited 64K shadow entries\n");
  1394. for (i = 0; i < GTT_64K_PTE_STRIDE; i++) {
  1395. ops->clear_64k_splited(&old_se);
  1396. ops->set_pfn(&old_se,
  1397. vgpu->gtt.scratch_pt[type].page_mfn);
  1398. ppgtt_set_shadow_entry(spt, &old_se, index + i);
  1399. }
  1400. } else if (old_se.type == GTT_TYPE_PPGTT_PTE_2M_ENTRY ||
  1401. old_se.type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
  1402. ops->clear_pse(&old_se);
  1403. ops->set_pfn(&old_se,
  1404. vgpu->gtt.scratch_pt[type].page_mfn);
  1405. ppgtt_set_shadow_entry(spt, &old_se, index);
  1406. } else {
  1407. ops->set_pfn(&old_se,
  1408. vgpu->gtt.scratch_pt[type].page_mfn);
  1409. ppgtt_set_shadow_entry(spt, &old_se, index);
  1410. }
  1411. }
  1412. return 0;
  1413. fail:
  1414. gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d.\n",
  1415. spt, we->val64, we->type);
  1416. return ret;
  1417. }
  1418. static inline bool can_do_out_of_sync(struct intel_vgpu_ppgtt_spt *spt)
  1419. {
  1420. return enable_out_of_sync
  1421. && gtt_type_is_pte_pt(spt->guest_page.type)
  1422. && spt->guest_page.write_cnt >= 2;
  1423. }
  1424. static void ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt *spt,
  1425. unsigned long index)
  1426. {
  1427. set_bit(index, spt->post_shadow_bitmap);
  1428. if (!list_empty(&spt->post_shadow_list))
  1429. return;
  1430. list_add_tail(&spt->post_shadow_list,
  1431. &spt->vgpu->gtt.post_shadow_list_head);
  1432. }
  1433. /**
  1434. * intel_vgpu_flush_post_shadow - flush the post shadow transactions
  1435. * @vgpu: a vGPU
  1436. *
  1437. * This function is called before submitting a guest workload to host,
  1438. * to flush all the post shadows for a vGPU.
  1439. *
  1440. * Returns:
  1441. * Zero on success, negative error code if failed.
  1442. */
  1443. int intel_vgpu_flush_post_shadow(struct intel_vgpu *vgpu)
  1444. {
  1445. struct list_head *pos, *n;
  1446. struct intel_vgpu_ppgtt_spt *spt;
  1447. struct intel_gvt_gtt_entry ge;
  1448. unsigned long index;
  1449. int ret;
  1450. list_for_each_safe(pos, n, &vgpu->gtt.post_shadow_list_head) {
  1451. spt = container_of(pos, struct intel_vgpu_ppgtt_spt,
  1452. post_shadow_list);
  1453. for_each_set_bit(index, spt->post_shadow_bitmap,
  1454. GTT_ENTRY_NUM_IN_ONE_PAGE) {
  1455. ppgtt_get_guest_entry(spt, &ge, index);
  1456. ret = ppgtt_handle_guest_write_page_table(spt,
  1457. &ge, index);
  1458. if (ret)
  1459. return ret;
  1460. clear_bit(index, spt->post_shadow_bitmap);
  1461. }
  1462. list_del_init(&spt->post_shadow_list);
  1463. }
  1464. return 0;
  1465. }
  1466. static int ppgtt_handle_guest_write_page_table_bytes(
  1467. struct intel_vgpu_ppgtt_spt *spt,
  1468. u64 pa, void *p_data, int bytes)
  1469. {
  1470. struct intel_vgpu *vgpu = spt->vgpu;
  1471. const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
  1472. const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
  1473. struct intel_gvt_gtt_entry we, se;
  1474. unsigned long index;
  1475. int ret;
  1476. index = (pa & (PAGE_SIZE - 1)) >> info->gtt_entry_size_shift;
  1477. ppgtt_get_guest_entry(spt, &we, index);
  1478. /*
  1479. * For page table which has 64K gtt entry, only PTE#0, PTE#16,
  1480. * PTE#32, ... PTE#496 are used. Unused PTEs update should be
  1481. * ignored.
  1482. */
  1483. if (we.type == GTT_TYPE_PPGTT_PTE_64K_ENTRY &&
  1484. (index % GTT_64K_PTE_STRIDE)) {
  1485. gvt_vdbg_mm("Ignore write to unused PTE entry, index %lu\n",
  1486. index);
  1487. return 0;
  1488. }
  1489. if (bytes == info->gtt_entry_size) {
  1490. ret = ppgtt_handle_guest_write_page_table(spt, &we, index);
  1491. if (ret)
  1492. return ret;
  1493. } else {
  1494. if (!test_bit(index, spt->post_shadow_bitmap)) {
  1495. int type = spt->shadow_page.type;
  1496. ppgtt_get_shadow_entry(spt, &se, index);
  1497. ret = ppgtt_handle_guest_entry_removal(spt, &se, index);
  1498. if (ret)
  1499. return ret;
  1500. ops->set_pfn(&se, vgpu->gtt.scratch_pt[type].page_mfn);
  1501. ppgtt_set_shadow_entry(spt, &se, index);
  1502. }
  1503. ppgtt_set_post_shadow(spt, index);
  1504. }
  1505. if (!enable_out_of_sync)
  1506. return 0;
  1507. spt->guest_page.write_cnt++;
  1508. if (spt->guest_page.oos_page)
  1509. ops->set_entry(spt->guest_page.oos_page->mem, &we, index,
  1510. false, 0, vgpu);
  1511. if (can_do_out_of_sync(spt)) {
  1512. if (!spt->guest_page.oos_page)
  1513. ppgtt_allocate_oos_page(spt);
  1514. ret = ppgtt_set_guest_page_oos(spt);
  1515. if (ret < 0)
  1516. return ret;
  1517. }
  1518. return 0;
  1519. }
  1520. static void invalidate_ppgtt_mm(struct intel_vgpu_mm *mm)
  1521. {
  1522. struct intel_vgpu *vgpu = mm->vgpu;
