cipher.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Cipher algorithms supported by the CESA: DES, 3DES and AES.
  4. *
  5. * Author: Boris Brezillon <[email protected]>
  6. * Author: Arnaud Ebalard <[email protected]>
  7. *
  8. * This work is based on an initial version written by
  9. * Sebastian Andrzej Siewior < sebastian at breakpoint dot cc >
  10. */
  11. #include <crypto/aes.h>
  12. #include <crypto/internal/des.h>
  13. #include <linux/device.h>
  14. #include <linux/dma-mapping.h>
  15. #include "cesa.h"
  16. struct mv_cesa_des_ctx {
  17. struct mv_cesa_ctx base;
  18. u8 key[DES_KEY_SIZE];
  19. };
  20. struct mv_cesa_des3_ctx {
  21. struct mv_cesa_ctx base;
  22. u8 key[DES3_EDE_KEY_SIZE];
  23. };
  24. struct mv_cesa_aes_ctx {
  25. struct mv_cesa_ctx base;
  26. struct crypto_aes_ctx aes;
  27. };
  28. struct mv_cesa_skcipher_dma_iter {
  29. struct mv_cesa_dma_iter base;
  30. struct mv_cesa_sg_dma_iter src;
  31. struct mv_cesa_sg_dma_iter dst;
  32. };
  33. static inline void
  34. mv_cesa_skcipher_req_iter_init(struct mv_cesa_skcipher_dma_iter *iter,
  35. struct skcipher_request *req)
  36. {
  37. mv_cesa_req_dma_iter_init(&iter->base, req->cryptlen);
  38. mv_cesa_sg_dma_iter_init(&iter->src, req->src, DMA_TO_DEVICE);
  39. mv_cesa_sg_dma_iter_init(&iter->dst, req->dst, DMA_FROM_DEVICE);
  40. }
  41. static inline bool
  42. mv_cesa_skcipher_req_iter_next_op(struct mv_cesa_skcipher_dma_iter *iter)
  43. {
  44. iter->src.op_offset = 0;
  45. iter->dst.op_offset = 0;
  46. return mv_cesa_req_dma_iter_next_op(&iter->base);
  47. }
  48. static inline void
  49. mv_cesa_skcipher_dma_cleanup(struct skcipher_request *req)
  50. {
  51. struct mv_cesa_skcipher_req *creq = skcipher_request_ctx(req);
  52. if (req->dst != req->src) {
  53. dma_unmap_sg(cesa_dev->dev, req->dst, creq->dst_nents,
  54. DMA_FROM_DEVICE);
  55. dma_unmap_sg(cesa_dev->dev, req->src, creq->src_nents,
  56. DMA_TO_DEVICE);
  57. } else {
  58. dma_unmap_sg(cesa_dev->dev, req->src, creq->src_nents,
  59. DMA_BIDIRECTIONAL);
  60. }
  61. mv_cesa_dma_cleanup(&creq->base);
  62. }
  63. static inline void mv_cesa_skcipher_cleanup(struct skcipher_request *req)
  64. {
  65. struct mv_cesa_skcipher_req *creq = skcipher_request_ctx(req);
  66. if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ)
  67. mv_cesa_skcipher_dma_cleanup(req);
  68. }
  69. static void mv_cesa_skcipher_std_step(struct skcipher_request *req)
  70. {
  71. struct mv_cesa_skcipher_req *creq = skcipher_request_ctx(req);
  72. struct mv_cesa_skcipher_std_req *sreq = &creq->std;
  73. struct mv_cesa_engine *engine = creq->base.engine;
  74. size_t len = min_t(size_t, req->cryptlen - sreq->offset,
  75. CESA_SA_SRAM_PAYLOAD_SIZE);
  76. mv_cesa_adjust_op(engine, &sreq->op);
  77. if (engine->pool)
  78. memcpy(engine->sram_pool, &sreq->op, sizeof(sreq->op));
  79. else
  80. memcpy_toio(engine->sram, &sreq->op, sizeof(sreq->op));
  81. len = mv_cesa_sg_copy_to_sram(engine, req->src, creq->src_nents,
  82. CESA_SA_DATA_SRAM_OFFSET, len,
  83. sreq->offset);
  84. sreq->size = len;
  85. mv_cesa_set_crypt_op_len(&sreq->op, len);
  86. /* FIXME: only update enc_len field */
  87. if (!sreq->skip_ctx) {
