rk3288_crypto_ahash.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Crypto acceleration support for Rockchip RK3288
  4. *
  5. * Copyright (c) 2015, Fuzhou Rockchip Electronics Co., Ltd
  6. *
  7. * Author: Zain Wang <[email protected]>
  8. *
  9. * Some ideas are from marvell/cesa.c and s5p-sss.c driver.
  10. */
  11. #include <linux/device.h>
  12. #include <asm/unaligned.h>
  13. #include "rk3288_crypto.h"
  14. /*
  15. * IC can not process zero message hash,
  16. * so we put the fixed hash out when met zero message.
  17. */
  18. static bool rk_ahash_need_fallback(struct ahash_request *req)
  19. {
  20. struct scatterlist *sg;
  21. sg = req->src;
  22. while (sg) {
  23. if (!IS_ALIGNED(sg->offset, sizeof(u32))) {
  24. return true;
  25. }
  26. if (sg->length % 4) {
  27. return true;
  28. }
  29. sg = sg_next(sg);
  30. }
  31. return false;
  32. }
  33. static int rk_ahash_digest_fb(struct ahash_request *areq)
  34. {
  35. struct rk_ahash_rctx *rctx = ahash_request_ctx(areq);
  36. struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
  37. struct rk_ahash_ctx *tfmctx = crypto_ahash_ctx(tfm);
  38. ahash_request_set_tfm(&rctx->fallback_req, tfmctx->fallback_tfm);
  39. rctx->fallback_req.base.flags = areq->base.flags &
  40. CRYPTO_TFM_REQ_MAY_SLEEP;
  41. rctx->fallback_req.nbytes = areq->nbytes;
  42. rctx->fallback_req.src = areq->src;
  43. rctx->fallback_req.result = areq->result;
  44. return crypto_ahash_digest(&rctx->fallback_req);
  45. }
  46. static int zero_message_process(struct ahash_request *req)
  47. {
  48. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  49. int rk_digest_size = crypto_ahash_digestsize(tfm);
  50. switch (rk_digest_size) {
  51. case SHA1_DIGEST_SIZE:
  52. memcpy(req->result, sha1_zero_message_hash, rk_digest_size);
  53. break;
  54. case SHA256_DIGEST_SIZE:
  55. memcpy(req->result, sha256_zero_message_hash, rk_digest_size);
  56. break;
  57. case MD5_DIGEST_SIZE:
  58. memcpy(req->result, md5_zero_message_hash, rk_digest_size);
  59. break;
  60. default:
  61. return -EINVAL;
  62. }
  63. return 0;
  64. }
  65. static void rk_ahash_reg_init(struct ahash_request *req)
  66. {
  67. struct rk_ahash_rctx *rctx = ahash_request_ctx(req);
  68. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  69. struct rk_ahash_ctx *tctx = crypto_ahash_ctx(tfm);
  70. struct rk_crypto_info *dev = tctx->dev;
  71. int reg_status;
  72. reg_status = CRYPTO_READ(dev, RK_CRYPTO_CTRL) |
  73. RK_CRYPTO_HASH_FLUSH | _SBF(0xffff, 16);
  74. CRYPTO_WRITE(dev, RK_CRYPTO_CTRL, reg_status);
  75. reg_status = CRYPTO_READ(dev, RK_CRYPTO_CTRL);
  76. reg_status &= (~RK_CRYPTO_HASH_FLUSH);
  77. reg_status |= _SBF(0xffff, 16);
  78. CRYPTO_WRITE(dev, RK_CRYPTO_CTRL, reg_status);
  79. memset_io(dev->reg + RK_CRYPTO_HASH_DOUT_0, 0, 32);
  80. CRYPTO_WRITE(dev, RK_CRYPTO_INTENA, RK_CRYPTO_HRDMA_ERR_ENA |
  81. RK_CRYPTO_HRDMA_DONE_ENA);
  82. CRYPTO_WRITE(dev, RK_CRYPTO_INTSTS, RK_CRYPTO_HRDMA_ERR_INT |
  83. RK_CRYPTO_HRDMA_DONE_INT);
  84. CRYPTO_WRITE(dev, RK_CRYPTO_HASH_CTRL, rctx->mode |
  85. RK_CRYPTO_HASH_SWAP_DO);
  86. CRYPTO_WRITE(dev, RK_CRYPTO_CONF, RK_CRYPTO_BYTESWAP_HRFIFO |
  87. RK_CRYPTO_BYTESWAP_BRFIFO |
  88. RK_CRYPTO_BYTESWAP_BTFIFO);
  89. CRYPTO_WRITE(dev, RK_CRYPTO_HASH_MSG_LEN, req->nbytes);
  90. }
  91. static int rk_ahash_init(struct ahash_request *req)
  92. {
  93. struct rk_ahash_rctx *rctx = ahash_request_ctx(req);