  1523. struct intel_gvt *gvt = vgpu->gvt;
  1524. struct intel_gvt_gtt *gtt = &gvt->gtt;
  1525. const struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
  1526. struct intel_gvt_gtt_entry se;
  1527. int index;
  1528. if (!mm->ppgtt_mm.shadowed)
  1529. return;
  1530. for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.shadow_pdps); index++) {
  1531. ppgtt_get_shadow_root_entry(mm, &se, index);
  1532. if (!ops->test_present(&se))
  1533. continue;
  1534. ppgtt_invalidate_spt_by_shadow_entry(vgpu, &se);
  1535. se.val64 = 0;
  1536. ppgtt_set_shadow_root_entry(mm, &se, index);
  1537. trace_spt_guest_change(vgpu->id, "destroy root pointer",
  1538. NULL, se.type, se.val64, index);
  1539. }
  1540. mm->ppgtt_mm.shadowed = false;
  1541. }
  1542. static int shadow_ppgtt_mm(struct intel_vgpu_mm *mm)
  1543. {
  1544. struct intel_vgpu *vgpu = mm->vgpu;
  1545. struct intel_gvt *gvt = vgpu->gvt;
  1546. struct intel_gvt_gtt *gtt = &gvt->gtt;
  1547. const struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
  1548. struct intel_vgpu_ppgtt_spt *spt;
  1549. struct intel_gvt_gtt_entry ge, se;
  1550. int index, ret;
  1551. if (mm->ppgtt_mm.shadowed)
  1552. return 0;
  1553. mm->ppgtt_mm.shadowed = true;
  1554. for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.guest_pdps); index++) {
  1555. ppgtt_get_guest_root_entry(mm, &ge, index);
  1556. if (!ops->test_present(&ge))
  1557. continue;
  1558. trace_spt_guest_change(vgpu->id, __func__, NULL,
  1559. ge.type, ge.val64, index);
  1560. spt = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
  1561. if (IS_ERR(spt)) {
  1562. gvt_vgpu_err("fail to populate guest root pointer\n");
  1563. ret = PTR_ERR(spt);
  1564. goto fail;
  1565. }
  1566. ppgtt_generate_shadow_entry(&se, spt, &ge);
  1567. ppgtt_set_shadow_root_entry(mm, &se, index);
  1568. trace_spt_guest_change(vgpu->id, "populate root pointer",
  1569. NULL, se.type, se.val64, index);
  1570. }
  1571. return 0;
  1572. fail:
  1573. invalidate_ppgtt_mm(mm);
  1574. return ret;
  1575. }
  1576. static struct intel_vgpu_mm *vgpu_alloc_mm(struct intel_vgpu *vgpu)
  1577. {
  1578. struct intel_vgpu_mm *mm;
  1579. mm = kzalloc(sizeof(*mm), GFP_KERNEL);
  1580. if (!mm)
  1581. return NULL;
  1582. mm->vgpu = vgpu;
  1583. kref_init(&mm->ref);
  1584. atomic_set(&mm->pincount, 0);
  1585. return mm;
  1586. }
  1587. static void vgpu_free_mm(struct intel_vgpu_mm *mm)
  1588. {
  1589. kfree(mm);
  1590. }
  1591. /**
  1592. * intel_vgpu_create_ppgtt_mm - create a ppgtt mm object for a vGPU
  1593. * @vgpu: a vGPU
  1594. * @root_entry_type: ppgtt root entry type
  1595. * @pdps: guest pdps.
  1596. *
  1597. * This function is used to create a ppgtt mm object for a vGPU.
  1598. *
  1599. * Returns:
  1600. * Zero on success, negative error code in pointer if failed.
  1601. */
  1602. struct intel_vgpu_mm *intel_vgpu_create_ppgtt_mm(struct intel_vgpu *vgpu,
  1603. enum intel_gvt_gtt_type root_entry_type, u64 pdps[])
  1604. {
  1605. struct intel_gvt *gvt = vgpu->gvt;
  1606. struct intel_vgpu_mm *mm;
  1607. int ret;
  1608. mm = vgpu_alloc_mm(vgpu);
  1609. if (!mm)
  1610. return ERR_PTR(-ENOMEM);
  1611. mm->type = INTEL_GVT_MM_PPGTT;
  1612. GEM_BUG_ON(root_entry_type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY &&
  1613. root_entry_type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY);
  1614. mm->ppgtt_mm.root_entry_type = root_entry_type;
  1615. INIT_LIST_HEAD(&mm->ppgtt_mm.list);
  1616. INIT_LIST_HEAD(&mm->ppgtt_mm.lru_list);
  1617. INIT_LIST_HEAD(&mm->ppgtt_mm.link);
  1618. if (root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
  1619. mm->ppgtt_mm.guest_pdps[0] = pdps[0];
  1620. else
  1621. memcpy(mm->ppgtt_mm.guest_pdps, pdps,
  1622. sizeof(mm->ppgtt_mm.guest_pdps));
  1623. ret = shadow_ppgtt_mm(mm);
  1624. if (ret) {
  1625. gvt_vgpu_err("failed to shadow ppgtt mm\n");
  1626. vgpu_free_mm(mm);
  1627. return ERR_PTR(ret);
  1628. }
  1629. list_add_tail(&mm->ppgtt_mm.list, &vgpu->gtt.ppgtt_mm_list_head);
  1630. mutex_lock(&gvt->gtt.ppgtt_mm_lock);
  1631. list_add_tail(&mm->ppgtt_mm.lru_list, &gvt->gtt.ppgtt_mm_lru_list_head);
  1632. mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
  1633. return mm;
  1634. }
  1635. static struct intel_vgpu_mm *intel_vgpu_create_ggtt_mm(struct intel_vgpu *vgpu)
  1636. {
  1637. struct intel_vgpu_mm *mm;
  1638. unsigned long nr_entries;
  1639. mm = vgpu_alloc_mm(vgpu);
  1640. if (!mm)
  1641. return ERR_PTR(-ENOMEM);
  1642. mm->type = INTEL_GVT_MM_GGTT;
  1643. nr_entries = gvt_ggtt_gm_sz(vgpu->gvt) >> I915_GTT_PAGE_SHIFT;
  1644. mm->ggtt_mm.virtual_ggtt =