  88. if (engine->pool)
  89. memcpy(engine->sram_pool, &sreq->op, sizeof(sreq->op));
  90. else
  91. memcpy_toio(engine->sram, &sreq->op, sizeof(sreq->op));
  92. sreq->skip_ctx = true;
  93. } else if (engine->pool)
  94. memcpy(engine->sram_pool, &sreq->op, sizeof(sreq->op.desc));
  95. else
  96. memcpy_toio(engine->sram, &sreq->op, sizeof(sreq->op.desc));
  97. mv_cesa_set_int_mask(engine, CESA_SA_INT_ACCEL0_DONE);
  98. writel_relaxed(CESA_SA_CFG_PARA_DIS, engine->regs + CESA_SA_CFG);
  99. WARN_ON(readl(engine->regs + CESA_SA_CMD) &
  100. CESA_SA_CMD_EN_CESA_SA_ACCL0);
  101. writel(CESA_SA_CMD_EN_CESA_SA_ACCL0, engine->regs + CESA_SA_CMD);
  102. }
  103. static int mv_cesa_skcipher_std_process(struct skcipher_request *req,
  104. u32 status)
  105. {
  106. struct mv_cesa_skcipher_req *creq = skcipher_request_ctx(req);
  107. struct mv_cesa_skcipher_std_req *sreq = &creq->std;
  108. struct mv_cesa_engine *engine = creq->base.engine;
  109. size_t len;
  110. len = mv_cesa_sg_copy_from_sram(engine, req->dst, creq->dst_nents,
  111. CESA_SA_DATA_SRAM_OFFSET, sreq->size,
  112. sreq->offset);
  113. sreq->offset += len;
  114. if (sreq->offset < req->cryptlen)
  115. return -EINPROGRESS;
  116. return 0;
  117. }
  118. static int mv_cesa_skcipher_process(struct crypto_async_request *req,
  119. u32 status)
  120. {
  121. struct skcipher_request *skreq = skcipher_request_cast(req);
  122. struct mv_cesa_skcipher_req *creq = skcipher_request_ctx(skreq);
  123. struct mv_cesa_req *basereq = &creq->base;
  124. if (mv_cesa_req_get_type(basereq) == CESA_STD_REQ)
  125. return mv_cesa_skcipher_std_process(skreq, status);
  126. return mv_cesa_dma_process(basereq, status);
  127. }
  128. static void mv_cesa_skcipher_step(struct crypto_async_request *req)
  129. {
  130. struct skcipher_request *skreq = skcipher_request_cast(req);
  131. struct mv_cesa_skcipher_req *creq = skcipher_request_ctx(skreq);
  132. if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ)
  133. mv_cesa_dma_step(&creq->base);
  134. else
  135. mv_cesa_skcipher_std_step(skreq);
  136. }
  137. static inline void
  138. mv_cesa_skcipher_dma_prepare(struct skcipher_request *req)
  139. {
  140. struct mv_cesa_skcipher_req *creq = skcipher_request_ctx(req);
  141. struct mv_cesa_req *basereq = &creq->base;
  142. mv_cesa_dma_prepare(basereq, basereq->engine);
  143. }
  144. static inline void
  145. mv_cesa_skcipher_std_prepare(struct skcipher_request *req)
  146. {
  147. struct mv_cesa_skcipher_req *creq = skcipher_request_ctx(req);
  148. struct mv_cesa_skcipher_std_req *sreq = &creq->std;
  149. sreq->size = 0;
  150. sreq->offset = 0;
  151. }
  152. static inline void mv_cesa_skcipher_prepare(struct crypto_async_request *req,
  153. struct mv_cesa_engine *engine)
  154. {
  155. struct skcipher_request *skreq = skcipher_request_cast(req);
  156. struct mv_cesa_skcipher_req *creq = skcipher_request_ctx(skreq);
  157. creq->base.engine = engine;
  158. if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ)
  159. mv_cesa_skcipher_dma_prepare(skreq);
  160. else
  161. mv_cesa_skcipher_std_prepare(skreq);
  162. }
  163. static inline void
  164. mv_cesa_skcipher_req_cleanup(struct crypto_async_request *req)
