st-dma-fence-chain.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710
  1. // SPDX-License-Identifier: MIT
  2. /*
  3. * Copyright © 2019 Intel Corporation
  4. */
  5. #include <linux/delay.h>
  6. #include <linux/dma-fence.h>
  7. #include <linux/dma-fence-chain.h>
  8. #include <linux/kernel.h>
  9. #include <linux/kthread.h>
  10. #include <linux/mm.h>
  11. #include <linux/sched/signal.h>
  12. #include <linux/slab.h>
  13. #include <linux/spinlock.h>
  14. #include <linux/random.h>
  15. #include "selftest.h"
  16. #define CHAIN_SZ (4 << 10)
  17. static struct kmem_cache *slab_fences;
  18. static inline struct mock_fence {
  19. struct dma_fence base;
  20. spinlock_t lock;
  21. } *to_mock_fence(struct dma_fence *f) {
  22. return container_of(f, struct mock_fence, base);
  23. }
  24. static const char *mock_name(struct dma_fence *f)
  25. {
  26. return "mock";
  27. }
  28. static void mock_fence_release(struct dma_fence *f)
  29. {
  30. kmem_cache_free(slab_fences, to_mock_fence(f));
  31. }
  32. static const struct dma_fence_ops mock_ops = {
  33. .get_driver_name = mock_name,
  34. .get_timeline_name = mock_name,
  35. .release = mock_fence_release,
  36. };
  37. static struct dma_fence *mock_fence(void)
  38. {
  39. struct mock_fence *f;
  40. f = kmem_cache_alloc(slab_fences, GFP_KERNEL);
  41. if (!f)
  42. return NULL;
  43. spin_lock_init(&f->lock);
  44. dma_fence_init(&f->base, &mock_ops, &f->lock, 0, 0);
  45. return &f->base;
  46. }
  47. static struct dma_fence *mock_chain(struct dma_fence *prev,
  48. struct dma_fence *fence,
  49. u64 seqno)
  50. {
  51. struct dma_fence_chain *f;
  52. f = dma_fence_chain_alloc();
  53. if (!f)
  54. return NULL;
  55. dma_fence_chain_init(f, dma_fence_get(prev), dma_fence_get(fence),
  56. seqno);
  57. return &f->base;
  58. }
  59. static int sanitycheck(void *arg)
  60. {
  61. struct dma_fence *f, *chain;
  62. int err = 0;
  63. f = mock_fence();
  64. if (!f)
  65. return -ENOMEM;
  66. chain = mock_chain(NULL, f, 1);
  67. if (!chain)
  68. err = -ENOMEM;
  69. dma_fence_enable_sw_signaling(chain);
  70. dma_fence_signal(f);
  71. dma_fence_put(f);
  72. dma_fence_put(chain);
  73. return err;
  74. }
  75. struct fence_chains {
  76. unsigned int chain_length;
  77. struct dma_fence **fences;
  78. struct dma_fence **chains;
  79. struct dma_fence *tail;
  80. };
  81. static uint64_t seqno_inc(unsigned int i)
  82. {
  83. return i + 1;
  84. }
  85. static int fence_chains_init(struct fence_chains *fc, unsigned int count,
  86. uint64_t (*seqno_fn)(unsigned int))
  87. {
  88. unsigned int i;
  89. int err = 0;
  90. fc->chains = kvmalloc_array(count, sizeof(*fc->chains),
  91. GFP_KERNEL | __GFP_ZERO);
  92. if (!fc->chains)
  93. return -ENOMEM;
  94. fc->fences = kvmalloc_array(count, sizeof(*fc->fences),
  95. GFP_KERNEL | __GFP_ZERO);
  96. if (!fc->fences) {
  97. err = -ENOMEM;
  98. goto err_chains;
  99. }
  100. fc->tail = NULL;
  101. for (i = 0; i < count; i++) {
  102. fc->fences[i] = mock_fence();
  103. if (!fc->fences[i]) {
  104. err = -ENOMEM;
  105. goto unwind;
  106. }
  107. fc->chains[i] = mock_chain(fc->tail,
  108. fc->fences[i],
  109. seqno_fn(i));
  110. if (!fc->chains[i]) {
  111. err = -ENOMEM;
  112. goto unwind;
  113. }
  114. fc->tail = fc->chains[i];
  115. dma_fence_enable_sw_signaling(fc->chains[i]);