  1645. vzalloc(array_size(nr_entries,
  1646. vgpu->gvt->device_info.gtt_entry_size));
  1647. if (!mm->ggtt_mm.virtual_ggtt) {
  1648. vgpu_free_mm(mm);
  1649. return ERR_PTR(-ENOMEM);
  1650. }
  1651. mm->ggtt_mm.host_ggtt_aperture = vzalloc((vgpu_aperture_sz(vgpu) >> PAGE_SHIFT) * sizeof(u64));
  1652. if (!mm->ggtt_mm.host_ggtt_aperture) {
  1653. vfree(mm->ggtt_mm.virtual_ggtt);
  1654. vgpu_free_mm(mm);
  1655. return ERR_PTR(-ENOMEM);
  1656. }
  1657. mm->ggtt_mm.host_ggtt_hidden = vzalloc((vgpu_hidden_sz(vgpu) >> PAGE_SHIFT) * sizeof(u64));
  1658. if (!mm->ggtt_mm.host_ggtt_hidden) {
  1659. vfree(mm->ggtt_mm.host_ggtt_aperture);
  1660. vfree(mm->ggtt_mm.virtual_ggtt);
  1661. vgpu_free_mm(mm);
  1662. return ERR_PTR(-ENOMEM);
  1663. }
  1664. return mm;
  1665. }
  1666. /**
  1667. * _intel_vgpu_mm_release - destroy a mm object
  1668. * @mm_ref: a kref object
  1669. *
  1670. * This function is used to destroy a mm object for vGPU
  1671. *
  1672. */
  1673. void _intel_vgpu_mm_release(struct kref *mm_ref)
  1674. {
  1675. struct intel_vgpu_mm *mm = container_of(mm_ref, typeof(*mm), ref);
  1676. if (GEM_WARN_ON(atomic_read(&mm->pincount)))
  1677. gvt_err("vgpu mm pin count bug detected\n");
  1678. if (mm->type == INTEL_GVT_MM_PPGTT) {
  1679. list_del(&mm->ppgtt_mm.list);
  1680. mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
  1681. list_del(&mm->ppgtt_mm.lru_list);
  1682. mutex_unlock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
  1683. invalidate_ppgtt_mm(mm);
  1684. } else {
  1685. vfree(mm->ggtt_mm.virtual_ggtt);
  1686. vfree(mm->ggtt_mm.host_ggtt_aperture);
  1687. vfree(mm->ggtt_mm.host_ggtt_hidden);
  1688. }
  1689. vgpu_free_mm(mm);
  1690. }
  1691. /**
  1692. * intel_vgpu_unpin_mm - decrease the pin count of a vGPU mm object
  1693. * @mm: a vGPU mm object
  1694. *
  1695. * This function is called when user doesn't want to use a vGPU mm object
  1696. */
  1697. void intel_vgpu_unpin_mm(struct intel_vgpu_mm *mm)
  1698. {
  1699. atomic_dec_if_positive(&mm->pincount);
  1700. }
  1701. /**
  1702. * intel_vgpu_pin_mm - increase the pin count of a vGPU mm object
  1703. * @mm: target vgpu mm
  1704. *
  1705. * This function is called when user wants to use a vGPU mm object. If this
  1706. * mm object hasn't been shadowed yet, the shadow will be populated at this
  1707. * time.
  1708. *
  1709. * Returns:
  1710. * Zero on success, negative error code if failed.
  1711. */
  1712. int intel_vgpu_pin_mm(struct intel_vgpu_mm *mm)
  1713. {
  1714. int ret;
  1715. atomic_inc(&mm->pincount);
  1716. if (mm->type == INTEL_GVT_MM_PPGTT) {
  1717. ret = shadow_ppgtt_mm(mm);
  1718. if (ret)
  1719. return ret;
  1720. mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
  1721. list_move_tail(&mm->ppgtt_mm.lru_list,
  1722. &mm->vgpu->gvt->gtt.ppgtt_mm_lru_list_head);
  1723. mutex_unlock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
  1724. }
  1725. return 0;
  1726. }
  1727. static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt)
  1728. {
  1729. struct intel_vgpu_mm *mm;
  1730. struct list_head *pos, *n;
  1731. mutex_lock(&gvt->gtt.ppgtt_mm_lock);
  1732. list_for_each_safe(pos, n, &gvt->gtt.ppgtt_mm_lru_list_head) {
  1733. mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.lru_list);
  1734. if (atomic_read(&mm->pincount))
  1735. continue;
  1736. list_del_init(&mm->ppgtt_mm.lru_list);
  1737. mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
  1738. invalidate_ppgtt_mm(mm);
  1739. return 1;
  1740. }
  1741. mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
  1742. return 0;
  1743. }
  1744. /*
  1745. * GMA translation APIs.
  1746. */
  1747. static inline int ppgtt_get_next_level_entry(struct intel_vgpu_mm *mm,
  1748. struct intel_gvt_gtt_entry *e, unsigned long index, bool guest)
  1749. {
  1750. struct intel_vgpu *vgpu = mm->vgpu;
  1751. const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
  1752. struct intel_vgpu_ppgtt_spt *s;
  1753. s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
  1754. if (!s)
  1755. return -ENXIO;
  1756. if (!guest)
  1757. ppgtt_get_shadow_entry(s, e, index);
  1758. else
  1759. ppgtt_get_guest_entry(s, e, index);
  1760. return 0;
  1761. }
  1762. /**
  1763. * intel_vgpu_gma_to_gpa - translate a gma to GPA
  1764. * @mm: mm object. could be a PPGTT or GGTT mm object
  1765. * @gma: graphics memory address in this mm object
  1766. *
  1767. * This function is used to translate a graphics memory address in specific
  1768. * graphics memory space to guest physical address.
  1769. *
  1770. * Returns:
  1771. * Guest physical address on success, INTEL_GVT_INVALID_ADDR if failed.