  94. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  95. struct rk_ahash_ctx *ctx = crypto_ahash_ctx(tfm);
  96. ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
  97. rctx->fallback_req.base.flags = req->base.flags &
  98. CRYPTO_TFM_REQ_MAY_SLEEP;
  99. return crypto_ahash_init(&rctx->fallback_req);
  100. }
  101. static int rk_ahash_update(struct ahash_request *req)
  102. {
  103. struct rk_ahash_rctx *rctx = ahash_request_ctx(req);
  104. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  105. struct rk_ahash_ctx *ctx = crypto_ahash_ctx(tfm);
  106. ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
  107. rctx->fallback_req.base.flags = req->base.flags &
  108. CRYPTO_TFM_REQ_MAY_SLEEP;
  109. rctx->fallback_req.nbytes = req->nbytes;
  110. rctx->fallback_req.src = req->src;
  111. return crypto_ahash_update(&rctx->fallback_req);
  112. }
  113. static int rk_ahash_final(struct ahash_request *req)
  114. {
  115. struct rk_ahash_rctx *rctx = ahash_request_ctx(req);
  116. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  117. struct rk_ahash_ctx *ctx = crypto_ahash_ctx(tfm);
  118. ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
  119. rctx->fallback_req.base.flags = req->base.flags &
  120. CRYPTO_TFM_REQ_MAY_SLEEP;
  121. rctx->fallback_req.result = req->result;
  122. return crypto_ahash_final(&rctx->fallback_req);
  123. }
  124. static int rk_ahash_finup(struct ahash_request *req)
  125. {
  126. struct rk_ahash_rctx *rctx = ahash_request_ctx(req);
  127. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  128. struct rk_ahash_ctx *ctx = crypto_ahash_ctx(tfm);
  129. ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
  130. rctx->fallback_req.base.flags = req->base.flags &
  131. CRYPTO_TFM_REQ_MAY_SLEEP;
  132. rctx->fallback_req.nbytes = req->nbytes;
  133. rctx->fallback_req.src = req->src;
  134. rctx->fallback_req.result = req->result;
  135. return crypto_ahash_finup(&rctx->fallback_req);
  136. }
  137. static int rk_ahash_import(struct ahash_request *req, const void *in)
  138. {
  139. struct rk_ahash_rctx *rctx = ahash_request_ctx(req);
  140. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  141. struct rk_ahash_ctx *ctx = crypto_ahash_ctx(tfm);
  142. ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
  143. rctx->fallback_req.base.flags = req->base.flags &
  144. CRYPTO_TFM_REQ_MAY_SLEEP;
  145. return crypto_ahash_import(&rctx->fallback_req, in);
  146. }
  147. static int rk_ahash_export(struct ahash_request *req, void *out)
  148. {
  149. struct rk_ahash_rctx *rctx = ahash_request_ctx(req);
  150. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  151. struct rk_ahash_ctx *ctx = crypto_ahash_ctx(tfm);
  152. ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
  153. rctx->fallback_req.base.flags = req->base.flags &
  154. CRYPTO_TFM_REQ_MAY_SLEEP;
  155. return crypto_ahash_export(&rctx->fallback_req, out);
  156. }
  157. static int rk_ahash_digest(struct ahash_request *req)
  158. {
  159. struct rk_ahash_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
  160. struct rk_crypto_info *dev = tctx->dev;
  161. if (rk_ahash_need_fallback(req))
  162. return rk_ahash_digest_fb(req);
  163. if (!req->nbytes)
  164. return zero_message_process(req);
  165. return crypto_transfer_hash_request_to_engine(dev->engine, req);
  166. }
  167. static void crypto_ahash_dma_start(struct rk_crypto_info *dev, struct scatterlist *sg)
  168. {
  169. CRYPTO_WRITE(dev, RK_CRYPTO_HRDMAS, sg_dma_address(sg));
  170. CRYPTO_WRITE(dev, RK_CRYPTO_HRDMAL, sg_dma_len(sg) / 4);