  116. }
  117. fc->chain_length = i;
  118. return 0;
  119. unwind:
  120. for (i = 0; i < count; i++) {
  121. dma_fence_put(fc->fences[i]);
  122. dma_fence_put(fc->chains[i]);
  123. }
  124. kvfree(fc->fences);
  125. err_chains:
  126. kvfree(fc->chains);
  127. return err;
  128. }
  129. static void fence_chains_fini(struct fence_chains *fc)
  130. {
  131. unsigned int i;
  132. for (i = 0; i < fc->chain_length; i++) {
  133. dma_fence_signal(fc->fences[i]);
  134. dma_fence_put(fc->fences[i]);
  135. }
  136. kvfree(fc->fences);
  137. for (i = 0; i < fc->chain_length; i++)
  138. dma_fence_put(fc->chains[i]);
  139. kvfree(fc->chains);
  140. }
  141. static int find_seqno(void *arg)
  142. {
  143. struct fence_chains fc;
  144. struct dma_fence *fence;
  145. int err;
  146. int i;
  147. err = fence_chains_init(&fc, 64, seqno_inc);
  148. if (err)
  149. return err;
  150. fence = dma_fence_get(fc.tail);
  151. err = dma_fence_chain_find_seqno(&fence, 0);
  152. dma_fence_put(fence);
  153. if (err) {
  154. pr_err("Reported %d for find_seqno(0)!\n", err);
  155. goto err;
  156. }
  157. for (i = 0; i < fc.chain_length; i++) {
  158. fence = dma_fence_get(fc.tail);
  159. err = dma_fence_chain_find_seqno(&fence, i + 1);
  160. dma_fence_put(fence);
  161. if (err) {
  162. pr_err("Reported %d for find_seqno(%d:%d)!\n",
  163. err, fc.chain_length + 1, i + 1);
  164. goto err;
  165. }
  166. if (fence != fc.chains[i]) {
  167. pr_err("Incorrect fence reported by find_seqno(%d:%d)\n",
  168. fc.chain_length + 1, i + 1);
  169. err = -EINVAL;
  170. goto err;
  171. }
  172. dma_fence_get(fence);
  173. err = dma_fence_chain_find_seqno(&fence, i + 1);
  174. dma_fence_put(fence);
  175. if (err) {
  176. pr_err("Error reported for finding self\n");
  177. goto err;
  178. }
  179. if (fence != fc.chains[i]) {
  180. pr_err("Incorrect fence reported by find self\n");
  181. err = -EINVAL;
  182. goto err;
  183. }
  184. dma_fence_get(fence);
  185. err = dma_fence_chain_find_seqno(&fence, i + 2);
  186. dma_fence_put(fence);
  187. if (!err) {
  188. pr_err("Error not reported for future fence: find_seqno(%d:%d)!\n",
  189. i + 1, i + 2);
  190. err = -EINVAL;
  191. goto err;
  192. }
  193. dma_fence_get(fence);
  194. err = dma_fence_chain_find_seqno(&fence, i);
  195. dma_fence_put(fence);
  196. if (err) {
  197. pr_err("Error reported for previous fence!\n");
  198. goto err;
  199. }
  200. if (i > 0 && fence != fc.chains[i - 1]) {
  201. pr_err("Incorrect fence reported by find_seqno(%d:%d)\n",
  202. i + 1, i);
  203. err = -EINVAL;
  204. goto err;
  205. }
  206. }
  207. err:
  208. fence_chains_fini(&fc);
  209. return err;
  210. }
  211. static int find_signaled(void *arg)
  212. {
  213. struct fence_chains fc;
  214. struct dma_fence *fence;
  215. int err;
  216. err = fence_chains_init(&fc, 2, seqno_inc);
  217. if (err)
  218. return err;
  219. dma_fence_signal(fc.fences[0]);
  220. fence = dma_fence_get(fc.tail);
  221. err = dma_fence_chain_find_seqno(&fence, 1);
  222. dma_fence_put(fence);
  223. if (err) {
  224. pr_err("Reported %d for find_seqno()!\n", err);
  225. goto err;
  226. }
  227. if (fence && fence != fc.chains[0]) {
  228. pr_err("Incorrect chain-fence.seqno:%lld reported for completed seqno:1\n",
  229. fence->seqno);
  230. dma_fence_get(fence);
