hash.c 36 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Hash algorithms supported by the CESA: MD5, SHA1 and SHA256.
  4. *
  5. * Author: Boris Brezillon <[email protected]>
  6. * Author: Arnaud Ebalard <[email protected]>
  7. *
  8. * This work is based on an initial version written by
  9. * Sebastian Andrzej Siewior < sebastian at breakpoint dot cc >
  10. */
  11. #include <crypto/hmac.h>
  12. #include <crypto/md5.h>
  13. #include <crypto/sha1.h>
  14. #include <crypto/sha2.h>
  15. #include <linux/device.h>
  16. #include <linux/dma-mapping.h>
  17. #include "cesa.h"
  18. struct mv_cesa_ahash_dma_iter {
  19. struct mv_cesa_dma_iter base;
  20. struct mv_cesa_sg_dma_iter src;
  21. };
  22. static inline void
  23. mv_cesa_ahash_req_iter_init(struct mv_cesa_ahash_dma_iter *iter,
  24. struct ahash_request *req)
  25. {
  26. struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
  27. unsigned int len = req->nbytes + creq->cache_ptr;
  28. if (!creq->last_req)
  29. len &= ~CESA_HASH_BLOCK_SIZE_MSK;
  30. mv_cesa_req_dma_iter_init(&iter->base, len);
  31. mv_cesa_sg_dma_iter_init(&iter->src, req->src, DMA_TO_DEVICE);
  32. iter->src.op_offset = creq->cache_ptr;
  33. }
  34. static inline bool
  35. mv_cesa_ahash_req_iter_next_op(struct mv_cesa_ahash_dma_iter *iter)
  36. {
  37. iter->src.op_offset = 0;
  38. return mv_cesa_req_dma_iter_next_op(&iter->base);
  39. }
  40. static inline int
  41. mv_cesa_ahash_dma_alloc_cache(struct mv_cesa_ahash_dma_req *req, gfp_t flags)
  42. {
  43. req->cache = dma_pool_alloc(cesa_dev->dma->cache_pool, flags,
  44. &req->cache_dma);
  45. if (!req->cache)
  46. return -ENOMEM;
  47. return 0;
  48. }
  49. static inline void
  50. mv_cesa_ahash_dma_free_cache(struct mv_cesa_ahash_dma_req *req)
  51. {
  52. if (!req->cache)
  53. return;
  54. dma_pool_free(cesa_dev->dma->cache_pool, req->cache,
  55. req->cache_dma);
  56. }
  57. static int mv_cesa_ahash_dma_alloc_padding(struct mv_cesa_ahash_dma_req *req,
  58. gfp_t flags)
  59. {
  60. if (req->padding)
  61. return 0;
  62. req->padding = dma_pool_alloc(cesa_dev->dma->padding_pool, flags,
  63. &req->padding_dma);
  64. if (!req->padding)
  65. return -ENOMEM;
  66. return 0;
  67. }
  68. static void mv_cesa_ahash_dma_free_padding(struct mv_cesa_ahash_dma_req *req)
  69. {
  70. if (!req->padding)
  71. return;
  72. dma_pool_free(cesa_dev->dma->padding_pool, req->padding,
  73. req->padding_dma);
  74. req->padding = NULL;
  75. }
  76. static inline void mv_cesa_ahash_dma_last_cleanup(struct ahash_request *req)
  77. {
  78. struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
  79. mv_cesa_ahash_dma_free_padding(&creq->req.dma);
  80. }
  81. static inline void mv_cesa_ahash_dma_cleanup(struct ahash_request *req)
  82. {
  83. struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
  84. dma_unmap_sg(cesa_dev->dev, req->src, creq->src_nents, DMA_TO_DEVICE);
  85. mv_cesa_ahash_dma_free_cache(&creq->req.dma);
  86. mv_cesa_dma_cleanup(&creq->base);
  87. }
  88. static inline void mv_cesa_ahash_cleanup(struct ahash_request *req)
  89. {
  90. struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
  91. if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ)
  92. mv_cesa_ahash_dma_cleanup(req);
  93. }
  94. static void mv_cesa_ahash_last_cleanup(struct ahash_request *req)
  95. {
  96. struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
  97. if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ)
  98. mv_cesa_ahash_dma_last_cleanup(req);
  99. }
  100. static int mv_cesa_ahash_pad_len(struct mv_cesa_ahash_req *creq)
  101. {
  102. unsigned int index, padlen;
  103. index = creq->len & CESA_HASH_BLOCK_SIZE_MSK;
  104. padlen = (index < 56) ? (56 - index) : (64 + 56 - index);
  105. return padlen;
  106. }
  107. static int mv_cesa_ahash_pad_req(struct mv_cesa_ahash_req *creq, u8 *buf)
  108. {
  109. unsigned int padlen;
  110. buf[0] = 0x80;
  111. /* Pad out to 56 mod 64 */
  112. padlen = mv_cesa_ahash_pad_len(creq);
  113. memset(buf + 1, 0, padlen - 1);
  114. if (creq->algo_le) {
  115. __le64 bits = cpu_to_le64(creq->len << 3);
  116. memcpy(buf + padlen, &bits, sizeof(bits));
  117. } else {
  118. __be64 bits = cpu_to_be64(creq->len << 3);
  119. memcpy(buf + padlen, &bits, sizeof(bits));
  120. }
  121. return padlen + 8;
  122. }
  123. static void mv_cesa_ahash_std_step(struct ahash_request *req)
  124. {
  125. struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
  126. struct mv_cesa_ahash_std_req *sreq = &creq->req.std;
  127. struct mv_cesa_engine *engine = creq->base.engine;
  128. struct mv_cesa_op_ctx *op;
  129. unsigned int new_cache_ptr = 0;
  130. u32 frag_mode;
  131. size_t len;
  132. unsigned int digsize;
  133. int i;
  134. mv_cesa_adjust_op(engine, &creq->op_tmpl);
  135. if (engine->pool)
  136. memcpy(engine->sram_pool, &creq->op_tmpl,
  137. sizeof(creq->op_tmpl));
  138. else
  139. memcpy_toio(engine->sram, &creq->op_tmpl,
  140. sizeof(creq->op_tmpl));
  141. if (!sreq->offset) {
  142. digsize = crypto_ahash_digestsize(crypto_ahash_reqtfm(req));
  143. for (i = 0; i < digsize / 4; i++)
  144. writel_relaxed(creq->state[i],
  145. engine->regs + CESA_IVDIG(i));
  146. }
  147. if (creq->cache_ptr) {
  148. if (engine->pool)
  149. memcpy(engine->sram_pool + CESA_SA_DATA_SRAM_OFFSET,
  150. creq->cache, creq->cache_ptr);
  151. else
  152. memcpy_toio(engine->sram + CESA_SA_DATA_SRAM_OFFSET,
  153. creq->cache, creq->cache_ptr);
  154. }
  155. len = min_t(size_t, req->nbytes + creq->cache_ptr - sreq->offset,
  156. CESA_SA_SRAM_PAYLOAD_SIZE);
