oaktrail_device.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /**************************************************************************
  3. * Copyright (c) 2011, Intel Corporation.
  4. * All Rights Reserved.
  5. *
  6. **************************************************************************/
  7. #include <linux/delay.h>
  8. #include <linux/dmi.h>
  9. #include <linux/module.h>
  10. #include <drm/drm.h>
  11. #include "intel_bios.h"
  12. #include "mid_bios.h"
  13. #include "psb_drv.h"
  14. #include "psb_intel_reg.h"
  15. #include "psb_reg.h"
  16. static int oaktrail_output_init(struct drm_device *dev)
  17. {
  18. struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
  19. if (dev_priv->iLVDS_enable)
  20. oaktrail_lvds_init(dev, &dev_priv->mode_dev);
  21. else
  22. dev_err(dev->dev, "DSI is not supported\n");
  23. if (dev_priv->hdmi_priv)
  24. oaktrail_hdmi_init(dev, &dev_priv->mode_dev);
  25. psb_intel_sdvo_init(dev, SDVOB);
  26. return 0;
  27. }
  28. /*
  29. * Provide the low level interfaces for the Moorestown backlight
  30. */
  31. #define MRST_BLC_MAX_PWM_REG_FREQ 0xFFFF
  32. #define BLC_PWM_PRECISION_FACTOR 100 /* 10000000 */
  33. #define BLC_PWM_FREQ_CALC_CONSTANT 32
  34. #define MHz 1000000
  35. #define BLC_ADJUSTMENT_MAX 100
  36. static void oaktrail_set_brightness(struct drm_device *dev, int level)
  37. {
  38. struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
  39. u32 blc_pwm_ctl;
  40. u32 max_pwm_blc;
  41. if (gma_power_begin(dev, 0)) {
  42. /* Calculate and set the brightness value */
  43. max_pwm_blc = REG_READ(BLC_PWM_CTL) >> 16;
  44. blc_pwm_ctl = level * max_pwm_blc / 100;
  45. /* Adjust the backlight level with the percent in
  46. * dev_priv->blc_adj1;
  47. */
  48. blc_pwm_ctl = blc_pwm_ctl * dev_priv->blc_adj1;
  49. blc_pwm_ctl = blc_pwm_ctl / 100;
  50. /* Adjust the backlight level with the percent in
  51. * dev_priv->blc_adj2;
  52. */
  53. blc_pwm_ctl = blc_pwm_ctl * dev_priv->blc_adj2;
  54. blc_pwm_ctl = blc_pwm_ctl / 100;
  55. /* force PWM bit on */
  56. REG_WRITE(BLC_PWM_CTL2, (0x80000000 | REG_READ(BLC_PWM_CTL2)));
  57. REG_WRITE(BLC_PWM_CTL, (max_pwm_blc << 16) | blc_pwm_ctl);
  58. gma_power_end(dev);
  59. }
  60. }
  61. static int oaktrail_backlight_init(struct drm_device *dev)
  62. {
  63. struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
  64. unsigned long core_clock;
  65. u16 bl_max_freq;
  66. uint32_t value;
  67. uint32_t blc_pwm_precision_factor;
  68. dev_priv->blc_adj1 = BLC_ADJUSTMENT_MAX;
  69. dev_priv->blc_adj2 = BLC_ADJUSTMENT_MAX;