  231. err = dma_fence_chain_find_seqno(&fence, 1);
  232. dma_fence_put(fence);
  233. if (err)
  234. pr_err("Reported %d for finding self!\n", err);
  235. err = -EINVAL;
  236. }
  237. err:
  238. fence_chains_fini(&fc);
  239. return err;
  240. }
  241. static int find_out_of_order(void *arg)
  242. {
  243. struct fence_chains fc;
  244. struct dma_fence *fence;
  245. int err;
  246. err = fence_chains_init(&fc, 3, seqno_inc);
  247. if (err)
  248. return err;
  249. dma_fence_signal(fc.fences[1]);
  250. fence = dma_fence_get(fc.tail);
  251. err = dma_fence_chain_find_seqno(&fence, 2);
  252. dma_fence_put(fence);
  253. if (err) {
  254. pr_err("Reported %d for find_seqno()!\n", err);
  255. goto err;
  256. }
  257. /*
  258. * We signaled the middle fence (2) of the 1-2-3 chain. The behavior
  259. * of the dma-fence-chain is to make us wait for all the fences up to
  260. * the point we want. Since fence 1 is still not signaled, this what
  261. * we should get as fence to wait upon (fence 2 being garbage
  262. * collected during the traversal of the chain).
  263. */
  264. if (fence != fc.chains[0]) {
  265. pr_err("Incorrect chain-fence.seqno:%lld reported for completed seqno:2\n",
  266. fence ? fence->seqno : 0);
  267. err = -EINVAL;
  268. }
  269. err:
  270. fence_chains_fini(&fc);
  271. return err;
  272. }
  273. static uint64_t seqno_inc2(unsigned int i)
  274. {
  275. return 2 * i + 2;
  276. }
  277. static int find_gap(void *arg)
  278. {
  279. struct fence_chains fc;
  280. struct dma_fence *fence;
  281. int err;
  282. int i;
  283. err = fence_chains_init(&fc, 64, seqno_inc2);
  284. if (err)
  285. return err;
  286. for (i = 0; i < fc.chain_length; i++) {
  287. fence = dma_fence_get(fc.tail);
  288. err = dma_fence_chain_find_seqno(&fence, 2 * i + 1);
  289. dma_fence_put(fence);
  290. if (err) {
  291. pr_err("Reported %d for find_seqno(%d:%d)!\n",
  292. err, fc.chain_length + 1, 2 * i + 1);
  293. goto err;
  294. }
  295. if (fence != fc.chains[i]) {
  296. pr_err("Incorrect fence.seqno:%lld reported by find_seqno(%d:%d)\n",
  297. fence->seqno,
  298. fc.chain_length + 1,
  299. 2 * i + 1);
  300. err = -EINVAL;
  301. goto err;
  302. }
  303. dma_fence_get(fence);
  304. err = dma_fence_chain_find_seqno(&fence, 2 * i + 2);
  305. dma_fence_put(fence);
  306. if (err) {
  307. pr_err("Error reported for finding self\n");
  308. goto err;
  309. }
  310. if (fence != fc.chains[i]) {
  311. pr_err("Incorrect fence reported by find self\n");
  312. err = -EINVAL;
  313. goto err;
  314. }
  315. }
  316. err:
  317. fence_chains_fini(&fc);
  318. return err;
  319. }
  320. struct find_race {
  321. struct fence_chains fc;
  322. atomic_t children;
  323. };
  324. static int __find_race(void *arg)
  325. {
  326. struct find_race *data = arg;
  327. int err = 0;
  328. while (!kthread_should_stop()) {
  329. struct dma_fence *fence = dma_fence_get(data->fc.tail);
  330. int seqno;
  331. seqno = prandom_u32_max(data->fc.chain_length) + 1;
  332. err = dma_fence_chain_find_seqno(&fence, seqno);
  333. if (err) {
  334. pr_err("Failed to find fence seqno:%d\n",
  335. seqno);
  336. dma_fence_put(fence);
  337. break;
  338. }
  339. if (!fence)
  340. goto signal;
  341. /*
  342. * We can only find ourselves if we are on fence we were
  343. * looking for.