  1772. */
  1773. unsigned long intel_vgpu_gma_to_gpa(struct intel_vgpu_mm *mm, unsigned long gma)
  1774. {
  1775. struct intel_vgpu *vgpu = mm->vgpu;
  1776. struct intel_gvt *gvt = vgpu->gvt;
  1777. const struct intel_gvt_gtt_pte_ops *pte_ops = gvt->gtt.pte_ops;
  1778. const struct intel_gvt_gtt_gma_ops *gma_ops = gvt->gtt.gma_ops;
  1779. unsigned long gpa = INTEL_GVT_INVALID_ADDR;
  1780. unsigned long gma_index[4];
  1781. struct intel_gvt_gtt_entry e;
  1782. int i, levels = 0;
  1783. int ret;
  1784. GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT &&
  1785. mm->type != INTEL_GVT_MM_PPGTT);
  1786. if (mm->type == INTEL_GVT_MM_GGTT) {
  1787. if (!vgpu_gmadr_is_valid(vgpu, gma))
  1788. goto err;
  1789. ggtt_get_guest_entry(mm, &e,
  1790. gma_ops->gma_to_ggtt_pte_index(gma));
  1791. gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT)
  1792. + (gma & ~I915_GTT_PAGE_MASK);
  1793. trace_gma_translate(vgpu->id, "ggtt", 0, 0, gma, gpa);
  1794. } else {
  1795. switch (mm->ppgtt_mm.root_entry_type) {
  1796. case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
  1797. ppgtt_get_shadow_root_entry(mm, &e, 0);
  1798. gma_index[0] = gma_ops->gma_to_pml4_index(gma);
  1799. gma_index[1] = gma_ops->gma_to_l4_pdp_index(gma);
  1800. gma_index[2] = gma_ops->gma_to_pde_index(gma);
  1801. gma_index[3] = gma_ops->gma_to_pte_index(gma);
  1802. levels = 4;
  1803. break;
  1804. case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
  1805. ppgtt_get_shadow_root_entry(mm, &e,
  1806. gma_ops->gma_to_l3_pdp_index(gma));
  1807. gma_index[0] = gma_ops->gma_to_pde_index(gma);
  1808. gma_index[1] = gma_ops->gma_to_pte_index(gma);
  1809. levels = 2;
  1810. break;
  1811. default:
  1812. GEM_BUG_ON(1);
  1813. }
  1814. /* walk the shadow page table and get gpa from guest entry */
  1815. for (i = 0; i < levels; i++) {
  1816. ret = ppgtt_get_next_level_entry(mm, &e, gma_index[i],
  1817. (i == levels - 1));
  1818. if (ret)
  1819. goto err;
  1820. if (!pte_ops->test_present(&e)) {
  1821. gvt_dbg_core("GMA 0x%lx is not present\n", gma);
  1822. goto err;
  1823. }
  1824. }
  1825. gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT) +
  1826. (gma & ~I915_GTT_PAGE_MASK);
  1827. trace_gma_translate(vgpu->id, "ppgtt", 0,
  1828. mm->ppgtt_mm.root_entry_type, gma, gpa);
  1829. }
  1830. return gpa;
  1831. err:
  1832. gvt_vgpu_err("invalid mm type: %d gma %lx\n", mm->type, gma);
  1833. return INTEL_GVT_INVALID_ADDR;
  1834. }
  1835. static int emulate_ggtt_mmio_read(struct intel_vgpu *vgpu,
  1836. unsigned int off, void *p_data, unsigned int bytes)
  1837. {
  1838. struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
  1839. const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
  1840. unsigned long index = off >> info->gtt_entry_size_shift;
  1841. unsigned long gma;
  1842. struct intel_gvt_gtt_entry e;
  1843. if (bytes != 4 && bytes != 8)
  1844. return -EINVAL;
  1845. gma = index << I915_GTT_PAGE_SHIFT;
  1846. if (!intel_gvt_ggtt_validate_range(vgpu,
  1847. gma, 1 << I915_GTT_PAGE_SHIFT)) {
  1848. gvt_dbg_mm("read invalid ggtt at 0x%lx\n", gma);
  1849. memset(p_data, 0, bytes);
  1850. return 0;
  1851. }
  1852. ggtt_get_guest_entry(ggtt_mm, &e, index);
  1853. memcpy(p_data, (void *)&e.val64 + (off & (info->gtt_entry_size - 1)),
  1854. bytes);
  1855. return 0;
  1856. }
  1857. /**
  1858. * intel_vgpu_emulate_ggtt_mmio_read - emulate GTT MMIO register read
  1859. * @vgpu: a vGPU
  1860. * @off: register offset
  1861. * @p_data: data will be returned to guest
  1862. * @bytes: data length
  1863. *
  1864. * This function is used to emulate the GTT MMIO register read
  1865. *
  1866. * Returns:
  1867. * Zero on success, error code if failed.
  1868. */
  1869. int intel_vgpu_emulate_ggtt_mmio_read(struct intel_vgpu *vgpu, unsigned int off,
  1870. void *p_data, unsigned int bytes)
  1871. {
  1872. const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
  1873. int ret;
  1874. if (bytes != 4 && bytes != 8)
  1875. return -EINVAL;
  1876. off -= info->gtt_start_offset;
  1877. ret = emulate_ggtt_mmio_read(vgpu, off, p_data, bytes);
  1878. return ret;
  1879. }
  1880. static void ggtt_invalidate_pte(struct intel_vgpu *vgpu,
  1881. struct intel_gvt_gtt_entry *entry)
  1882. {
  1883. const struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
  1884. unsigned long pfn;
  1885. pfn = pte_ops->get_pfn(entry);
  1886. if (pfn != vgpu->gvt->gtt.scratch_mfn)
  1887. intel_gvt_dma_unmap_guest_page(vgpu, pfn << PAGE_SHIFT);
  1888. }
  1889. static int emulate_ggtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
  1890. void *p_data, unsigned int bytes)
  1891. {
  1892. struct intel_gvt *gvt = vgpu->gvt;
  1893. const struct intel_gvt_device_info *info = &gvt->device_info;
  1894. struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
  1895. const struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
  1896. unsigned long g_gtt_index = off >> info->gtt_entry_size_shift;
  1897. unsigned long gma, gfn;
  1898. struct intel_gvt_gtt_entry e = {.val64 = 0, .type = GTT_TYPE_GGTT_PTE};
  1899. struct intel_gvt_gtt_entry m = {.val64 = 0, .type = GTT_TYPE_GGTT_PTE};
  1900. dma_addr_t dma_addr;
  1901. int ret;
  1902. struct intel_gvt_partial_pte *partial_pte, *pos, *n;
  1903. bool partial_update = false;
  1904. if (bytes != 4 && bytes != 8)
  1905. return -EINVAL;
  1906. gma = g_gtt_index << I915_GTT_PAGE_SHIFT;
  1907. /* the VM may configure the whole GM space when ballooning is used */
  1908. if (!vgpu_gmadr_is_valid(vgpu, gma))
  1909. return 0;
  1910. e.type = GTT_TYPE_GGTT_PTE;
  1911. memcpy((void *)&e.val64 + (off & (info->gtt_entry_size - 1)), p_data,
  1912. bytes);
  1913. /* If ggtt entry size is 8 bytes, and it's split into two 4 bytes
  1914. * write, save the first 4 bytes in a list and update virtual
  1915. * PTE. Only update shadow PTE when the second 4 bytes comes.