  70. bl_max_freq = 256;
  71. /* this needs to be set elsewhere */
  72. blc_pwm_precision_factor = BLC_PWM_PRECISION_FACTOR;
  73. core_clock = dev_priv->core_freq;
  74. value = (core_clock * MHz) / BLC_PWM_FREQ_CALC_CONSTANT;
  75. value *= blc_pwm_precision_factor;
  76. value /= bl_max_freq;
  77. value /= blc_pwm_precision_factor;
  78. if (value > (unsigned long long)MRST_BLC_MAX_PWM_REG_FREQ)
  79. return -ERANGE;
  80. if (gma_power_begin(dev, false)) {
  81. REG_WRITE(BLC_PWM_CTL2, (0x80000000 | REG_READ(BLC_PWM_CTL2)));
  82. REG_WRITE(BLC_PWM_CTL, value | (value << 16));
  83. gma_power_end(dev);
  84. }
  85. oaktrail_set_brightness(dev, PSB_MAX_BRIGHTNESS);
  86. return 0;
  87. }
  88. /*
  89. * Provide the Moorestown specific chip logic and low level methods
  90. * for power management
  91. */
  92. /**
  93. * oaktrail_save_display_registers - save registers lost on suspend
  94. * @dev: our DRM device
  95. *
  96. * Save the state we need in order to be able to restore the interface
  97. * upon resume from suspend
  98. */
  99. static int oaktrail_save_display_registers(struct drm_device *dev)
  100. {
  101. struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
  102. struct psb_save_area *regs = &dev_priv->regs;
  103. struct psb_pipe *p = &regs->pipe[0];
  104. int i;
  105. u32 pp_stat;
  106. /* Display arbitration control + watermarks */
  107. regs->psb.saveDSPARB = PSB_RVDC32(DSPARB);
  108. regs->psb.saveDSPFW1 = PSB_RVDC32(DSPFW1);
  109. regs->psb.saveDSPFW2 = PSB_RVDC32(DSPFW2);
  110. regs->psb.saveDSPFW3 = PSB_RVDC32(DSPFW3);
  111. regs->psb.saveDSPFW4 = PSB_RVDC32(DSPFW4);
  112. regs->psb.saveDSPFW5 = PSB_RVDC32(DSPFW5);
  113. regs->psb.saveDSPFW6 = PSB_RVDC32(DSPFW6);
  114. regs->psb.saveCHICKENBIT = PSB_RVDC32(DSPCHICKENBIT);
  115. /* Pipe & plane A info */
  116. p->conf = PSB_RVDC32(PIPEACONF);
  117. p->src = PSB_RVDC32(PIPEASRC);
  118. p->fp0 = PSB_RVDC32(MRST_FPA0);
  119. p->fp1 = PSB_RVDC32(MRST_FPA1);
  120. p->dpll = PSB_RVDC32(MRST_DPLL_A);
  121. p->htotal = PSB_RVDC32(HTOTAL_A);
  122. p->hblank = PSB_RVDC32(HBLANK_A);
  123. p->hsync = PSB_RVDC32(HSYNC_A);
  124. p->vtotal = PSB_RVDC32(VTOTAL_A);
  125. p->vblank = PSB_RVDC32(VBLANK_A);
  126. p->vsync = PSB_RVDC32(VSYNC_A);
  127. regs->psb.saveBCLRPAT_A = PSB_RVDC32(BCLRPAT_A);
  128. p->cntr = PSB_RVDC32(DSPACNTR);
  129. p->stride = PSB_RVDC32(DSPASTRIDE);
  130. p->addr = PSB_RVDC32(DSPABASE);
  131. p->surf = PSB_RVDC32(DSPASURF);
  132. p->linoff = PSB_RVDC32(DSPALINOFF);
  133. p->tileoff = PSB_RVDC32(DSPATILEOFF);