  344. */
  345. if (fence->seqno == seqno) {
  346. err = dma_fence_chain_find_seqno(&fence, seqno);
  347. if (err) {
  348. pr_err("Reported an invalid fence for find-self:%d\n",
  349. seqno);
  350. dma_fence_put(fence);
  351. break;
  352. }
  353. }
  354. dma_fence_put(fence);
  355. signal:
  356. seqno = prandom_u32_max(data->fc.chain_length - 1);
  357. dma_fence_signal(data->fc.fences[seqno]);
  358. cond_resched();
  359. }
  360. if (atomic_dec_and_test(&data->children))
  361. wake_up_var(&data->children);
  362. return err;
  363. }
  364. static int find_race(void *arg)
  365. {
  366. struct find_race data;
  367. int ncpus = num_online_cpus();
  368. struct task_struct **threads;
  369. unsigned long count;
  370. int err;
  371. int i;
  372. err = fence_chains_init(&data.fc, CHAIN_SZ, seqno_inc);
  373. if (err)
  374. return err;
  375. threads = kmalloc_array(ncpus, sizeof(*threads), GFP_KERNEL);
  376. if (!threads) {
  377. err = -ENOMEM;
  378. goto err;
  379. }
  380. atomic_set(&data.children, 0);
  381. for (i = 0; i < ncpus; i++) {
  382. threads[i] = kthread_run(__find_race, &data, "dmabuf/%d", i);
  383. if (IS_ERR(threads[i])) {
  384. ncpus = i;
  385. break;
  386. }
  387. atomic_inc(&data.children);
  388. get_task_struct(threads[i]);
  389. }
  390. wait_var_event_timeout(&data.children,
  391. !atomic_read(&data.children),
  392. 5 * HZ);
  393. for (i = 0; i < ncpus; i++) {
  394. int ret;
  395. ret = kthread_stop(threads[i]);
  396. if (ret && !err)
  397. err = ret;
  398. put_task_struct(threads[i]);
  399. }
  400. kfree(threads);
  401. count = 0;
  402. for (i = 0; i < data.fc.chain_length; i++)
  403. if (dma_fence_is_signaled(data.fc.fences[i]))
  404. count++;
  405. pr_info("Completed %lu cycles\n", count);
  406. err:
  407. fence_chains_fini(&data.fc);
  408. return err;
  409. }
  410. static int signal_forward(void *arg)
  411. {
  412. struct fence_chains fc;
  413. int err;
  414. int i;
  415. err = fence_chains_init(&fc, 64, seqno_inc);
  416. if (err)
  417. return err;
  418. for (i = 0; i < fc.chain_length; i++) {
  419. dma_fence_signal(fc.fences[i]);
  420. if (!dma_fence_is_signaled(fc.chains[i])) {
  421. pr_err("chain[%d] not signaled!\n", i);
  422. err = -EINVAL;
  423. goto err;
  424. }
  425. if (i + 1 < fc.chain_length &&
  426. dma_fence_is_signaled(fc.chains[i + 1])) {
  427. pr_err("chain[%d] is signaled!\n", i);
  428. err = -EINVAL;
  429. goto err;
  430. }
  431. }
  432. err:
  433. fence_chains_fini(&fc);
  434. return err;
  435. }
  436. static int signal_backward(void *arg)
  437. {
  438. struct fence_chains fc;
  439. int err;
  440. int i;
  441. err = fence_chains_init(&fc, 64, seqno_inc);
  442. if (err)
  443. return err;
  444. for (i = fc.chain_length; i--; ) {
  445. dma_fence_signal(fc.fences[i]);
  446. if (i > 0 && dma_fence_is_signaled(fc.chains[i])) {
  447. pr_err("chain[%d] is signaled!\n", i);
  448. err = -EINVAL;
  449. goto err;
  450. }
  451. }
  452. for (i = 0; i < fc.chain_length; i++) {
  453. if (!dma_fence_is_signaled(fc.chains[i])) {
  454. pr_err("chain[%d] was not signaled!\n", i);
  455. err = -EINVAL;
  456. goto err;
  457. }
  458. }
  459. err:
  460. fence_chains_fini(&fc);
  461. return err;
  462. }
  463. static int __wait_fence_chains(void *arg)