  157. if (!creq->last_req) {
  158. new_cache_ptr = len & CESA_HASH_BLOCK_SIZE_MSK;
  159. len &= ~CESA_HASH_BLOCK_SIZE_MSK;
  160. }
  161. if (len - creq->cache_ptr)
  162. sreq->offset += mv_cesa_sg_copy_to_sram(
  163. engine, req->src, creq->src_nents,
  164. CESA_SA_DATA_SRAM_OFFSET + creq->cache_ptr,
  165. len - creq->cache_ptr, sreq->offset);
  166. op = &creq->op_tmpl;
  167. frag_mode = mv_cesa_get_op_cfg(op) & CESA_SA_DESC_CFG_FRAG_MSK;
  168. if (creq->last_req && sreq->offset == req->nbytes &&
  169. creq->len <= CESA_SA_DESC_MAC_SRC_TOTAL_LEN_MAX) {
  170. if (frag_mode == CESA_SA_DESC_CFG_FIRST_FRAG)
  171. frag_mode = CESA_SA_DESC_CFG_NOT_FRAG;
  172. else if (frag_mode == CESA_SA_DESC_CFG_MID_FRAG)
  173. frag_mode = CESA_SA_DESC_CFG_LAST_FRAG;
  174. }
  175. if (frag_mode == CESA_SA_DESC_CFG_NOT_FRAG ||
  176. frag_mode == CESA_SA_DESC_CFG_LAST_FRAG) {
  177. if (len &&
  178. creq->len <= CESA_SA_DESC_MAC_SRC_TOTAL_LEN_MAX) {
  179. mv_cesa_set_mac_op_total_len(op, creq->len);
  180. } else {
  181. int trailerlen = mv_cesa_ahash_pad_len(creq) + 8;
  182. if (len + trailerlen > CESA_SA_SRAM_PAYLOAD_SIZE) {
  183. len &= CESA_HASH_BLOCK_SIZE_MSK;
  184. new_cache_ptr = 64 - trailerlen;
  185. if (engine->pool)
  186. memcpy(creq->cache,
  187. engine->sram_pool +
  188. CESA_SA_DATA_SRAM_OFFSET + len,
  189. new_cache_ptr);
  190. else
  191. memcpy_fromio(creq->cache,
  192. engine->sram +
  193. CESA_SA_DATA_SRAM_OFFSET +
  194. len,
  195. new_cache_ptr);
  196. } else {
  197. i = mv_cesa_ahash_pad_req(creq, creq->cache);
  198. len += i;
  199. if (engine->pool)
  200. memcpy(engine->sram_pool + len +
  201. CESA_SA_DATA_SRAM_OFFSET,
  202. creq->cache, i);
  203. else
  204. memcpy_toio(engine->sram + len +
  205. CESA_SA_DATA_SRAM_OFFSET,
  206. creq->cache, i);
  207. }
  208. if (frag_mode == CESA_SA_DESC_CFG_LAST_FRAG)
  209. frag_mode = CESA_SA_DESC_CFG_MID_FRAG;
  210. else
  211. frag_mode = CESA_SA_DESC_CFG_FIRST_FRAG;
  212. }
  213. }
  214. mv_cesa_set_mac_op_frag_len(op, len);
  215. mv_cesa_update_op_cfg(op, frag_mode, CESA_SA_DESC_CFG_FRAG_MSK);
  216. /* FIXME: only update enc_len field */
  217. if (engine->pool)
  218. memcpy(engine->sram_pool, op, sizeof(*op));
  219. else
  220. memcpy_toio(engine->sram, op, sizeof(*op));
  221. if (frag_mode == CESA_SA_DESC_CFG_FIRST_FRAG)
  222. mv_cesa_update_op_cfg(op, CESA_SA_DESC_CFG_MID_FRAG,
  223. CESA_SA_DESC_CFG_FRAG_MSK);
  224. creq->cache_ptr = new_cache_ptr;
  225. mv_cesa_set_int_mask(engine, CESA_SA_INT_ACCEL0_DONE);
  226. writel_relaxed(CESA_SA_CFG_PARA_DIS, engine->regs + CESA_SA_CFG);
  227. WARN_ON(readl(engine->regs + CESA_SA_CMD) &
  228. CESA_SA_CMD_EN_CESA_SA_ACCL0);
  229. writel(CESA_SA_CMD_EN_CESA_SA_ACCL0, engine->regs + CESA_SA_CMD);
  230. }
  231. static int mv_cesa_ahash_std_process(struct ahash_request *req, u32 status)
  232. {
  233. struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
  234. struct mv_cesa_ahash_std_req *sreq = &creq->req.std;
  235. if (sreq->offset < (req->nbytes - creq->cache_ptr))
  236. return -EINPROGRESS;
  237. return 0;
  238. }
  239. static inline void mv_cesa_ahash_dma_prepare(struct ahash_request *req)
  240. {
  241. struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
  242. struct mv_cesa_req *basereq = &creq->base;
  243. mv_cesa_dma_prepare(basereq, basereq->engine);
  244. }
  245. static void mv_cesa_ahash_std_prepare(struct ahash_request *req)
  246. {
  247. struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
  248. struct mv_cesa_ahash_std_req *sreq = &creq->req.std;
  249. sreq->offset = 0;
  250. }
  251. static void mv_cesa_ahash_dma_step(struct ahash_request *req)
  252. {
  253. struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
  254. struct mv_cesa_req *base = &creq->base;
  255. /* We must explicitly set the digest state. */
  256. if (base->chain.first->flags & CESA_TDMA_SET_STATE) {
  257. struct mv_cesa_engine *engine = base->engine;
  258. int i;
  259. /* Set the hash state in the IVDIG regs. */
  260. for (i = 0; i < ARRAY_SIZE(creq->state); i++)
  261. writel_relaxed(creq->state[i], engine->regs +
  262. CESA_IVDIG(i));
  263. }
  264. mv_cesa_dma_step(base);
  265. }
  266. static void mv_cesa_ahash_step(struct crypto_async_request *req)
  267. {
  268. struct ahash_request *ahashreq = ahash_request_cast(req);
  269. struct mv_cesa_ahash_req *creq = ahash_request_ctx(ahashreq);
  270. if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ)
  271. mv_cesa_ahash_dma_step(ahashreq);
  272. else
  273. mv_cesa_ahash_std_step(ahashreq);
  274. }
  275. static int mv_cesa_ahash_process(struct crypto_async_request *req, u32 status)
  276. {
  277. struct ahash_request *ahashreq = ahash_request_cast(req);
  278. struct mv_cesa_ahash_req *creq = ahash_request_ctx(ahashreq);
  279. if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ)
  280. return mv_cesa_dma_process(&creq->base, status);
  281. return mv_cesa_ahash_std_process(ahashreq, status);
  282. }
  283. static void mv_cesa_ahash_complete(struct crypto_async_request *req)
  284. {
  285. struct ahash_request *ahashreq = ahash_request_cast(req);
  286. struct mv_cesa_ahash_req *creq = ahash_request_ctx(ahashreq);
  287. struct mv_cesa_engine *engine = creq->base.engine;
  288. unsigned int digsize;
  289. int i;
  290. digsize = crypto_ahash_digestsize(crypto_ahash_reqtfm(ahashreq));
  291. if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ &&
  292. (creq->base.chain.last->flags & CESA_TDMA_TYPE_MSK) ==
  293. CESA_TDMA_RESULT) {
  294. __le32 *data = NULL;