  165. {
  166. struct skcipher_request *skreq = skcipher_request_cast(req);
  167. mv_cesa_skcipher_cleanup(skreq);
  168. }
  169. static void
  170. mv_cesa_skcipher_complete(struct crypto_async_request *req)
  171. {
  172. struct skcipher_request *skreq = skcipher_request_cast(req);
  173. struct mv_cesa_skcipher_req *creq = skcipher_request_ctx(skreq);
  174. struct mv_cesa_engine *engine = creq->base.engine;
  175. unsigned int ivsize;
  176. atomic_sub(skreq->cryptlen, &engine->load);
  177. ivsize = crypto_skcipher_ivsize(crypto_skcipher_reqtfm(skreq));
  178. if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ) {
  179. struct mv_cesa_req *basereq;
  180. basereq = &creq->base;
  181. memcpy(skreq->iv, basereq->chain.last->op->ctx.skcipher.iv,
  182. ivsize);
  183. } else if (engine->pool)
  184. memcpy(skreq->iv,
  185. engine->sram_pool + CESA_SA_CRYPT_IV_SRAM_OFFSET,
  186. ivsize);
  187. else
  188. memcpy_fromio(skreq->iv,
  189. engine->sram + CESA_SA_CRYPT_IV_SRAM_OFFSET,
  190. ivsize);
  191. }
  192. static const struct mv_cesa_req_ops mv_cesa_skcipher_req_ops = {
  193. .step = mv_cesa_skcipher_step,
  194. .process = mv_cesa_skcipher_process,
  195. .cleanup = mv_cesa_skcipher_req_cleanup,
  196. .complete = mv_cesa_skcipher_complete,
  197. };
  198. static void mv_cesa_skcipher_cra_exit(struct crypto_tfm *tfm)
  199. {
  200. void *ctx = crypto_tfm_ctx(tfm);
  201. memzero_explicit(ctx, tfm->__crt_alg->cra_ctxsize);
  202. }
  203. static int mv_cesa_skcipher_cra_init(struct crypto_tfm *tfm)
  204. {
  205. struct mv_cesa_ctx *ctx = crypto_tfm_ctx(tfm);
  206. ctx->ops = &mv_cesa_skcipher_req_ops;
  207. crypto_skcipher_set_reqsize(__crypto_skcipher_cast(tfm),
  208. sizeof(struct mv_cesa_skcipher_req));
  209. return 0;
  210. }
  211. static int mv_cesa_aes_setkey(struct crypto_skcipher *cipher, const u8 *key,
  212. unsigned int len)
  213. {
  214. struct crypto_tfm *tfm = crypto_skcipher_tfm(cipher);
  215. struct mv_cesa_aes_ctx *ctx = crypto_tfm_ctx(tfm);
  216. int remaining;
  217. int offset;
  218. int ret;
  219. int i;
  220. ret = aes_expandkey(&ctx->aes, key, len);
  221. if (ret)
  222. return ret;
  223. remaining = (ctx->aes.key_length - 16) / 4;
  224. offset = ctx->aes.key_length + 24 - remaining;
  225. for (i = 0; i < remaining; i++)
  226. ctx->aes.key_dec[4 + i] = ctx->aes.key_enc[offset + i];
  227. return 0;
  228. }
  229. static int mv_cesa_des_setkey(struct crypto_skcipher *cipher, const u8 *key,
  230. unsigned int len)
  231. {
  232. struct mv_cesa_des_ctx *ctx = crypto_skcipher_ctx(cipher);
  233. int err;
  234. err = verify_skcipher_des_key(cipher, key);
  235. if (err)
  236. return err;
  237. memcpy(ctx->key, key, DES_KEY_SIZE);
  238. return 0;
  239. }
  240. static int mv_cesa_des3_ede_setkey(struct crypto_skcipher *cipher,
  241. const u8 *key, unsigned int len)
  242. {
  243. struct mv_cesa_des3_ctx *ctx = crypto_skcipher_ctx(cipher);
  244. int err;
  245. err = verify_skcipher_des3_key(cipher, key);
  246. if (err)
  247. return err;
  248. memcpy(ctx->key, key, DES3_EDE_KEY_SIZE);
  249. return 0;
  250. }
  251. static int mv_cesa_skcipher_dma_req_init(struct skcipher_request *req,