  171. CRYPTO_WRITE(dev, RK_CRYPTO_CTRL, RK_CRYPTO_HASH_START |
  172. (RK_CRYPTO_HASH_START << 16));
  173. }
  174. static int rk_hash_prepare(struct crypto_engine *engine, void *breq)
  175. {
  176. struct ahash_request *areq = container_of(breq, struct ahash_request, base);
  177. struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
  178. struct rk_ahash_rctx *rctx = ahash_request_ctx(areq);
  179. struct rk_ahash_ctx *tctx = crypto_ahash_ctx(tfm);
  180. int ret;
  181. ret = dma_map_sg(tctx->dev->dev, areq->src, sg_nents(areq->src), DMA_TO_DEVICE);
  182. if (ret <= 0)
  183. return -EINVAL;
  184. rctx->nrsg = ret;
  185. return 0;
  186. }
  187. static int rk_hash_unprepare(struct crypto_engine *engine, void *breq)
  188. {
  189. struct ahash_request *areq = container_of(breq, struct ahash_request, base);
  190. struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
  191. struct rk_ahash_rctx *rctx = ahash_request_ctx(areq);
  192. struct rk_ahash_ctx *tctx = crypto_ahash_ctx(tfm);
  193. dma_unmap_sg(tctx->dev->dev, areq->src, rctx->nrsg, DMA_TO_DEVICE);
  194. return 0;
  195. }
  196. static int rk_hash_run(struct crypto_engine *engine, void *breq)
  197. {
  198. struct ahash_request *areq = container_of(breq, struct ahash_request, base);
  199. struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
  200. struct rk_ahash_rctx *rctx = ahash_request_ctx(areq);
  201. struct rk_ahash_ctx *tctx = crypto_ahash_ctx(tfm);
  202. struct scatterlist *sg = areq->src;
  203. int err = 0;
  204. int i;
  205. u32 v;
  206. rctx->mode = 0;
  207. switch (crypto_ahash_digestsize(tfm)) {
  208. case SHA1_DIGEST_SIZE:
  209. rctx->mode = RK_CRYPTO_HASH_SHA1;
  210. break;
  211. case SHA256_DIGEST_SIZE:
  212. rctx->mode = RK_CRYPTO_HASH_SHA256;
  213. break;
  214. case MD5_DIGEST_SIZE:
  215. rctx->mode = RK_CRYPTO_HASH_MD5;
  216. break;
  217. default:
  218. err = -EINVAL;
  219. goto theend;
  220. }
  221. rk_ahash_reg_init(areq);
  222. while (sg) {
  223. reinit_completion(&tctx->dev->complete);
  224. tctx->dev->status = 0;
  225. crypto_ahash_dma_start(tctx->dev, sg);
  226. wait_for_completion_interruptible_timeout(&tctx->dev->complete,
  227. msecs_to_jiffies(2000));
  228. if (!tctx->dev->status) {
  229. dev_err(tctx->dev->dev, "DMA timeout\n");
  230. err = -EFAULT;
  231. goto theend;
  232. }
  233. sg = sg_next(sg);
  234. }
  235. /*
  236. * it will take some time to process date after last dma
  237. * transmission.
  238. *
  239. * waiting time is relative with the last date len,
  240. * so cannot set a fixed time here.
  241. * 10us makes system not call here frequently wasting
  242. * efficiency, and make it response quickly when dma
  243. * complete.
  244. */
  245. while (!CRYPTO_READ(tctx->dev, RK_CRYPTO_HASH_STS))
  246. udelay(10);
  247. for (i = 0; i < crypto_ahash_digestsize(tfm) / 4; i++) {
  248. v = readl(tctx->dev->reg + RK_CRYPTO_HASH_DOUT_0 + i * 4);
  249. put_unaligned_le32(v, areq->result + i * 4);
  250. }
  251. theend:
  252. local_bh_disable();
  253. crypto_finalize_hash_request(engine, breq, err);
  254. local_bh_enable();
  255. return 0;
  256. }
  257. static int rk_cra_hash_init(struct crypto_tfm *tfm)
  258. {
  259. struct rk_ahash_ctx *tctx = crypto_tfm_ctx(tfm);
  260. struct rk_crypto_tmp *algt;
  261. struct ahash_alg *alg = __crypto_ahash_alg(tfm->__crt_alg);
  262. const char *alg_name = crypto_tfm_alg_name(tfm);
  263. algt = container_of(alg, struct rk_crypto_tmp, alg.hash);