  1916. */
  1917. if (bytes < info->gtt_entry_size) {
  1918. bool found = false;
  1919. list_for_each_entry_safe(pos, n,
  1920. &ggtt_mm->ggtt_mm.partial_pte_list, list) {
  1921. if (g_gtt_index == pos->offset >>
  1922. info->gtt_entry_size_shift) {
  1923. if (off != pos->offset) {
  1924. /* the second partial part*/
  1925. int last_off = pos->offset &
  1926. (info->gtt_entry_size - 1);
  1927. memcpy((void *)&e.val64 + last_off,
  1928. (void *)&pos->data + last_off,
  1929. bytes);
  1930. list_del(&pos->list);
  1931. kfree(pos);
  1932. found = true;
  1933. break;
  1934. }
  1935. /* update of the first partial part */
  1936. pos->data = e.val64;
  1937. ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
  1938. return 0;
  1939. }
  1940. }
  1941. if (!found) {
  1942. /* the first partial part */
  1943. partial_pte = kzalloc(sizeof(*partial_pte), GFP_KERNEL);
  1944. if (!partial_pte)
  1945. return -ENOMEM;
  1946. partial_pte->offset = off;
  1947. partial_pte->data = e.val64;
  1948. list_add_tail(&partial_pte->list,
  1949. &ggtt_mm->ggtt_mm.partial_pte_list);
  1950. partial_update = true;
  1951. }
  1952. }
  1953. if (!partial_update && (ops->test_present(&e))) {
  1954. gfn = ops->get_pfn(&e);
  1955. m.val64 = e.val64;
  1956. m.type = e.type;
  1957. /* one PTE update may be issued in multiple writes and the
  1958. * first write may not construct a valid gfn
  1959. */
  1960. if (!intel_gvt_is_valid_gfn(vgpu, gfn)) {
  1961. ops->set_pfn(&m, gvt->gtt.scratch_mfn);
  1962. goto out;
  1963. }
  1964. ret = intel_gvt_dma_map_guest_page(vgpu, gfn, PAGE_SIZE,
  1965. &dma_addr);
  1966. if (ret) {
  1967. gvt_vgpu_err("fail to populate guest ggtt entry\n");
  1968. /* guest driver may read/write the entry when partial
  1969. * update the entry in this situation p2m will fail
  1970. * setting the shadow entry to point to a scratch page
  1971. */
  1972. ops->set_pfn(&m, gvt->gtt.scratch_mfn);
  1973. } else
  1974. ops->set_pfn(&m, dma_addr >> PAGE_SHIFT);
  1975. } else {
  1976. ops->set_pfn(&m, gvt->gtt.scratch_mfn);
  1977. ops->clear_present(&m);
  1978. }
  1979. out:
  1980. ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
  1981. ggtt_get_host_entry(ggtt_mm, &e, g_gtt_index);
  1982. ggtt_invalidate_pte(vgpu, &e);
  1983. ggtt_set_host_entry(ggtt_mm, &m, g_gtt_index);
  1984. ggtt_invalidate(gvt->gt);
  1985. return 0;
  1986. }
  1987. /*
  1988. * intel_vgpu_emulate_ggtt_mmio_write - emulate GTT MMIO register write
  1989. * @vgpu: a vGPU
  1990. * @off: register offset
  1991. * @p_data: data from guest write
  1992. * @bytes: data length
  1993. *
  1994. * This function is used to emulate the GTT MMIO register write
  1995. *
  1996. * Returns:
  1997. * Zero on success, error code if failed.
  1998. */
  1999. int intel_vgpu_emulate_ggtt_mmio_write(struct intel_vgpu *vgpu,
  2000. unsigned int off, void *p_data, unsigned int bytes)
  2001. {
  2002. const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
  2003. int ret;
  2004. struct intel_vgpu_submission *s = &vgpu->submission;
  2005. struct intel_engine_cs *engine;
  2006. int i;
  2007. if (bytes != 4 && bytes != 8)
  2008. return -EINVAL;
  2009. off -= info->gtt_start_offset;
  2010. ret = emulate_ggtt_mmio_write(vgpu, off, p_data, bytes);
  2011. /* if ggtt of last submitted context is written,
  2012. * that context is probably got unpinned.
  2013. * Set last shadowed ctx to invalid.
  2014. */
  2015. for_each_engine(engine, vgpu->gvt->gt, i) {
  2016. if (!s->last_ctx[i].valid)
  2017. continue;
  2018. if (s->last_ctx[i].lrca == (off >> info->gtt_entry_size_shift))
  2019. s->last_ctx[i].valid = false;
  2020. }
  2021. return ret;
  2022. }
  2023. static int alloc_scratch_pages(struct intel_vgpu *vgpu,
  2024. enum intel_gvt_gtt_type type)
  2025. {
  2026. struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
  2027. struct intel_vgpu_gtt *gtt = &vgpu->gtt;
  2028. const struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
  2029. int page_entry_num = I915_GTT_PAGE_SIZE >>
  2030. vgpu->gvt->device_info.gtt_entry_size_shift;
  2031. void *scratch_pt;
  2032. int i;
  2033. struct device *dev = vgpu->gvt->gt->i915->drm.dev;
  2034. dma_addr_t daddr;
  2035. if (drm_WARN_ON(&i915->drm,
  2036. type < GTT_TYPE_PPGTT_PTE_PT || type >= GTT_TYPE_MAX))
  2037. return -EINVAL;
  2038. scratch_pt = (void *)get_zeroed_page(GFP_KERNEL);
  2039. if (!scratch_pt) {
  2040. gvt_vgpu_err("fail to allocate scratch page\n");
  2041. return -ENOMEM;
  2042. }
  2043. daddr = dma_map_page(dev, virt_to_page(scratch_pt), 0, 4096, DMA_BIDIRECTIONAL);
  2044. if (dma_mapping_error(dev, daddr)) {
  2045. gvt_vgpu_err("fail to dmamap scratch_pt\n");
  2046. __free_page(virt_to_page(scratch_pt));
  2047. return -ENOMEM;
  2048. }
  2049. gtt->scratch_pt[type].page_mfn =
  2050. (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
  2051. gtt->scratch_pt[type].page = virt_to_page(scratch_pt);
  2052. gvt_dbg_mm("vgpu%d create scratch_pt: type %d mfn=0x%lx\n",
  2053. vgpu->id, type, gtt->scratch_pt[type].page_mfn);
  2054. /* Build the tree by full filled the scratch pt with the entries which
  2055. * point to the next level scratch pt or scratch page. The
  2056. * scratch_pt[type] indicate the scratch pt/scratch page used by the
  2057. * 'type' pt.