  464. {
  465. struct fence_chains *fc = arg;
  466. if (dma_fence_wait(fc->tail, false))
  467. return -EIO;
  468. return 0;
  469. }
  470. static int wait_forward(void *arg)
  471. {
  472. struct fence_chains fc;
  473. struct task_struct *tsk;
  474. int err;
  475. int i;
  476. err = fence_chains_init(&fc, CHAIN_SZ, seqno_inc);
  477. if (err)
  478. return err;
  479. tsk = kthread_run(__wait_fence_chains, &fc, "dmabuf/wait");
  480. if (IS_ERR(tsk)) {
  481. err = PTR_ERR(tsk);
  482. goto err;
  483. }
  484. get_task_struct(tsk);
  485. yield_to(tsk, true);
  486. for (i = 0; i < fc.chain_length; i++)
  487. dma_fence_signal(fc.fences[i]);
  488. err = kthread_stop(tsk);
  489. put_task_struct(tsk);
  490. err:
  491. fence_chains_fini(&fc);
  492. return err;
  493. }
  494. static int wait_backward(void *arg)
  495. {
  496. struct fence_chains fc;
  497. struct task_struct *tsk;
  498. int err;
  499. int i;
  500. err = fence_chains_init(&fc, CHAIN_SZ, seqno_inc);
  501. if (err)
  502. return err;
  503. tsk = kthread_run(__wait_fence_chains, &fc, "dmabuf/wait");
  504. if (IS_ERR(tsk)) {
  505. err = PTR_ERR(tsk);
  506. goto err;
  507. }
  508. get_task_struct(tsk);
  509. yield_to(tsk, true);
  510. for (i = fc.chain_length; i--; )
  511. dma_fence_signal(fc.fences[i]);
  512. err = kthread_stop(tsk);
  513. put_task_struct(tsk);
  514. err:
  515. fence_chains_fini(&fc);
  516. return err;
  517. }
  518. static void randomise_fences(struct fence_chains *fc)
  519. {
  520. unsigned int count = fc->chain_length;
  521. /* Fisher-Yates shuffle courtesy of Knuth */
  522. while (--count) {
  523. unsigned int swp;
  524. swp = prandom_u32_max(count + 1);
  525. if (swp == count)
  526. continue;
  527. swap(fc->fences[count], fc->fences[swp]);
  528. }
  529. }
  530. static int wait_random(void *arg)
  531. {
  532. struct fence_chains fc;
  533. struct task_struct *tsk;
  534. int err;
  535. int i;
  536. err = fence_chains_init(&fc, CHAIN_SZ, seqno_inc);
  537. if (err)
  538. return err;
  539. randomise_fences(&fc);
  540. tsk = kthread_run(__wait_fence_chains, &fc, "dmabuf/wait");
  541. if (IS_ERR(tsk)) {
  542. err = PTR_ERR(tsk);
  543. goto err;
  544. }
  545. get_task_struct(tsk);
  546. yield_to(tsk, true);
  547. for (i = 0; i < fc.chain_length; i++)
  548. dma_fence_signal(fc.fences[i]);
  549. err = kthread_stop(tsk);
  550. put_task_struct(tsk);
  551. err:
  552. fence_chains_fini(&fc);
  553. return err;
  554. }
  555. int dma_fence_chain(void)
  556. {
  557. static const struct subtest tests[] = {
  558. SUBTEST(sanitycheck),
  559. SUBTEST(find_seqno),
  560. SUBTEST(find_signaled),
  561. SUBTEST(find_out_of_order),
  562. SUBTEST(find_gap),
  563. SUBTEST(find_race),
  564. SUBTEST(signal_forward),
  565. SUBTEST(signal_backward),
  566. SUBTEST(wait_forward),
  567. SUBTEST(wait_backward),
  568. SUBTEST(wait_random),
  569. };
  570. int ret;
  571. pr_info("sizeof(dma_fence_chain)=%zu\n",
  572. sizeof(struct dma_fence_chain));
  573. slab_fences = KMEM_CACHE(mock_fence,
  574. SLAB_TYPESAFE_BY_RCU |
  575. SLAB_HWCACHE_ALIGN);
  576. if (!slab_fences)
  577. return -ENOMEM;
  578. ret = subtests(tests, NULL);
  579. kmem_cache_destroy(slab_fences);
  580. return ret;
  581. }