  295. /*
  296. * Result is already in the correct endianness when the SA is
  297. * used
  298. */
  299. data = creq->base.chain.last->op->ctx.hash.hash;
  300. for (i = 0; i < digsize / 4; i++)
  301. creq->state[i] = le32_to_cpu(data[i]);
  302. memcpy(ahashreq->result, data, digsize);
  303. } else {
  304. for (i = 0; i < digsize / 4; i++)
  305. creq->state[i] = readl_relaxed(engine->regs +
  306. CESA_IVDIG(i));
  307. if (creq->last_req) {
  308. /*
  309. * Hardware's MD5 digest is in little endian format, but
  310. * SHA in big endian format
  311. */
  312. if (creq->algo_le) {
  313. __le32 *result = (void *)ahashreq->result;
  314. for (i = 0; i < digsize / 4; i++)
  315. result[i] = cpu_to_le32(creq->state[i]);
  316. } else {
  317. __be32 *result = (void *)ahashreq->result;
  318. for (i = 0; i < digsize / 4; i++)
  319. result[i] = cpu_to_be32(creq->state[i]);
  320. }
  321. }
  322. }
  323. atomic_sub(ahashreq->nbytes, &engine->load);
  324. }
  325. static void mv_cesa_ahash_prepare(struct crypto_async_request *req,
  326. struct mv_cesa_engine *engine)
  327. {
  328. struct ahash_request *ahashreq = ahash_request_cast(req);
  329. struct mv_cesa_ahash_req *creq = ahash_request_ctx(ahashreq);
  330. creq->base.engine = engine;
  331. if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ)
  332. mv_cesa_ahash_dma_prepare(ahashreq);
  333. else
  334. mv_cesa_ahash_std_prepare(ahashreq);
  335. }
  336. static void mv_cesa_ahash_req_cleanup(struct crypto_async_request *req)
  337. {
  338. struct ahash_request *ahashreq = ahash_request_cast(req);
  339. struct mv_cesa_ahash_req *creq = ahash_request_ctx(ahashreq);
  340. if (creq->last_req)
  341. mv_cesa_ahash_last_cleanup(ahashreq);
  342. mv_cesa_ahash_cleanup(ahashreq);
  343. if (creq->cache_ptr)
  344. sg_pcopy_to_buffer(ahashreq->src, creq->src_nents,
  345. creq->cache,
  346. creq->cache_ptr,
  347. ahashreq->nbytes - creq->cache_ptr);
  348. }
  349. static const struct mv_cesa_req_ops mv_cesa_ahash_req_ops = {
  350. .step = mv_cesa_ahash_step,
  351. .process = mv_cesa_ahash_process,
  352. .cleanup = mv_cesa_ahash_req_cleanup,
  353. .complete = mv_cesa_ahash_complete,
  354. };
  355. static void mv_cesa_ahash_init(struct ahash_request *req,
  356. struct mv_cesa_op_ctx *tmpl, bool algo_le)
  357. {
  358. struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
  359. memset(creq, 0, sizeof(*creq));
  360. mv_cesa_update_op_cfg(tmpl,
  361. CESA_SA_DESC_CFG_OP_MAC_ONLY |
  362. CESA_SA_DESC_CFG_FIRST_FRAG,
  363. CESA_SA_DESC_CFG_OP_MSK |
  364. CESA_SA_DESC_CFG_FRAG_MSK);
  365. mv_cesa_set_mac_op_total_len(tmpl, 0);
  366. mv_cesa_set_mac_op_frag_len(tmpl, 0);
  367. creq->op_tmpl = *tmpl;
  368. creq->len = 0;
  369. creq->algo_le = algo_le;
  370. }
  371. static inline int mv_cesa_ahash_cra_init(struct crypto_tfm *tfm)
  372. {
  373. struct mv_cesa_hash_ctx *ctx = crypto_tfm_ctx(tfm);
  374. ctx->base.ops = &mv_cesa_ahash_req_ops;
  375. crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
  376. sizeof(struct mv_cesa_ahash_req));
  377. return 0;
  378. }
  379. static bool mv_cesa_ahash_cache_req(struct ahash_request *req)
  380. {
  381. struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
  382. bool cached = false;
  383. if (creq->cache_ptr + req->nbytes < CESA_MAX_HASH_BLOCK_SIZE &&
  384. !creq->last_req) {
  385. cached = true;
  386. if (!req->nbytes)
  387. return cached;
  388. sg_pcopy_to_buffer(req->src, creq->src_nents,
  389. creq->cache + creq->cache_ptr,
  390. req->nbytes, 0);
  391. creq->cache_ptr += req->nbytes;
  392. }
  393. return cached;
  394. }
  395. static struct mv_cesa_op_ctx *
  396. mv_cesa_dma_add_frag(struct mv_cesa_tdma_chain *chain,
  397. struct mv_cesa_op_ctx *tmpl, unsigned int frag_len,
  398. gfp_t flags)
  399. {
  400. struct mv_cesa_op_ctx *op;
  401. int ret;
  402. op = mv_cesa_dma_add_op(chain, tmpl, false, flags);
  403. if (IS_ERR(op))
  404. return op;
  405. /* Set the operation block fragment length. */
  406. mv_cesa_set_mac_op_frag_len(op, frag_len);
  407. /* Append dummy desc to launch operation */
  408. ret = mv_cesa_dma_add_dummy_launch(chain, flags);
  409. if (ret)
  410. return ERR_PTR(ret);
  411. if (mv_cesa_mac_op_is_first_frag(tmpl))
  412. mv_cesa_update_op_cfg(tmpl,
  413. CESA_SA_DESC_CFG_MID_FRAG,
  414. CESA_SA_DESC_CFG_FRAG_MSK);
  415. return op;
  416. }
  417. static int
  418. mv_cesa_ahash_dma_add_cache(struct mv_cesa_tdma_chain *chain,
  419. struct mv_cesa_ahash_req *creq,
  420. gfp_t flags)
  421. {
  422. struct mv_cesa_ahash_dma_req *ahashdreq = &creq->req.dma;
  423. int ret;
  424. if (!creq->cache_ptr)
  425. return 0;
  426. ret = mv_cesa_ahash_dma_alloc_cache(ahashdreq, flags);
  427. if (ret)
  428. return ret;
  429. memcpy(ahashdreq->cache, creq->cache, creq->cache_ptr);
  430. return mv_cesa_dma_add_data_transfer(chain,
  431. CESA_SA_DATA_SRAM_OFFSET,
  432. ahashdreq->cache_dma,
  433. creq->cache_ptr,
  434. CESA_TDMA_DST_IN_SRAM,
  435. flags);
  436. }
  437. static struct mv_cesa_op_ctx *
  438. mv_cesa_ahash_dma_last_req(struct mv_cesa_tdma_chain *chain,
  439. struct mv_cesa_ahash_dma_iter *dma_iter,
  440. struct mv_cesa_ahash_req *creq,
  441. unsigned int frag_len, gfp_t flags)
  442. {
  443. struct mv_cesa_ahash_dma_req *ahashdreq = &creq->req.dma;
  444. unsigned int len, trailerlen, padoff = 0;
  445. struct mv_cesa_op_ctx *op;
  446. int ret;
  447. /*
  448. * If the transfer is smaller than our maximum length, and we have
  449. * some data outstanding, we can ask the engine to finish the hash.