  2058. * e.g. scratch_pt[GTT_TYPE_PPGTT_PDE_PT] is used by
  2059. * GTT_TYPE_PPGTT_PDE_PT level pt, that means this scratch_pt it self
  2060. * is GTT_TYPE_PPGTT_PTE_PT, and full filled by scratch page mfn.
  2061. */
  2062. if (type > GTT_TYPE_PPGTT_PTE_PT) {
  2063. struct intel_gvt_gtt_entry se;
  2064. memset(&se, 0, sizeof(struct intel_gvt_gtt_entry));
  2065. se.type = get_entry_type(type - 1);
  2066. ops->set_pfn(&se, gtt->scratch_pt[type - 1].page_mfn);
  2067. /* The entry parameters like present/writeable/cache type
  2068. * set to the same as i915's scratch page tree.
  2069. */
  2070. se.val64 |= GEN8_PAGE_PRESENT | GEN8_PAGE_RW;
  2071. if (type == GTT_TYPE_PPGTT_PDE_PT)
  2072. se.val64 |= PPAT_CACHED;
  2073. for (i = 0; i < page_entry_num; i++)
  2074. ops->set_entry(scratch_pt, &se, i, false, 0, vgpu);
  2075. }
  2076. return 0;
  2077. }
  2078. static int release_scratch_page_tree(struct intel_vgpu *vgpu)
  2079. {
  2080. int i;
  2081. struct device *dev = vgpu->gvt->gt->i915->drm.dev;
  2082. dma_addr_t daddr;
  2083. for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
  2084. if (vgpu->gtt.scratch_pt[i].page != NULL) {
  2085. daddr = (dma_addr_t)(vgpu->gtt.scratch_pt[i].page_mfn <<
  2086. I915_GTT_PAGE_SHIFT);
  2087. dma_unmap_page(dev, daddr, 4096, DMA_BIDIRECTIONAL);
  2088. __free_page(vgpu->gtt.scratch_pt[i].page);
  2089. vgpu->gtt.scratch_pt[i].page = NULL;
  2090. vgpu->gtt.scratch_pt[i].page_mfn = 0;
  2091. }
  2092. }
  2093. return 0;
  2094. }
  2095. static int create_scratch_page_tree(struct intel_vgpu *vgpu)
  2096. {
  2097. int i, ret;
  2098. for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
  2099. ret = alloc_scratch_pages(vgpu, i);
  2100. if (ret)
  2101. goto err;
  2102. }
  2103. return 0;
  2104. err:
  2105. release_scratch_page_tree(vgpu);
  2106. return ret;
  2107. }
  2108. /**
  2109. * intel_vgpu_init_gtt - initialize per-vGPU graphics memory virulization
  2110. * @vgpu: a vGPU
  2111. *
  2112. * This function is used to initialize per-vGPU graphics memory virtualization
  2113. * components.
  2114. *
  2115. * Returns:
  2116. * Zero on success, error code if failed.
  2117. */
  2118. int intel_vgpu_init_gtt(struct intel_vgpu *vgpu)
  2119. {
  2120. struct intel_vgpu_gtt *gtt = &vgpu->gtt;
  2121. INIT_RADIX_TREE(&gtt->spt_tree, GFP_KERNEL);
  2122. INIT_LIST_HEAD(&gtt->ppgtt_mm_list_head);
  2123. INIT_LIST_HEAD(&gtt->oos_page_list_head);
  2124. INIT_LIST_HEAD(&gtt->post_shadow_list_head);
  2125. gtt->ggtt_mm = intel_vgpu_create_ggtt_mm(vgpu);
  2126. if (IS_ERR(gtt->ggtt_mm)) {
  2127. gvt_vgpu_err("fail to create mm for ggtt.\n");
  2128. return PTR_ERR(gtt->ggtt_mm);
  2129. }
  2130. intel_vgpu_reset_ggtt(vgpu, false);
  2131. INIT_LIST_HEAD(&gtt->ggtt_mm->ggtt_mm.partial_pte_list);
  2132. return create_scratch_page_tree(vgpu);
  2133. }
  2134. void intel_vgpu_destroy_all_ppgtt_mm(struct intel_vgpu *vgpu)
  2135. {
  2136. struct list_head *pos, *n;
  2137. struct intel_vgpu_mm *mm;
  2138. list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
  2139. mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
  2140. intel_vgpu_destroy_mm(mm);
  2141. }
  2142. if (GEM_WARN_ON(!list_empty(&vgpu->gtt.ppgtt_mm_list_head)))
  2143. gvt_err("vgpu ppgtt mm is not fully destroyed\n");
  2144. if (GEM_WARN_ON(!radix_tree_empty(&vgpu->gtt.spt_tree))) {
  2145. gvt_err("Why we still has spt not freed?\n");
  2146. ppgtt_free_all_spt(vgpu);
  2147. }
  2148. }
  2149. static void intel_vgpu_destroy_ggtt_mm(struct intel_vgpu *vgpu)
  2150. {
  2151. struct intel_gvt_partial_pte *pos, *next;
  2152. list_for_each_entry_safe(pos, next,
  2153. &vgpu->gtt.ggtt_mm->ggtt_mm.partial_pte_list,
  2154. list) {
  2155. gvt_dbg_mm("partial PTE update on hold 0x%lx : 0x%llx\n",
  2156. pos->offset, pos->data);
  2157. kfree(pos);
  2158. }
  2159. intel_vgpu_destroy_mm(vgpu->gtt.ggtt_mm);
  2160. vgpu->gtt.ggtt_mm = NULL;
  2161. }
  2162. /**
  2163. * intel_vgpu_clean_gtt - clean up per-vGPU graphics memory virulization
  2164. * @vgpu: a vGPU
  2165. *
  2166. * This function is used to clean up per-vGPU graphics memory virtualization
  2167. * components.
  2168. *
  2169. * Returns:
  2170. * Zero on success, error code if failed.