  252. const struct mv_cesa_op_ctx *op_templ)
  253. {
  254. struct mv_cesa_skcipher_req *creq = skcipher_request_ctx(req);
  255. gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
  256. GFP_KERNEL : GFP_ATOMIC;
  257. struct mv_cesa_req *basereq = &creq->base;
  258. struct mv_cesa_skcipher_dma_iter iter;
  259. bool skip_ctx = false;
  260. int ret;
  261. basereq->chain.first = NULL;
  262. basereq->chain.last = NULL;
  263. if (req->src != req->dst) {
  264. ret = dma_map_sg(cesa_dev->dev, req->src, creq->src_nents,
  265. DMA_TO_DEVICE);
  266. if (!ret)
  267. return -ENOMEM;
  268. ret = dma_map_sg(cesa_dev->dev, req->dst, creq->dst_nents,
  269. DMA_FROM_DEVICE);
  270. if (!ret) {
  271. ret = -ENOMEM;
  272. goto err_unmap_src;
  273. }
  274. } else {
  275. ret = dma_map_sg(cesa_dev->dev, req->src, creq->src_nents,
  276. DMA_BIDIRECTIONAL);
  277. if (!ret)
  278. return -ENOMEM;
  279. }
  280. mv_cesa_tdma_desc_iter_init(&basereq->chain);
  281. mv_cesa_skcipher_req_iter_init(&iter, req);
  282. do {
  283. struct mv_cesa_op_ctx *op;
  284. op = mv_cesa_dma_add_op(&basereq->chain, op_templ, skip_ctx,
  285. flags);
  286. if (IS_ERR(op)) {
  287. ret = PTR_ERR(op);
  288. goto err_free_tdma;
  289. }
  290. skip_ctx = true;
  291. mv_cesa_set_crypt_op_len(op, iter.base.op_len);
  292. /* Add input transfers */
  293. ret = mv_cesa_dma_add_op_transfers(&basereq->chain, &iter.base,
  294. &iter.src, flags);
  295. if (ret)
  296. goto err_free_tdma;
  297. /* Add dummy desc to launch the crypto operation */
  298. ret = mv_cesa_dma_add_dummy_launch(&basereq->chain, flags);
  299. if (ret)
  300. goto err_free_tdma;
  301. /* Add output transfers */
  302. ret = mv_cesa_dma_add_op_transfers(&basereq->chain, &iter.base,
  303. &iter.dst, flags);
  304. if (ret)
  305. goto err_free_tdma;
  306. } while (mv_cesa_skcipher_req_iter_next_op(&iter));
  307. /* Add output data for IV */
  308. ret = mv_cesa_dma_add_result_op(&basereq->chain,
  309. CESA_SA_CFG_SRAM_OFFSET,
  310. CESA_SA_DATA_SRAM_OFFSET,
  311. CESA_TDMA_SRC_IN_SRAM, flags);
  312. if (ret)
  313. goto err_free_tdma;
  314. basereq->chain.last->flags |= CESA_TDMA_END_OF_REQ;
  315. return 0;
  316. err_free_tdma:
  317. mv_cesa_dma_cleanup(basereq);
  318. if (req->dst != req->src)
  319. dma_unmap_sg(cesa_dev->dev, req->dst, creq->dst_nents,
  320. DMA_FROM_DEVICE);
  321. err_unmap_src:
  322. dma_unmap_sg(cesa_dev->dev, req->src, creq->src_nents,
  323. req->dst != req->src ? DMA_TO_DEVICE : DMA_BIDIRECTIONAL);
  324. return ret;
  325. }
  326. static inline int
  327. mv_cesa_skcipher_std_req_init(struct skcipher_request *req,
  328. const struct mv_cesa_op_ctx *op_templ)
  329. {
  330. struct mv_cesa_skcipher_req *creq = skcipher_request_ctx(req);
  331. struct mv_cesa_skcipher_std_req *sreq = &creq->std;
  332. struct mv_cesa_req *basereq = &creq->base;
  333. sreq->op = *op_templ;
  334. sreq->skip_ctx = false;
  335. basereq->chain.first = NULL;
  336. basereq->chain.last = NULL;
  337. return 0;
  338. }
  339. static int mv_cesa_skcipher_req_init(struct skcipher_request *req,
  340. struct mv_cesa_op_ctx *tmpl)
  341. {
  342. struct mv_cesa_skcipher_req *creq = skcipher_request_ctx(req);