  450. */
  451. if (creq->len <= CESA_SA_DESC_MAC_SRC_TOTAL_LEN_MAX && frag_len) {
  452. op = mv_cesa_dma_add_frag(chain, &creq->op_tmpl, frag_len,
  453. flags);
  454. if (IS_ERR(op))
  455. return op;
  456. mv_cesa_set_mac_op_total_len(op, creq->len);
  457. mv_cesa_update_op_cfg(op, mv_cesa_mac_op_is_first_frag(op) ?
  458. CESA_SA_DESC_CFG_NOT_FRAG :
  459. CESA_SA_DESC_CFG_LAST_FRAG,
  460. CESA_SA_DESC_CFG_FRAG_MSK);
  461. ret = mv_cesa_dma_add_result_op(chain,
  462. CESA_SA_CFG_SRAM_OFFSET,
  463. CESA_SA_DATA_SRAM_OFFSET,
  464. CESA_TDMA_SRC_IN_SRAM, flags);
  465. if (ret)
  466. return ERR_PTR(-ENOMEM);
  467. return op;
  468. }
  469. /*
  470. * The request is longer than the engine can handle, or we have
  471. * no data outstanding. Manually generate the padding, adding it
  472. * as a "mid" fragment.
  473. */
  474. ret = mv_cesa_ahash_dma_alloc_padding(ahashdreq, flags);
  475. if (ret)
  476. return ERR_PTR(ret);
  477. trailerlen = mv_cesa_ahash_pad_req(creq, ahashdreq->padding);
  478. len = min(CESA_SA_SRAM_PAYLOAD_SIZE - frag_len, trailerlen);
  479. if (len) {
  480. ret = mv_cesa_dma_add_data_transfer(chain,
  481. CESA_SA_DATA_SRAM_OFFSET +
  482. frag_len,
  483. ahashdreq->padding_dma,
  484. len, CESA_TDMA_DST_IN_SRAM,
  485. flags);
  486. if (ret)
  487. return ERR_PTR(ret);
  488. op = mv_cesa_dma_add_frag(chain, &creq->op_tmpl, frag_len + len,
  489. flags);
  490. if (IS_ERR(op))
  491. return op;
  492. if (len == trailerlen)
  493. return op;
  494. padoff += len;
  495. }
  496. ret = mv_cesa_dma_add_data_transfer(chain,
  497. CESA_SA_DATA_SRAM_OFFSET,
  498. ahashdreq->padding_dma +
  499. padoff,
  500. trailerlen - padoff,
  501. CESA_TDMA_DST_IN_SRAM,
  502. flags);
  503. if (ret)
  504. return ERR_PTR(ret);
  505. return mv_cesa_dma_add_frag(chain, &creq->op_tmpl, trailerlen - padoff,
  506. flags);
  507. }
  508. static int mv_cesa_ahash_dma_req_init(struct ahash_request *req)
  509. {
  510. struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
  511. gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
  512. GFP_KERNEL : GFP_ATOMIC;
  513. struct mv_cesa_req *basereq = &creq->base;
  514. struct mv_cesa_ahash_dma_iter iter;
  515. struct mv_cesa_op_ctx *op = NULL;
  516. unsigned int frag_len;
  517. bool set_state = false;
  518. int ret;
  519. u32 type;
  520. basereq->chain.first = NULL;
  521. basereq->chain.last = NULL;
  522. if (!mv_cesa_mac_op_is_first_frag(&creq->op_tmpl))
  523. set_state = true;
  524. if (creq->src_nents) {
  525. ret = dma_map_sg(cesa_dev->dev, req->src, creq->src_nents,
  526. DMA_TO_DEVICE);
  527. if (!ret) {
  528. ret = -ENOMEM;
  529. goto err;
  530. }
  531. }
  532. mv_cesa_tdma_desc_iter_init(&basereq->chain);
  533. mv_cesa_ahash_req_iter_init(&iter, req);
  534. /*
  535. * Add the cache (left-over data from a previous block) first.
  536. * This will never overflow the SRAM size.
  537. */
  538. ret = mv_cesa_ahash_dma_add_cache(&basereq->chain, creq, flags);
  539. if (ret)
  540. goto err_free_tdma;
  541. if (iter.src.sg) {
  542. /*
  543. * Add all the new data, inserting an operation block and
  544. * launch command between each full SRAM block-worth of
  545. * data. We intentionally do not add the final op block.
  546. */
  547. while (true) {
  548. ret = mv_cesa_dma_add_op_transfers(&basereq->chain,
  549. &iter.base,
  550. &iter.src, flags);
  551. if (ret)
  552. goto err_free_tdma;
  553. frag_len = iter.base.op_len;
  554. if (!mv_cesa_ahash_req_iter_next_op(&iter))
  555. break;
  556. op = mv_cesa_dma_add_frag(&basereq->chain,
  557. &creq->op_tmpl,
  558. frag_len, flags);
  559. if (IS_ERR(op)) {
  560. ret = PTR_ERR(op);
  561. goto err_free_tdma;
  562. }
  563. }
  564. } else {
  565. /* Account for the data that was in the cache. */
  566. frag_len = iter.base.op_len;
  567. }
  568. /*
  569. * At this point, frag_len indicates whether we have any data
  570. * outstanding which needs an operation. Queue up the final
  571. * operation, which depends whether this is the final request.
  572. */
  573. if (creq->last_req)
  574. op = mv_cesa_ahash_dma_last_req(&basereq->chain, &iter, creq,
  575. frag_len, flags);
  576. else if (frag_len)
  577. op = mv_cesa_dma_add_frag(&basereq->chain, &creq->op_tmpl,
  578. frag_len, flags);
  579. if (IS_ERR(op)) {
  580. ret = PTR_ERR(op);
  581. goto err_free_tdma;
  582. }
  583. /*
  584. * If results are copied via DMA, this means that this
  585. * request can be directly processed by the engine,
  586. * without partial updates. So we can chain it at the
  587. * DMA level with other requests.