  2171. */
  2172. void intel_vgpu_clean_gtt(struct intel_vgpu *vgpu)
  2173. {
  2174. intel_vgpu_destroy_all_ppgtt_mm(vgpu);
  2175. intel_vgpu_destroy_ggtt_mm(vgpu);
  2176. release_scratch_page_tree(vgpu);
  2177. }
  2178. static void clean_spt_oos(struct intel_gvt *gvt)
  2179. {
  2180. struct intel_gvt_gtt *gtt = &gvt->gtt;
  2181. struct list_head *pos, *n;
  2182. struct intel_vgpu_oos_page *oos_page;
  2183. WARN(!list_empty(&gtt->oos_page_use_list_head),
  2184. "someone is still using oos page\n");
  2185. list_for_each_safe(pos, n, &gtt->oos_page_free_list_head) {
  2186. oos_page = container_of(pos, struct intel_vgpu_oos_page, list);
  2187. list_del(&oos_page->list);
  2188. free_page((unsigned long)oos_page->mem);
  2189. kfree(oos_page);
  2190. }
  2191. }
  2192. static int setup_spt_oos(struct intel_gvt *gvt)
  2193. {
  2194. struct intel_gvt_gtt *gtt = &gvt->gtt;
  2195. struct intel_vgpu_oos_page *oos_page;
  2196. int i;
  2197. int ret;
  2198. INIT_LIST_HEAD(&gtt->oos_page_free_list_head);
  2199. INIT_LIST_HEAD(&gtt->oos_page_use_list_head);
  2200. for (i = 0; i < preallocated_oos_pages; i++) {
  2201. oos_page = kzalloc(sizeof(*oos_page), GFP_KERNEL);
  2202. if (!oos_page) {
  2203. ret = -ENOMEM;
  2204. goto fail;
  2205. }
  2206. oos_page->mem = (void *)__get_free_pages(GFP_KERNEL, 0);
  2207. if (!oos_page->mem) {
  2208. ret = -ENOMEM;
  2209. kfree(oos_page);
  2210. goto fail;
  2211. }
  2212. INIT_LIST_HEAD(&oos_page->list);
  2213. INIT_LIST_HEAD(&oos_page->vm_list);
  2214. oos_page->id = i;
  2215. list_add_tail(&oos_page->list, &gtt->oos_page_free_list_head);
  2216. }
  2217. gvt_dbg_mm("%d oos pages preallocated\n", i);
  2218. return 0;
  2219. fail:
  2220. clean_spt_oos(gvt);
  2221. return ret;
  2222. }
  2223. /**
  2224. * intel_vgpu_find_ppgtt_mm - find a PPGTT mm object
  2225. * @vgpu: a vGPU
  2226. * @pdps: pdp root array
  2227. *
  2228. * This function is used to find a PPGTT mm object from mm object pool
  2229. *
  2230. * Returns:
  2231. * pointer to mm object on success, NULL if failed.
  2232. */
  2233. struct intel_vgpu_mm *intel_vgpu_find_ppgtt_mm(struct intel_vgpu *vgpu,
  2234. u64 pdps[])
  2235. {
  2236. struct intel_vgpu_mm *mm;
  2237. struct list_head *pos;
  2238. list_for_each(pos, &vgpu->gtt.ppgtt_mm_list_head) {
  2239. mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
  2240. switch (mm->ppgtt_mm.root_entry_type) {
  2241. case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
  2242. if (pdps[0] == mm->ppgtt_mm.guest_pdps[0])
  2243. return mm;
  2244. break;
  2245. case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
  2246. if (!memcmp(pdps, mm->ppgtt_mm.guest_pdps,
  2247. sizeof(mm->ppgtt_mm.guest_pdps)))
  2248. return mm;
  2249. break;
  2250. default:
  2251. GEM_BUG_ON(1);
  2252. }
  2253. }
  2254. return NULL;
  2255. }
  2256. /**
  2257. * intel_vgpu_get_ppgtt_mm - get or create a PPGTT mm object.
  2258. * @vgpu: a vGPU
  2259. * @root_entry_type: ppgtt root entry type
  2260. * @pdps: guest pdps
  2261. *
  2262. * This function is used to find or create a PPGTT mm object from a guest.
  2263. *
  2264. * Returns:
  2265. * Zero on success, negative error code if failed.
  2266. */
  2267. struct intel_vgpu_mm *intel_vgpu_get_ppgtt_mm(struct intel_vgpu *vgpu,
  2268. enum intel_gvt_gtt_type root_entry_type, u64 pdps[])
  2269. {
  2270. struct intel_vgpu_mm *mm;
  2271. mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
  2272. if (mm) {
  2273. intel_vgpu_mm_get(mm);
  2274. } else {
  2275. mm = intel_vgpu_create_ppgtt_mm(vgpu, root_entry_type, pdps);
  2276. if (IS_ERR(mm))
  2277. gvt_vgpu_err("fail to create mm\n");
  2278. }
  2279. return mm;
  2280. }
  2281. /**
  2282. * intel_vgpu_put_ppgtt_mm - find and put a PPGTT mm object.
  2283. * @vgpu: a vGPU
  2284. * @pdps: guest pdps
  2285. *
  2286. * This function is used to find a PPGTT mm object from a guest and destroy it.
  2287. *
  2288. * Returns:
  2289. * Zero on success, negative error code if failed.
  2290. */
  2291. int intel_vgpu_put_ppgtt_mm(struct intel_vgpu *vgpu, u64 pdps[])
  2292. {
  2293. struct intel_vgpu_mm *mm;
  2294. mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
  2295. if (!mm) {
  2296. gvt_vgpu_err("fail to find ppgtt instance.\n");
  2297. return -EINVAL;
  2298. }
  2299. intel_vgpu_mm_put(mm);
  2300. return 0;
  2301. }
  2302. /**
  2303. * intel_gvt_init_gtt - initialize mm components of a GVT device
  2304. * @gvt: GVT device
  2305. *
  2306. * This function is called at the initialization stage, to initialize
  2307. * the mm components of a GVT device.
  2308. *
  2309. * Returns:
  2310. * zero on success, negative error code if failed.