  343. struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
  344. unsigned int blksize = crypto_skcipher_blocksize(tfm);
  345. int ret;
  346. if (!IS_ALIGNED(req->cryptlen, blksize))
  347. return -EINVAL;
  348. creq->src_nents = sg_nents_for_len(req->src, req->cryptlen);
  349. if (creq->src_nents < 0) {
  350. dev_err(cesa_dev->dev, "Invalid number of src SG");
  351. return creq->src_nents;
  352. }
  353. creq->dst_nents = sg_nents_for_len(req->dst, req->cryptlen);
  354. if (creq->dst_nents < 0) {
  355. dev_err(cesa_dev->dev, "Invalid number of dst SG");
  356. return creq->dst_nents;
  357. }
  358. mv_cesa_update_op_cfg(tmpl, CESA_SA_DESC_CFG_OP_CRYPT_ONLY,
  359. CESA_SA_DESC_CFG_OP_MSK);
  360. if (cesa_dev->caps->has_tdma)
  361. ret = mv_cesa_skcipher_dma_req_init(req, tmpl);
  362. else
  363. ret = mv_cesa_skcipher_std_req_init(req, tmpl);
  364. return ret;
  365. }
  366. static int mv_cesa_skcipher_queue_req(struct skcipher_request *req,
  367. struct mv_cesa_op_ctx *tmpl)
  368. {
  369. int ret;
  370. struct mv_cesa_skcipher_req *creq = skcipher_request_ctx(req);
  371. struct mv_cesa_engine *engine;
  372. ret = mv_cesa_skcipher_req_init(req, tmpl);
  373. if (ret)
  374. return ret;
  375. engine = mv_cesa_select_engine(req->cryptlen);
  376. mv_cesa_skcipher_prepare(&req->base, engine);
  377. ret = mv_cesa_queue_req(&req->base, &creq->base);
  378. if (mv_cesa_req_needs_cleanup(&req->base, ret))
  379. mv_cesa_skcipher_cleanup(req);
  380. return ret;
  381. }
  382. static int mv_cesa_des_op(struct skcipher_request *req,
  383. struct mv_cesa_op_ctx *tmpl)
  384. {
  385. struct mv_cesa_des_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
  386. mv_cesa_update_op_cfg(tmpl, CESA_SA_DESC_CFG_CRYPTM_DES,
  387. CESA_SA_DESC_CFG_CRYPTM_MSK);
  388. memcpy(tmpl->ctx.skcipher.key, ctx->key, DES_KEY_SIZE);
  389. return mv_cesa_skcipher_queue_req(req, tmpl);
  390. }
  391. static int mv_cesa_ecb_des_encrypt(struct skcipher_request *req)
  392. {
  393. struct mv_cesa_op_ctx tmpl;
  394. mv_cesa_set_op_cfg(&tmpl,
  395. CESA_SA_DESC_CFG_CRYPTCM_ECB |
  396. CESA_SA_DESC_CFG_DIR_ENC);
  397. return mv_cesa_des_op(req, &tmpl);
  398. }
  399. static int mv_cesa_ecb_des_decrypt(struct skcipher_request *req)
  400. {
  401. struct mv_cesa_op_ctx tmpl;
  402. mv_cesa_set_op_cfg(&tmpl,
  403. CESA_SA_DESC_CFG_CRYPTCM_ECB |
  404. CESA_SA_DESC_CFG_DIR_DEC);
  405. return mv_cesa_des_op(req, &tmpl);
  406. }
  407. struct skcipher_alg mv_cesa_ecb_des_alg = {
  408. .setkey = mv_cesa_des_setkey,
  409. .encrypt = mv_cesa_ecb_des_encrypt,
  410. .decrypt = mv_cesa_ecb_des_decrypt,
  411. .min_keysize = DES_KEY_SIZE,
  412. .max_keysize = DES_KEY_SIZE,
  413. .base = {
  414. .cra_name = "ecb(des)",
  415. .cra_driver_name = "mv-ecb-des",
  416. .cra_priority = 300,
  417. .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC |
  418. CRYPTO_ALG_ALLOCATES_MEMORY,
  419. .cra_blocksize = DES_BLOCK_SIZE,
  420. .cra_ctxsize = sizeof(struct mv_cesa_des_ctx),
  421. .cra_alignmask = 0,
  422. .cra_module = THIS_MODULE,
  423. .cra_init = mv_cesa_skcipher_cra_init,
  424. .cra_exit = mv_cesa_skcipher_cra_exit,
  425. },
  426. };