  134. /* Save cursor regs */
  135. regs->psb.saveDSPACURSOR_CTRL = PSB_RVDC32(CURACNTR);
  136. regs->psb.saveDSPACURSOR_BASE = PSB_RVDC32(CURABASE);
  137. regs->psb.saveDSPACURSOR_POS = PSB_RVDC32(CURAPOS);
  138. /* Save palette (gamma) */
  139. for (i = 0; i < 256; i++)
  140. p->palette[i] = PSB_RVDC32(PALETTE_A + (i << 2));
  141. if (dev_priv->hdmi_priv)
  142. oaktrail_hdmi_save(dev);
  143. /* Save performance state */
  144. regs->psb.savePERF_MODE = PSB_RVDC32(MRST_PERF_MODE);
  145. /* LVDS state */
  146. regs->psb.savePP_CONTROL = PSB_RVDC32(PP_CONTROL);
  147. regs->psb.savePFIT_PGM_RATIOS = PSB_RVDC32(PFIT_PGM_RATIOS);
  148. regs->psb.savePFIT_AUTO_RATIOS = PSB_RVDC32(PFIT_AUTO_RATIOS);
  149. regs->saveBLC_PWM_CTL = PSB_RVDC32(BLC_PWM_CTL);
  150. regs->saveBLC_PWM_CTL2 = PSB_RVDC32(BLC_PWM_CTL2);
  151. regs->psb.saveLVDS = PSB_RVDC32(LVDS);
  152. regs->psb.savePFIT_CONTROL = PSB_RVDC32(PFIT_CONTROL);
  153. regs->psb.savePP_ON_DELAYS = PSB_RVDC32(LVDSPP_ON);
  154. regs->psb.savePP_OFF_DELAYS = PSB_RVDC32(LVDSPP_OFF);
  155. regs->psb.savePP_DIVISOR = PSB_RVDC32(PP_CYCLE);
  156. /* HW overlay */
  157. regs->psb.saveOV_OVADD = PSB_RVDC32(OV_OVADD);
  158. regs->psb.saveOV_OGAMC0 = PSB_RVDC32(OV_OGAMC0);
  159. regs->psb.saveOV_OGAMC1 = PSB_RVDC32(OV_OGAMC1);
  160. regs->psb.saveOV_OGAMC2 = PSB_RVDC32(OV_OGAMC2);
  161. regs->psb.saveOV_OGAMC3 = PSB_RVDC32(OV_OGAMC3);
  162. regs->psb.saveOV_OGAMC4 = PSB_RVDC32(OV_OGAMC4);
  163. regs->psb.saveOV_OGAMC5 = PSB_RVDC32(OV_OGAMC5);
  164. /* DPST registers */
  165. regs->psb.saveHISTOGRAM_INT_CONTROL_REG =
  166. PSB_RVDC32(HISTOGRAM_INT_CONTROL);
  167. regs->psb.saveHISTOGRAM_LOGIC_CONTROL_REG =
  168. PSB_RVDC32(HISTOGRAM_LOGIC_CONTROL);
  169. regs->psb.savePWM_CONTROL_LOGIC = PSB_RVDC32(PWM_CONTROL_LOGIC);
  170. if (dev_priv->iLVDS_enable) {
  171. /* Shut down the panel */
  172. PSB_WVDC32(0, PP_CONTROL);
  173. do {
  174. pp_stat = PSB_RVDC32(PP_STATUS);
  175. } while (pp_stat & 0x80000000);
  176. /* Turn off the plane */
  177. PSB_WVDC32(0x58000000, DSPACNTR);
  178. /* Trigger the plane disable */
  179. PSB_WVDC32(0, DSPASURF);
  180. /* Wait ~4 ticks */
  181. msleep(4);
  182. /* Turn off pipe */
  183. PSB_WVDC32(0x0, PIPEACONF);
  184. /* Wait ~8 ticks */
  185. msleep(8);
  186. /* Turn off PLLs */
  187. PSB_WVDC32(0, MRST_DPLL_A);
  188. }
  189. return 0;
  190. }
  191. /**
  192. * oaktrail_restore_display_registers - restore lost register state
  193. * @dev: our DRM device
  194. *
  195. * Restore register state that was lost during suspend and resume.