  2311. */
  2312. int intel_gvt_init_gtt(struct intel_gvt *gvt)
  2313. {
  2314. int ret;
  2315. void *page;
  2316. struct device *dev = gvt->gt->i915->drm.dev;
  2317. dma_addr_t daddr;
  2318. gvt_dbg_core("init gtt\n");
  2319. gvt->gtt.pte_ops = &gen8_gtt_pte_ops;
  2320. gvt->gtt.gma_ops = &gen8_gtt_gma_ops;
  2321. page = (void *)get_zeroed_page(GFP_KERNEL);
  2322. if (!page) {
  2323. gvt_err("fail to allocate scratch ggtt page\n");
  2324. return -ENOMEM;
  2325. }
  2326. daddr = dma_map_page(dev, virt_to_page(page), 0,
  2327. 4096, DMA_BIDIRECTIONAL);
  2328. if (dma_mapping_error(dev, daddr)) {
  2329. gvt_err("fail to dmamap scratch ggtt page\n");
  2330. __free_page(virt_to_page(page));
  2331. return -ENOMEM;
  2332. }
  2333. gvt->gtt.scratch_page = virt_to_page(page);
  2334. gvt->gtt.scratch_mfn = (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
  2335. if (enable_out_of_sync) {
  2336. ret = setup_spt_oos(gvt);
  2337. if (ret) {
  2338. gvt_err("fail to initialize SPT oos\n");
  2339. dma_unmap_page(dev, daddr, 4096, DMA_BIDIRECTIONAL);
  2340. __free_page(gvt->gtt.scratch_page);
  2341. return ret;
  2342. }
  2343. }
  2344. INIT_LIST_HEAD(&gvt->gtt.ppgtt_mm_lru_list_head);
  2345. mutex_init(&gvt->gtt.ppgtt_mm_lock);
  2346. return 0;
  2347. }
  2348. /**
  2349. * intel_gvt_clean_gtt - clean up mm components of a GVT device
  2350. * @gvt: GVT device
  2351. *
  2352. * This function is called at the driver unloading stage, to clean up the
  2353. * the mm components of a GVT device.
  2354. *
  2355. */
  2356. void intel_gvt_clean_gtt(struct intel_gvt *gvt)
  2357. {
  2358. struct device *dev = gvt->gt->i915->drm.dev;
  2359. dma_addr_t daddr = (dma_addr_t)(gvt->gtt.scratch_mfn <<
  2360. I915_GTT_PAGE_SHIFT);
  2361. dma_unmap_page(dev, daddr, 4096, DMA_BIDIRECTIONAL);
  2362. __free_page(gvt->gtt.scratch_page);
  2363. if (enable_out_of_sync)
  2364. clean_spt_oos(gvt);
  2365. }
  2366. /**
  2367. * intel_vgpu_invalidate_ppgtt - invalidate PPGTT instances
  2368. * @vgpu: a vGPU
  2369. *
  2370. * This function is called when invalidate all PPGTT instances of a vGPU.
  2371. *
  2372. */
  2373. void intel_vgpu_invalidate_ppgtt(struct intel_vgpu *vgpu)
  2374. {
  2375. struct list_head *pos, *n;
  2376. struct intel_vgpu_mm *mm;
  2377. list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
  2378. mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
  2379. if (mm->type == INTEL_GVT_MM_PPGTT) {
  2380. mutex_lock(&vgpu->gvt->gtt.ppgtt_mm_lock);
  2381. list_del_init(&mm->ppgtt_mm.lru_list);
  2382. mutex_unlock(&vgpu->gvt->gtt.ppgtt_mm_lock);
  2383. if (mm->ppgtt_mm.shadowed)
  2384. invalidate_ppgtt_mm(mm);
  2385. }
  2386. }
  2387. }
  2388. /**
  2389. * intel_vgpu_reset_ggtt - reset the GGTT entry
  2390. * @vgpu: a vGPU
  2391. * @invalidate_old: invalidate old entries
  2392. *
  2393. * This function is called at the vGPU create stage
  2394. * to reset all the GGTT entries.
  2395. *
  2396. */
  2397. void intel_vgpu_reset_ggtt(struct intel_vgpu *vgpu, bool invalidate_old)
  2398. {
  2399. struct intel_gvt *gvt = vgpu->gvt;
  2400. const struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
  2401. struct intel_gvt_gtt_entry entry = {.type = GTT_TYPE_GGTT_PTE};
  2402. struct intel_gvt_gtt_entry old_entry;
  2403. u32 index;
  2404. u32 num_entries;
  2405. pte_ops->set_pfn(&entry, gvt->gtt.scratch_mfn);
  2406. pte_ops->set_present(&entry);
  2407. index = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT;
  2408. num_entries = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT;
  2409. while (num_entries--) {
  2410. if (invalidate_old) {
  2411. ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index);
  2412. ggtt_invalidate_pte(vgpu, &old_entry);
  2413. }
  2414. ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
  2415. }
  2416. index = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT;
  2417. num_entries = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT;
  2418. while (num_entries--) {
  2419. if (invalidate_old) {
  2420. ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index);
  2421. ggtt_invalidate_pte(vgpu, &old_entry);
  2422. }
  2423. ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
  2424. }
  2425. ggtt_invalidate(gvt->gt);
  2426. }
  2427. /**
  2428. * intel_gvt_restore_ggtt - restore all vGPU's ggtt entries
  2429. * @gvt: intel gvt device
  2430. *
  2431. * This function is called at driver resume stage to restore
  2432. * GGTT entries of every vGPU.
  2433. *
  2434. */
  2435. void intel_gvt_restore_ggtt(struct intel_gvt *gvt)
  2436. {
  2437. struct intel_vgpu *vgpu;
  2438. struct intel_vgpu_mm *mm;
  2439. int id;
  2440. gen8_pte_t pte;
  2441. u32 idx, num_low, num_hi, offset;
  2442. /* Restore dirty host ggtt for all vGPUs */
  2443. idr_for_each_entry(&(gvt)->vgpu_idr, vgpu, id) {
  2444. mm = vgpu->gtt.ggtt_mm;
  2445. num_low = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT;
  2446. offset = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT;
  2447. for (idx = 0; idx < num_low; idx++) {
  2448. pte = mm->ggtt_mm.host_ggtt_aperture[idx];
  2449. if (pte & GEN8_PAGE_PRESENT)
  2450. write_pte64(vgpu->gvt->gt->ggtt, offset + idx, pte);
  2451. }
  2452. num_hi = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT;
  2453. offset = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT;
  2454. for (idx = 0; idx < num_hi; idx++) {
  2455. pte = mm->ggtt_mm.host_ggtt_hidden[idx];
  2456. if (pte & GEN8_PAGE_PRESENT)
  2457. write_pte64(vgpu->gvt->gt->ggtt, offset + idx, pte);
  2458. }
  2459. }
  2460. }