  588. */
  589. type = basereq->chain.last->flags & CESA_TDMA_TYPE_MSK;
  590. if (op && type != CESA_TDMA_RESULT) {
  591. /* Add dummy desc to wait for crypto operation end */
  592. ret = mv_cesa_dma_add_dummy_end(&basereq->chain, flags);
  593. if (ret)
  594. goto err_free_tdma;
  595. }
  596. if (!creq->last_req)
  597. creq->cache_ptr = req->nbytes + creq->cache_ptr -
  598. iter.base.len;
  599. else
  600. creq->cache_ptr = 0;
  601. basereq->chain.last->flags |= CESA_TDMA_END_OF_REQ;
  602. if (type != CESA_TDMA_RESULT)
  603. basereq->chain.last->flags |= CESA_TDMA_BREAK_CHAIN;
  604. if (set_state) {
  605. /*
  606. * Put the CESA_TDMA_SET_STATE flag on the first tdma desc to
  607. * let the step logic know that the IVDIG registers should be
  608. * explicitly set before launching a TDMA chain.
  609. */
  610. basereq->chain.first->flags |= CESA_TDMA_SET_STATE;
  611. }
  612. return 0;
  613. err_free_tdma:
  614. mv_cesa_dma_cleanup(basereq);
  615. dma_unmap_sg(cesa_dev->dev, req->src, creq->src_nents, DMA_TO_DEVICE);
  616. err:
  617. mv_cesa_ahash_last_cleanup(req);
  618. return ret;
  619. }
  620. static int mv_cesa_ahash_req_init(struct ahash_request *req, bool *cached)
  621. {
  622. struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
  623. creq->src_nents = sg_nents_for_len(req->src, req->nbytes);
  624. if (creq->src_nents < 0) {
  625. dev_err(cesa_dev->dev, "Invalid number of src SG");
  626. return creq->src_nents;
  627. }
  628. *cached = mv_cesa_ahash_cache_req(req);
  629. if (*cached)
  630. return 0;
  631. if (cesa_dev->caps->has_tdma)
  632. return mv_cesa_ahash_dma_req_init(req);
  633. else
  634. return 0;
  635. }
  636. static int mv_cesa_ahash_queue_req(struct ahash_request *req)
  637. {
  638. struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
  639. struct mv_cesa_engine *engine;
  640. bool cached = false;
  641. int ret;
  642. ret = mv_cesa_ahash_req_init(req, &cached);
  643. if (ret)
  644. return ret;
  645. if (cached)
  646. return 0;
  647. engine = mv_cesa_select_engine(req->nbytes);
  648. mv_cesa_ahash_prepare(&req->base, engine);
  649. ret = mv_cesa_queue_req(&req->base, &creq->base);
  650. if (mv_cesa_req_needs_cleanup(&req->base, ret))
  651. mv_cesa_ahash_cleanup(req);
  652. return ret;
  653. }
  654. static int mv_cesa_ahash_update(struct ahash_request *req)
  655. {
  656. struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
  657. creq->len += req->nbytes;
  658. return mv_cesa_ahash_queue_req(req);
  659. }
  660. static int mv_cesa_ahash_final(struct ahash_request *req)
  661. {
  662. struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
  663. struct mv_cesa_op_ctx *tmpl = &creq->op_tmpl;
  664. mv_cesa_set_mac_op_total_len(tmpl, creq->len);
  665. creq->last_req = true;
  666. req->nbytes = 0;
  667. return mv_cesa_ahash_queue_req(req);
  668. }
  669. static int mv_cesa_ahash_finup(struct ahash_request *req)
  670. {
  671. struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
  672. struct mv_cesa_op_ctx *tmpl = &creq->op_tmpl;
  673. creq->len += req->nbytes;
  674. mv_cesa_set_mac_op_total_len(tmpl, creq->len);
  675. creq->last_req = true;
  676. return mv_cesa_ahash_queue_req(req);
  677. }
  678. static int mv_cesa_ahash_export(struct ahash_request *req, void *hash,
  679. u64 *len, void *cache)
  680. {
  681. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  682. struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
  683. unsigned int digsize = crypto_ahash_digestsize(ahash);
  684. unsigned int blocksize;
  685. blocksize = crypto_ahash_blocksize(ahash);
  686. *len = creq->len;
  687. memcpy(hash, creq->state, digsize);
  688. memset(cache, 0, blocksize);
  689. memcpy(cache, creq->cache, creq->cache_ptr);
  690. return 0;
  691. }
  692. static int mv_cesa_ahash_import(struct ahash_request *req, const void *hash,
  693. u64 len, const void *cache)
  694. {
  695. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  696. struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
  697. unsigned int digsize = crypto_ahash_digestsize(ahash);
  698. unsigned int blocksize;
  699. unsigned int cache_ptr;
  700. int ret;
  701. ret = crypto_ahash_init(req);
  702. if (ret)
  703. return ret;
  704. blocksize = crypto_ahash_blocksize(ahash);
  705. if (len >= blocksize)
  706. mv_cesa_update_op_cfg(&creq->op_tmpl,
  707. CESA_SA_DESC_CFG_MID_FRAG,
  708. CESA_SA_DESC_CFG_FRAG_MSK);
  709. creq->len = len;
  710. memcpy(creq->state, hash, digsize);
  711. creq->cache_ptr = 0;
  712. cache_ptr = do_div(len, blocksize);
  713. if (!cache_ptr)
  714. return 0;
  715. memcpy(creq->cache, cache, cache_ptr);
  716. creq->cache_ptr = cache_ptr;
  717. return 0;
  718. }
  719. static int mv_cesa_md5_init(struct ahash_request *req)
  720. {
  721. struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
  722. struct mv_cesa_op_ctx tmpl = { };
  723. mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_MD5);
  724. mv_cesa_ahash_init(req, &tmpl, true);
  725. creq->state[0] = MD5_H0;
  726. creq->state[1] = MD5_H1;
  727. creq->state[2] = MD5_H2;
  728. creq->state[3] = MD5_H3;
  729. return 0;
  730. }
  731. static int mv_cesa_md5_export(struct ahash_request *req, void *out)
  732. {
  733. struct md5_state *out_state = out;
  734. return mv_cesa_ahash_export(req, out_state->hash,