  264. tctx->dev = algt->dev;
  265. /* for fallback */
  266. tctx->fallback_tfm = crypto_alloc_ahash(alg_name, 0,
  267. CRYPTO_ALG_NEED_FALLBACK);
  268. if (IS_ERR(tctx->fallback_tfm)) {
  269. dev_err(tctx->dev->dev, "Could not load fallback driver.\n");
  270. return PTR_ERR(tctx->fallback_tfm);
  271. }
  272. crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
  273. sizeof(struct rk_ahash_rctx) +
  274. crypto_ahash_reqsize(tctx->fallback_tfm));
  275. tctx->enginectx.op.do_one_request = rk_hash_run;
  276. tctx->enginectx.op.prepare_request = rk_hash_prepare;
  277. tctx->enginectx.op.unprepare_request = rk_hash_unprepare;
  278. return 0;
  279. }
  280. static void rk_cra_hash_exit(struct crypto_tfm *tfm)
  281. {
  282. struct rk_ahash_ctx *tctx = crypto_tfm_ctx(tfm);
  283. crypto_free_ahash(tctx->fallback_tfm);
  284. }
  285. struct rk_crypto_tmp rk_ahash_sha1 = {
  286. .type = ALG_TYPE_HASH,
  287. .alg.hash = {
  288. .init = rk_ahash_init,
  289. .update = rk_ahash_update,
  290. .final = rk_ahash_final,
  291. .finup = rk_ahash_finup,
  292. .export = rk_ahash_export,
  293. .import = rk_ahash_import,
  294. .digest = rk_ahash_digest,
  295. .halg = {
  296. .digestsize = SHA1_DIGEST_SIZE,
  297. .statesize = sizeof(struct sha1_state),
  298. .base = {
  299. .cra_name = "sha1",
  300. .cra_driver_name = "rk-sha1",
  301. .cra_priority = 300,
  302. .cra_flags = CRYPTO_ALG_ASYNC |
  303. CRYPTO_ALG_NEED_FALLBACK,
  304. .cra_blocksize = SHA1_BLOCK_SIZE,
  305. .cra_ctxsize = sizeof(struct rk_ahash_ctx),
  306. .cra_alignmask = 3,
  307. .cra_init = rk_cra_hash_init,
  308. .cra_exit = rk_cra_hash_exit,
  309. .cra_module = THIS_MODULE,
  310. }
  311. }
  312. }
  313. };
  314. struct rk_crypto_tmp rk_ahash_sha256 = {
  315. .type = ALG_TYPE_HASH,
  316. .alg.hash = {
  317. .init = rk_ahash_init,
  318. .update = rk_ahash_update,
  319. .final = rk_ahash_final,
  320. .finup = rk_ahash_finup,
  321. .export = rk_ahash_export,
  322. .import = rk_ahash_import,
  323. .digest = rk_ahash_digest,
  324. .halg = {
  325. .digestsize = SHA256_DIGEST_SIZE,
  326. .statesize = sizeof(struct sha256_state),
  327. .base = {
  328. .cra_name = "sha256",
  329. .cra_driver_name = "rk-sha256",
  330. .cra_priority = 300,
  331. .cra_flags = CRYPTO_ALG_ASYNC |
  332. CRYPTO_ALG_NEED_FALLBACK,
  333. .cra_blocksize = SHA256_BLOCK_SIZE,
  334. .cra_ctxsize = sizeof(struct rk_ahash_ctx),
  335. .cra_alignmask = 3,
  336. .cra_init = rk_cra_hash_init,
  337. .cra_exit = rk_cra_hash_exit,
  338. .cra_module = THIS_MODULE,
  339. }
  340. }
  341. }
  342. };
  343. struct rk_crypto_tmp rk_ahash_md5 = {
  344. .type = ALG_TYPE_HASH,
  345. .alg.hash = {
  346. .init = rk_ahash_init,
  347. .update = rk_ahash_update,
  348. .final = rk_ahash_final,
  349. .finup = rk_ahash_finup,
  350. .export = rk_ahash_export,
  351. .import = rk_ahash_import,
  352. .digest = rk_ahash_digest,
  353. .halg = {
  354. .digestsize = MD5_DIGEST_SIZE,
  355. .statesize = sizeof(struct md5_state),
  356. .base = {
  357. .cra_name = "md5",
  358. .cra_driver_name = "rk-md5",
  359. .cra_priority = 300,
  360. .cra_flags = CRYPTO_ALG_ASYNC |
  361. CRYPTO_ALG_NEED_FALLBACK,
  362. .cra_blocksize = SHA1_BLOCK_SIZE,
  363. .cra_ctxsize = sizeof(struct rk_ahash_ctx),
  364. .cra_alignmask = 3,
  365. .cra_init = rk_cra_hash_init,
  366. .cra_exit = rk_cra_hash_exit,
  367. .cra_module = THIS_MODULE,
  368. }
  369. }
  370. }
  371. };