  196. */
  197. static int oaktrail_restore_display_registers(struct drm_device *dev)
  198. {
  199. struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
  200. struct psb_save_area *regs = &dev_priv->regs;
  201. struct psb_pipe *p = &regs->pipe[0];
  202. u32 pp_stat;
  203. int i;
  204. /* Display arbitration + watermarks */
  205. PSB_WVDC32(regs->psb.saveDSPARB, DSPARB);
  206. PSB_WVDC32(regs->psb.saveDSPFW1, DSPFW1);
  207. PSB_WVDC32(regs->psb.saveDSPFW2, DSPFW2);
  208. PSB_WVDC32(regs->psb.saveDSPFW3, DSPFW3);
  209. PSB_WVDC32(regs->psb.saveDSPFW4, DSPFW4);
  210. PSB_WVDC32(regs->psb.saveDSPFW5, DSPFW5);
  211. PSB_WVDC32(regs->psb.saveDSPFW6, DSPFW6);
  212. PSB_WVDC32(regs->psb.saveCHICKENBIT, DSPCHICKENBIT);
  213. /* Make sure VGA plane is off. it initializes to on after reset!*/
  214. PSB_WVDC32(0x80000000, VGACNTRL);
  215. /* set the plls */
  216. PSB_WVDC32(p->fp0, MRST_FPA0);
  217. PSB_WVDC32(p->fp1, MRST_FPA1);
  218. /* Actually enable it */
  219. PSB_WVDC32(p->dpll, MRST_DPLL_A);
  220. udelay(150);
  221. /* Restore mode */
  222. PSB_WVDC32(p->htotal, HTOTAL_A);
  223. PSB_WVDC32(p->hblank, HBLANK_A);
  224. PSB_WVDC32(p->hsync, HSYNC_A);
  225. PSB_WVDC32(p->vtotal, VTOTAL_A);
  226. PSB_WVDC32(p->vblank, VBLANK_A);
  227. PSB_WVDC32(p->vsync, VSYNC_A);
  228. PSB_WVDC32(p->src, PIPEASRC);
  229. PSB_WVDC32(regs->psb.saveBCLRPAT_A, BCLRPAT_A);
  230. /* Restore performance mode*/
  231. PSB_WVDC32(regs->psb.savePERF_MODE, MRST_PERF_MODE);
  232. /* Enable the pipe*/
  233. if (dev_priv->iLVDS_enable)
  234. PSB_WVDC32(p->conf, PIPEACONF);
  235. /* Set up the plane*/
  236. PSB_WVDC32(p->linoff, DSPALINOFF);
  237. PSB_WVDC32(p->stride, DSPASTRIDE);
  238. PSB_WVDC32(p->tileoff, DSPATILEOFF);
  239. /* Enable the plane */
  240. PSB_WVDC32(p->cntr, DSPACNTR);
  241. PSB_WVDC32(p->surf, DSPASURF);
  242. /* Enable Cursor A */
  243. PSB_WVDC32(regs->psb.saveDSPACURSOR_CTRL, CURACNTR);
  244. PSB_WVDC32(regs->psb.saveDSPACURSOR_POS, CURAPOS);
  245. PSB_WVDC32(regs->psb.saveDSPACURSOR_BASE, CURABASE);
  246. /* Restore palette (gamma) */
  247. for (i = 0; i < 256; i++)
  248. PSB_WVDC32(p->palette[i], PALETTE_A + (i << 2));
  249. if (dev_priv->hdmi_priv)
  250. oaktrail_hdmi_restore(dev);
  251. if (dev_priv->iLVDS_enable) {
  252. PSB_WVDC32(regs->saveBLC_PWM_CTL2, BLC_PWM_CTL2);
  253. PSB_WVDC32(regs->psb.saveLVDS, LVDS); /*port 61180h*/
  254. PSB_WVDC32(regs->psb.savePFIT_CONTROL, PFIT_CONTROL);
  255. PSB_WVDC32(regs->psb.savePFIT_PGM_RATIOS, PFIT_PGM_RATIOS);
  256. PSB_WVDC32(regs->psb.savePFIT_AUTO_RATIOS, PFIT_AUTO_RATIOS);
  257. PSB_WVDC32(regs->saveBLC_PWM_CTL, BLC_PWM_CTL);
  258. PSB_WVDC32(regs->psb.savePP_ON_DELAYS, LVDSPP_ON);