  735. &out_state->byte_count, out_state->block);
  736. }
  737. static int mv_cesa_md5_import(struct ahash_request *req, const void *in)
  738. {
  739. const struct md5_state *in_state = in;
  740. return mv_cesa_ahash_import(req, in_state->hash, in_state->byte_count,
  741. in_state->block);
  742. }
  743. static int mv_cesa_md5_digest(struct ahash_request *req)
  744. {
  745. int ret;
  746. ret = mv_cesa_md5_init(req);
  747. if (ret)
  748. return ret;
  749. return mv_cesa_ahash_finup(req);
  750. }
  751. struct ahash_alg mv_md5_alg = {
  752. .init = mv_cesa_md5_init,
  753. .update = mv_cesa_ahash_update,
  754. .final = mv_cesa_ahash_final,
  755. .finup = mv_cesa_ahash_finup,
  756. .digest = mv_cesa_md5_digest,
  757. .export = mv_cesa_md5_export,
  758. .import = mv_cesa_md5_import,
  759. .halg = {
  760. .digestsize = MD5_DIGEST_SIZE,
  761. .statesize = sizeof(struct md5_state),
  762. .base = {
  763. .cra_name = "md5",
  764. .cra_driver_name = "mv-md5",
  765. .cra_priority = 300,
  766. .cra_flags = CRYPTO_ALG_ASYNC |
  767. CRYPTO_ALG_ALLOCATES_MEMORY |
  768. CRYPTO_ALG_KERN_DRIVER_ONLY,
  769. .cra_blocksize = MD5_HMAC_BLOCK_SIZE,
  770. .cra_ctxsize = sizeof(struct mv_cesa_hash_ctx),
  771. .cra_init = mv_cesa_ahash_cra_init,
  772. .cra_module = THIS_MODULE,
  773. }
  774. }
  775. };
  776. static int mv_cesa_sha1_init(struct ahash_request *req)
  777. {
  778. struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
  779. struct mv_cesa_op_ctx tmpl = { };
  780. mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_SHA1);
  781. mv_cesa_ahash_init(req, &tmpl, false);
  782. creq->state[0] = SHA1_H0;
  783. creq->state[1] = SHA1_H1;
  784. creq->state[2] = SHA1_H2;
  785. creq->state[3] = SHA1_H3;
  786. creq->state[4] = SHA1_H4;
  787. return 0;
  788. }
  789. static int mv_cesa_sha1_export(struct ahash_request *req, void *out)
  790. {
  791. struct sha1_state *out_state = out;
  792. return mv_cesa_ahash_export(req, out_state->state, &out_state->count,
  793. out_state->buffer);
  794. }
  795. static int mv_cesa_sha1_import(struct ahash_request *req, const void *in)
  796. {
  797. const struct sha1_state *in_state = in;
  798. return mv_cesa_ahash_import(req, in_state->state, in_state->count,
  799. in_state->buffer);
  800. }
  801. static int mv_cesa_sha1_digest(struct ahash_request *req)
  802. {
  803. int ret;
  804. ret = mv_cesa_sha1_init(req);
  805. if (ret)
  806. return ret;
  807. return mv_cesa_ahash_finup(req);
  808. }
  809. struct ahash_alg mv_sha1_alg = {
  810. .init = mv_cesa_sha1_init,
  811. .update = mv_cesa_ahash_update,
  812. .final = mv_cesa_ahash_final,
  813. .finup = mv_cesa_ahash_finup,
  814. .digest = mv_cesa_sha1_digest,
  815. .export = mv_cesa_sha1_export,
  816. .import = mv_cesa_sha1_import,
  817. .halg = {
  818. .digestsize = SHA1_DIGEST_SIZE,
  819. .statesize = sizeof(struct sha1_state),
  820. .base = {
  821. .cra_name = "sha1",
  822. .cra_driver_name = "mv-sha1",
  823. .cra_priority = 300,
  824. .cra_flags = CRYPTO_ALG_ASYNC |
  825. CRYPTO_ALG_ALLOCATES_MEMORY |
  826. CRYPTO_ALG_KERN_DRIVER_ONLY,
  827. .cra_blocksize = SHA1_BLOCK_SIZE,
  828. .cra_ctxsize = sizeof(struct mv_cesa_hash_ctx),
  829. .cra_init = mv_cesa_ahash_cra_init,
  830. .cra_module = THIS_MODULE,
  831. }
  832. }
  833. };
  834. static int mv_cesa_sha256_init(struct ahash_request *req)
  835. {
  836. struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
  837. struct mv_cesa_op_ctx tmpl = { };
  838. mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_SHA256);
  839. mv_cesa_ahash_init(req, &tmpl, false);
  840. creq->state[0] = SHA256_H0;
  841. creq->state[1] = SHA256_H1;
  842. creq->state[2] = SHA256_H2;
  843. creq->state[3] = SHA256_H3;
  844. creq->state[4] = SHA256_H4;
  845. creq->state[5] = SHA256_H5;
  846. creq->state[6] = SHA256_H6;
  847. creq->state[7] = SHA256_H7;
  848. return 0;
  849. }
  850. static int mv_cesa_sha256_digest(struct ahash_request *req)
  851. {
  852. int ret;
  853. ret = mv_cesa_sha256_init(req);
  854. if (ret)
  855. return ret;
  856. return mv_cesa_ahash_finup(req);
  857. }
  858. static int mv_cesa_sha256_export(struct ahash_request *req, void *out)
  859. {
  860. struct sha256_state *out_state = out;
  861. return mv_cesa_ahash_export(req, out_state->state, &out_state->count,
  862. out_state->buf);
  863. }
  864. static int mv_cesa_sha256_import(struct ahash_request *req, const void *in)
  865. {
  866. const struct sha256_state *in_state = in;
  867. return mv_cesa_ahash_import(req, in_state->state, in_state->count,
  868. in_state->buf);
  869. }
  870. struct ahash_alg mv_sha256_alg = {
  871. .init = mv_cesa_sha256_init,
  872. .update = mv_cesa_ahash_update,
  873. .final = mv_cesa_ahash_final,
  874. .finup = mv_cesa_ahash_finup,
  875. .digest = mv_cesa_sha256_digest,
  876. .export = mv_cesa_sha256_export,
  877. .import = mv_cesa_sha256_import,
  878. .halg = {
  879. .digestsize = SHA256_DIGEST_SIZE,
  880. .statesize = sizeof(struct sha256_state),
  881. .base = {
  882. .cra_name = "sha256",
  883. .cra_driver_name = "mv-sha256",
  884. .cra_priority = 300,
  885. .cra_flags = CRYPTO_ALG_ASYNC |
  886. CRYPTO_ALG_ALLOCATES_MEMORY |
  887. CRYPTO_ALG_KERN_DRIVER_ONLY,
  888. .cra_blocksize = SHA256_BLOCK_SIZE,
  889. .cra_ctxsize = sizeof(struct mv_cesa_hash_ctx),
  890. .cra_init = mv_cesa_ahash_cra_init,
  891. .cra_module = THIS_MODULE,
  892. }
  893. }
  894. };
  895. struct mv_cesa_ahash_result {
  896. struct completion completion;
  897. int error;
  898. };
  899. static void mv_cesa_hmac_ahash_complete(struct crypto_async_request *req,
  900. int error)
  901. {
  902. struct mv_cesa_ahash_result *result = req->data;
  903. if (error == -EINPROGRESS)
  904. return;
  905. result->error = error;
  906. complete(&result->completion);
  907. }
  908. static int mv_cesa_ahmac_iv_state_init(struct ahash_request *req, u8 *pad,
  909. void *state, unsigned int blocksize)
  910. {
  911. struct mv_cesa_ahash_result result;
  912. struct scatterlist sg;
  913. int ret;
  914. ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
  915. mv_cesa_hmac_ahash_complete, &result);
  916. sg_init_one(&sg, pad, blocksize);
  917. ahash_request_set_crypt(req, &sg, pad, blocksize);
  918. init_completion(&result.completion);
  919. ret = crypto_ahash_init(req);
  920. if (ret)
  921. return ret;
  922. ret = crypto_ahash_update(req);
  923. if (ret && ret != -EINPROGRESS)
  924. return ret;
  925. wait_for_completion_interruptible(&result.completion);
  926. if (result.error)
  927. return result.error;
  928. ret = crypto_ahash_export(req, state);
  929. if (ret)
  930. return ret;
  931. return 0;
  932. }
  933. static int mv_cesa_ahmac_pad_init(struct ahash_request *req,
  934. const u8 *key, unsigned int keylen,
  935. u8 *ipad, u8 *opad,
  936. unsigned int blocksize)
  937. {
  938. struct mv_cesa_ahash_result result;
  939. struct scatterlist sg;
  940. int ret;
  941. int i;
  942. if (keylen <= blocksize) {
  943. memcpy(ipad, key, keylen);
  944. } else {
  945. u8 *keydup = kmemdup(key, keylen, GFP_KERNEL);
  946. if (!keydup)
  947. return -ENOMEM;
  948. ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
  949. mv_cesa_hmac_ahash_complete,
  950. &result);
  951. sg_init_one(&sg, keydup, keylen);
  952. ahash_request_set_crypt(req, &sg, ipad, keylen);
  953. init_completion(&result.completion);
  954. ret = crypto_ahash_digest(req);
  955. if (ret == -EINPROGRESS) {
  956. wait_for_completion_interruptible(&result.completion);
  957. ret = result.error;
  958. }
  959. /* Set the memory region to 0 to avoid any leak. */
  960. kfree_sensitive(keydup);
  961. if (ret)
  962. return ret;
  963. keylen = crypto_ahash_digestsize(crypto_ahash_reqtfm(req));
  964. }
  965. memset(ipad + keylen, 0, blocksize - keylen);
  966. memcpy(opad, ipad, blocksize);
  967. for (i = 0; i < blocksize; i++) {
  968. ipad[i] ^= HMAC_IPAD_VALUE;
  969. opad[i] ^= HMAC_OPAD_VALUE;
  970. }
  971. return 0;
  972. }
  973. static int mv_cesa_ahmac_setkey(const char *hash_alg_name,
  974. const u8 *key, unsigned int keylen,
  975. void *istate, void *ostate)
  976. {
  977. struct ahash_request *req;
  978. struct crypto_ahash *tfm;
  979. unsigned int blocksize;
  980. u8 *ipad = NULL;
  981. u8 *opad;
  982. int ret;
  983. tfm = crypto_alloc_ahash(hash_alg_name, 0, 0);
  984. if (IS_ERR(tfm))
  985. return PTR_ERR(tfm);
  986. req = ahash_request_alloc(tfm, GFP_KERNEL);
  987. if (!req) {
  988. ret = -ENOMEM;
  989. goto free_ahash;
  990. }
  991. crypto_ahash_clear_flags(tfm, ~0);
  992. blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
  993. ipad = kcalloc(2, blocksize, GFP_KERNEL);
  994. if (!ipad) {
  995. ret = -ENOMEM;
  996. goto free_req;
  997. }
  998. opad = ipad + blocksize;
  999. ret = mv_cesa_ahmac_pad_init(req, key, keylen, ipad, opad, blocksize);
  1000. if (ret)
  1001. goto free_ipad;
  1002. ret = mv_cesa_ahmac_iv_state_init(req, ipad, istate, blocksize);
  1003. if (ret)
  1004. goto free_ipad;
  1005. ret = mv_cesa_ahmac_iv_state_init(req, opad, ostate, blocksize);
  1006. free_ipad:
  1007. kfree(ipad);
  1008. free_req:
  1009. ahash_request_free(req);
  1010. free_ahash:
  1011. crypto_free_ahash(tfm);
  1012. return ret;
  1013. }
  1014. static int mv_cesa_ahmac_cra_init(struct crypto_tfm *tfm)
  1015. {
  1016. struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(tfm);
  1017. ctx->base.ops = &mv_cesa_ahash_req_ops;
  1018. crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
  1019. sizeof(struct mv_cesa_ahash_req));
  1020. return 0;
  1021. }
  1022. static int mv_cesa_ahmac_md5_init(struct ahash_request *req)
  1023. {
  1024. struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
  1025. struct mv_cesa_op_ctx tmpl = { };
  1026. mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_HMAC_MD5);
  1027. memcpy(tmpl.ctx.hash.iv, ctx->iv, sizeof(ctx->iv));
  1028. mv_cesa_ahash_init(req, &tmpl, true);
  1029. return 0;
  1030. }
  1031. static int mv_cesa_ahmac_md5_setkey(struct crypto_ahash *tfm, const u8 *key,
  1032. unsigned int keylen)
  1033. {
  1034. struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
  1035. struct md5_state istate, ostate;
  1036. int ret, i;
  1037. ret = mv_cesa_ahmac_setkey("mv-md5", key, keylen, &istate, &ostate);
  1038. if (ret)
  1039. return ret;
  1040. for (i = 0; i < ARRAY_SIZE(istate.hash); i++)
  1041. ctx->iv[i] = cpu_to_be32(istate.hash[i]);
  1042. for (i = 0; i < ARRAY_SIZE(ostate.hash); i++)
  1043. ctx->iv[i + 8] = cpu_to_be32(ostate.hash[i]);
  1044. return 0;
  1045. }
  1046. static int mv_cesa_ahmac_md5_digest(struct ahash_request *req)
  1047. {
  1048. int ret;