  259. PSB_WVDC32(regs->psb.savePP_OFF_DELAYS, LVDSPP_OFF);
  260. PSB_WVDC32(regs->psb.savePP_DIVISOR, PP_CYCLE);
  261. PSB_WVDC32(regs->psb.savePP_CONTROL, PP_CONTROL);
  262. }
  263. /* Wait for cycle delay */
  264. do {
  265. pp_stat = PSB_RVDC32(PP_STATUS);
  266. } while (pp_stat & 0x08000000);
  267. /* Wait for panel power up */
  268. do {
  269. pp_stat = PSB_RVDC32(PP_STATUS);
  270. } while (pp_stat & 0x10000000);
  271. /* Restore HW overlay */
  272. PSB_WVDC32(regs->psb.saveOV_OVADD, OV_OVADD);
  273. PSB_WVDC32(regs->psb.saveOV_OGAMC0, OV_OGAMC0);
  274. PSB_WVDC32(regs->psb.saveOV_OGAMC1, OV_OGAMC1);
  275. PSB_WVDC32(regs->psb.saveOV_OGAMC2, OV_OGAMC2);
  276. PSB_WVDC32(regs->psb.saveOV_OGAMC3, OV_OGAMC3);
  277. PSB_WVDC32(regs->psb.saveOV_OGAMC4, OV_OGAMC4);
  278. PSB_WVDC32(regs->psb.saveOV_OGAMC5, OV_OGAMC5);
  279. /* DPST registers */
  280. PSB_WVDC32(regs->psb.saveHISTOGRAM_INT_CONTROL_REG,
  281. HISTOGRAM_INT_CONTROL);
  282. PSB_WVDC32(regs->psb.saveHISTOGRAM_LOGIC_CONTROL_REG,
  283. HISTOGRAM_LOGIC_CONTROL);
  284. PSB_WVDC32(regs->psb.savePWM_CONTROL_LOGIC, PWM_CONTROL_LOGIC);
  285. return 0;
  286. }
  287. /**
  288. * oaktrail_power_down - power down the display island
  289. * @dev: our DRM device
  290. *
  291. * Power down the display interface of our device
  292. */
  293. static int oaktrail_power_down(struct drm_device *dev)
  294. {
  295. struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
  296. u32 pwr_mask ;
  297. u32 pwr_sts;
  298. pwr_mask = PSB_PWRGT_DISPLAY_MASK;
  299. outl(pwr_mask, dev_priv->ospm_base + PSB_PM_SSC);
  300. while (true) {
  301. pwr_sts = inl(dev_priv->ospm_base + PSB_PM_SSS);
  302. if ((pwr_sts & pwr_mask) == pwr_mask)
  303. break;
  304. else
  305. udelay(10);
  306. }
  307. return 0;
  308. }
  309. /*
  310. * oaktrail_power_up
  311. *
  312. * Restore power to the specified island(s) (powergating)
  313. */
  314. static int oaktrail_power_up(struct drm_device *dev)
  315. {
  316. struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
  317. u32 pwr_mask = PSB_PWRGT_DISPLAY_MASK;
  318. u32 pwr_sts, pwr_cnt;
  319. pwr_cnt = inl(dev_priv->ospm_base + PSB_PM_SSC);
  320. pwr_cnt &= ~pwr_mask;
  321. outl(pwr_cnt, (dev_priv->ospm_base + PSB_PM_SSC));
  322. while (true) {
  323. pwr_sts = inl(dev_priv->ospm_base + PSB_PM_SSS);
  324. if ((pwr_sts & pwr_mask) == 0)
  325. break;
  326. else
  327. udelay(10);
  328. }
  329. return 0;
  330. }
  331. /* Oaktrail */
  332. static const struct psb_offset oaktrail_regmap[2] = {
  333. {
  334. .fp0 = MRST_FPA0,
  335. .fp1 = MRST_FPA1,
  336. .cntr = DSPACNTR,
  337. .conf = PIPEACONF,
  338. .src = PIPEASRC,
  339. .dpll = MRST_DPLL_A,
  340. .htotal = HTOTAL_A,
  341. .hblank = HBLANK_A,
  342. .hsync = HSYNC_A,
  343. .vtotal = VTOTAL_A,
  344. .vblank = VBLANK_A,
  345. .vsync = VSYNC_A,
  346. .stride = DSPASTRIDE,
  347. .size = DSPASIZE,
  348. .pos = DSPAPOS,
  349. .surf = DSPASURF,
  350. .addr = MRST_DSPABASE,
  351. .base = MRST_DSPABASE,
  352. .status = PIPEASTAT,
  353. .linoff = DSPALINOFF,
  354. .tileoff = DSPATILEOFF,
  355. .palette = PALETTE_A,
  356. },
  357. {
  358. .fp0 = FPB0,
  359. .fp1 = FPB1,
  360. .cntr = DSPBCNTR,
  361. .conf = PIPEBCONF,
  362. .src = PIPEBSRC,
  363. .dpll = DPLL_B,
  364. .htotal = HTOTAL_B,
  365. .hblank = HBLANK_B,
  366. .hsync = HSYNC_B,
  367. .vtotal = VTOTAL_B,
  368. .vblank = VBLANK_B,
  369. .vsync = VSYNC_B,
  370. .stride = DSPBSTRIDE,
  371. .size = DSPBSIZE,
  372. .pos = DSPBPOS,
  373. .surf = DSPBSURF,
  374. .addr = DSPBBASE,
  375. .base = DSPBBASE,
  376. .status = PIPEBSTAT,
  377. .linoff = DSPBLINOFF,
  378. .tileoff = DSPBTILEOFF,
  379. .palette = PALETTE_B,
  380. },
  381. };
  382. static int oaktrail_chip_setup(struct drm_device *dev)
  383. {
  384. struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
  385. int ret;
  386. dev_priv->use_msi = true;
  387. dev_priv->regmap = oaktrail_regmap;
  388. ret = mid_chip_setup(dev);
  389. if (ret < 0)
  390. return ret;
  391. if (!dev_priv->has_gct) {
  392. /* Now pull the BIOS data */
  393. psb_intel_opregion_init(dev);
  394. psb_intel_init_bios(dev);
  395. }
  396. gma_intel_setup_gmbus(dev);
  397. oaktrail_hdmi_setup(dev);
  398. return 0;
  399. }
  400. static void oaktrail_teardown(struct drm_device *dev)
  401. {
  402. struct drm_psb_private *dev_priv = to_drm_psb_private(dev);
  403. gma_intel_teardown_gmbus(dev);
  404. oaktrail_hdmi_teardown(dev);
  405. if (!dev_priv->has_gct)
  406. psb_intel_destroy_bios(dev);
  407. }
  408. const struct psb_ops oaktrail_chip_ops = {
  409. .name = "Oaktrail",
  410. .pipes = 2,
  411. .crtcs = 2,
  412. .hdmi_mask = (1 << 1),
  413. .lvds_mask = (1 << 0),
  414. .sdvo_mask = (1 << 1),
  415. .cursor_needs_phys = 0,
  416. .sgx_offset = MRST_SGX_OFFSET,
  417. .chip_setup = oaktrail_chip_setup,
  418. .chip_teardown = oaktrail_teardown,
  419. .crtc_helper = &oaktrail_helper_funcs,
  420. .output_init = oaktrail_output_init,
  421. .backlight_init = oaktrail_backlight_init,
  422. .backlight_set = oaktrail_set_brightness,
  423. .backlight_name = "oaktrail-bl",
  424. .save_regs = oaktrail_save_display_registers,
  425. .restore_regs = oaktrail_restore_display_registers,
  426. .save_crtc = gma_crtc_save,
  427. .restore_crtc = gma_crtc_restore,
  428. .power_down = oaktrail_power_down,
  429. .power_up = oaktrail_power_up,
  430. .i2c_bus = 1,
  431. };