  1049. ret = mv_cesa_ahmac_md5_init(req);
  1050. if (ret)
  1051. return ret;
  1052. return mv_cesa_ahash_finup(req);
  1053. }
  1054. struct ahash_alg mv_ahmac_md5_alg = {
  1055. .init = mv_cesa_ahmac_md5_init,
  1056. .update = mv_cesa_ahash_update,
  1057. .final = mv_cesa_ahash_final,
  1058. .finup = mv_cesa_ahash_finup,
  1059. .digest = mv_cesa_ahmac_md5_digest,
  1060. .setkey = mv_cesa_ahmac_md5_setkey,
  1061. .export = mv_cesa_md5_export,
  1062. .import = mv_cesa_md5_import,
  1063. .halg = {
  1064. .digestsize = MD5_DIGEST_SIZE,
  1065. .statesize = sizeof(struct md5_state),
  1066. .base = {
  1067. .cra_name = "hmac(md5)",
  1068. .cra_driver_name = "mv-hmac-md5",
  1069. .cra_priority = 300,
  1070. .cra_flags = CRYPTO_ALG_ASYNC |
  1071. CRYPTO_ALG_ALLOCATES_MEMORY |
  1072. CRYPTO_ALG_KERN_DRIVER_ONLY,
  1073. .cra_blocksize = MD5_HMAC_BLOCK_SIZE,
  1074. .cra_ctxsize = sizeof(struct mv_cesa_hmac_ctx),
  1075. .cra_init = mv_cesa_ahmac_cra_init,
  1076. .cra_module = THIS_MODULE,
  1077. }
  1078. }
  1079. };
  1080. static int mv_cesa_ahmac_sha1_init(struct ahash_request *req)
  1081. {
  1082. struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
  1083. struct mv_cesa_op_ctx tmpl = { };
  1084. mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_HMAC_SHA1);
  1085. memcpy(tmpl.ctx.hash.iv, ctx->iv, sizeof(ctx->iv));
  1086. mv_cesa_ahash_init(req, &tmpl, false);
  1087. return 0;
  1088. }
  1089. static int mv_cesa_ahmac_sha1_setkey(struct crypto_ahash *tfm, const u8 *key,
  1090. unsigned int keylen)
  1091. {
  1092. struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
  1093. struct sha1_state istate, ostate;
  1094. int ret, i;
  1095. ret = mv_cesa_ahmac_setkey("mv-sha1", key, keylen, &istate, &ostate);
  1096. if (ret)
  1097. return ret;
  1098. for (i = 0; i < ARRAY_SIZE(istate.state); i++)
  1099. ctx->iv[i] = cpu_to_be32(istate.state[i]);
  1100. for (i = 0; i < ARRAY_SIZE(ostate.state); i++)
  1101. ctx->iv[i + 8] = cpu_to_be32(ostate.state[i]);
  1102. return 0;
  1103. }
  1104. static int mv_cesa_ahmac_sha1_digest(struct ahash_request *req)
  1105. {
  1106. int ret;
  1107. ret = mv_cesa_ahmac_sha1_init(req);
  1108. if (ret)
  1109. return ret;
  1110. return mv_cesa_ahash_finup(req);
  1111. }
  1112. struct ahash_alg mv_ahmac_sha1_alg = {
  1113. .init = mv_cesa_ahmac_sha1_init,
  1114. .update = mv_cesa_ahash_update,
  1115. .final = mv_cesa_ahash_final,
  1116. .finup = mv_cesa_ahash_finup,
  1117. .digest = mv_cesa_ahmac_sha1_digest,
  1118. .setkey = mv_cesa_ahmac_sha1_setkey,
  1119. .export = mv_cesa_sha1_export,
  1120. .import = mv_cesa_sha1_import,
  1121. .halg = {
  1122. .digestsize = SHA1_DIGEST_SIZE,
  1123. .statesize = sizeof(struct sha1_state),
  1124. .base = {
  1125. .cra_name = "hmac(sha1)",
  1126. .cra_driver_name = "mv-hmac-sha1",
  1127. .cra_priority = 300,
  1128. .cra_flags = CRYPTO_ALG_ASYNC |
  1129. CRYPTO_ALG_ALLOCATES_MEMORY |
  1130. CRYPTO_ALG_KERN_DRIVER_ONLY,
  1131. .cra_blocksize = SHA1_BLOCK_SIZE,
  1132. .cra_ctxsize = sizeof(struct mv_cesa_hmac_ctx),
  1133. .cra_init = mv_cesa_ahmac_cra_init,
  1134. .cra_module = THIS_MODULE,
  1135. }
  1136. }
  1137. };
  1138. static int mv_cesa_ahmac_sha256_setkey(struct crypto_ahash *tfm, const u8 *key,
  1139. unsigned int keylen)
  1140. {
  1141. struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
  1142. struct sha256_state istate, ostate;
  1143. int ret, i;
  1144. ret = mv_cesa_ahmac_setkey("mv-sha256", key, keylen, &istate, &ostate);
  1145. if (ret)
  1146. return ret;
  1147. for (i = 0; i < ARRAY_SIZE(istate.state); i++)
  1148. ctx->iv[i] = cpu_to_be32(istate.state[i]);
  1149. for (i = 0; i < ARRAY_SIZE(ostate.state); i++)
  1150. ctx->iv[i + 8] = cpu_to_be32(ostate.state[i]);
  1151. return 0;
  1152. }
  1153. static int mv_cesa_ahmac_sha256_init(struct ahash_request *req)
  1154. {
  1155. struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
  1156. struct mv_cesa_op_ctx tmpl = { };
  1157. mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_HMAC_SHA256);
  1158. memcpy(tmpl.ctx.hash.iv, ctx->iv, sizeof(ctx->iv));
  1159. mv_cesa_ahash_init(req, &tmpl, false);
  1160. return 0;
  1161. }
  1162. static int mv_cesa_ahmac_sha256_digest(struct ahash_request *req)
  1163. {
  1164. int ret;
  1165. ret = mv_cesa_ahmac_sha256_init(req);
  1166. if (ret)
  1167. return ret;
  1168. return mv_cesa_ahash_finup(req);
  1169. }
  1170. struct ahash_alg mv_ahmac_sha256_alg = {
  1171. .init = mv_cesa_ahmac_sha256_init,
  1172. .update = mv_cesa_ahash_update,
  1173. .final = mv_cesa_ahash_final,
  1174. .finup = mv_cesa_ahash_finup,
  1175. .digest = mv_cesa_ahmac_sha256_digest,
  1176. .setkey = mv_cesa_ahmac_sha256_setkey,
  1177. .export = mv_cesa_sha256_export,
  1178. .import = mv_cesa_sha256_import,
  1179. .halg = {
  1180. .digestsize = SHA256_DIGEST_SIZE,
  1181. .statesize = sizeof(struct sha256_state),
  1182. .base = {
  1183. .cra_name = "hmac(sha256)",
  1184. .cra_driver_name = "mv-hmac-sha256",
  1185. .cra_priority = 300,
  1186. .cra_flags = CRYPTO_ALG_ASYNC |
  1187. CRYPTO_ALG_ALLOCATES_MEMORY |
  1188. CRYPTO_ALG_KERN_DRIVER_ONLY,
  1189. .cra_blocksize = SHA256_BLOCK_SIZE,
  1190. .cra_ctxsize = sizeof(struct mv_cesa_hmac_ctx),
  1191. .cra_init = mv_cesa_ahmac_cra_init,
  1192. .cra_module = THIS_MODULE,
  1193. }
  1194. }
  1195. };