  427. static int mv_cesa_cbc_des_op(struct skcipher_request *req,
  428. struct mv_cesa_op_ctx *tmpl)
  429. {
  430. mv_cesa_update_op_cfg(tmpl, CESA_SA_DESC_CFG_CRYPTCM_CBC,
  431. CESA_SA_DESC_CFG_CRYPTCM_MSK);
  432. memcpy(tmpl->ctx.skcipher.iv, req->iv, DES_BLOCK_SIZE);
  433. return mv_cesa_des_op(req, tmpl);
  434. }
  435. static int mv_cesa_cbc_des_encrypt(struct skcipher_request *req)
  436. {
  437. struct mv_cesa_op_ctx tmpl;
  438. mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_DIR_ENC);
  439. return mv_cesa_cbc_des_op(req, &tmpl);
  440. }
  441. static int mv_cesa_cbc_des_decrypt(struct skcipher_request *req)
  442. {
  443. struct mv_cesa_op_ctx tmpl;
  444. mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_DIR_DEC);
  445. return mv_cesa_cbc_des_op(req, &tmpl);
  446. }
  447. struct skcipher_alg mv_cesa_cbc_des_alg = {
  448. .setkey = mv_cesa_des_setkey,
  449. .encrypt = mv_cesa_cbc_des_encrypt,
  450. .decrypt = mv_cesa_cbc_des_decrypt,
  451. .min_keysize = DES_KEY_SIZE,
  452. .max_keysize = DES_KEY_SIZE,
  453. .ivsize = DES_BLOCK_SIZE,
  454. .base = {
  455. .cra_name = "cbc(des)",
  456. .cra_driver_name = "mv-cbc-des",
  457. .cra_priority = 300,
  458. .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC |
  459. CRYPTO_ALG_ALLOCATES_MEMORY,
  460. .cra_blocksize = DES_BLOCK_SIZE,
  461. .cra_ctxsize = sizeof(struct mv_cesa_des_ctx),
  462. .cra_alignmask = 0,
  463. .cra_module = THIS_MODULE,
  464. .cra_init = mv_cesa_skcipher_cra_init,
  465. .cra_exit = mv_cesa_skcipher_cra_exit,
  466. },
  467. };
  468. static int mv_cesa_des3_op(struct skcipher_request *req,
  469. struct mv_cesa_op_ctx *tmpl)
  470. {
  471. struct mv_cesa_des3_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
  472. mv_cesa_update_op_cfg(tmpl, CESA_SA_DESC_CFG_CRYPTM_3DES,
  473. CESA_SA_DESC_CFG_CRYPTM_MSK);
  474. memcpy(tmpl->ctx.skcipher.key, ctx->key, DES3_EDE_KEY_SIZE);
  475. return mv_cesa_skcipher_queue_req(req, tmpl);
  476. }
  477. static int mv_cesa_ecb_des3_ede_encrypt(struct skcipher_request *req)
  478. {
  479. struct mv_cesa_op_ctx tmpl;
  480. mv_cesa_set_op_cfg(&tmpl,
  481. CESA_SA_DESC_CFG_CRYPTCM_ECB |
  482. CESA_SA_DESC_CFG_3DES_EDE |
  483. CESA_SA_DESC_CFG_DIR_ENC);
  484. return mv_cesa_des3_op(req, &tmpl);
  485. }
  486. static int mv_cesa_ecb_des3_ede_decrypt(struct skcipher_request *req)
  487. {
  488. struct mv_cesa_op_ctx tmpl;
  489. mv_cesa_set_op_cfg(&tmpl,
  490. CESA_SA_DESC_CFG_CRYPTCM_ECB |
  491. CESA_SA_DESC_CFG_3DES_EDE |
  492. CESA_SA_DESC_CFG_DIR_DEC);
  493. return mv_cesa_des3_op(req, &tmpl);
  494. }
  495. struct skcipher_alg mv_cesa_ecb_des3_ede_alg = {
  496. .setkey = mv_cesa_des3_ede_setkey,
  497. .encrypt = mv_cesa_ecb_des3_ede_encrypt,
  498. .decrypt = mv_cesa_ecb_des3_ede_decrypt,
  499. .min_keysize = DES3_EDE_KEY_SIZE,
  500. .max_keysize = DES3_EDE_KEY_SIZE,
  501. .base = {
  502. .cra_name = "ecb(des3_ede)",
  503. .cra_driver_name = "mv-ecb-des3-ede",
  504. .cra_priority = 300,
  505. .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC |
  506. CRYPTO_ALG_ALLOCATES_MEMORY,
  507. .cra_blocksize = DES3_EDE_BLOCK_SIZE,
  508. .cra_ctxsize = sizeof(struct mv_cesa_des3_ctx),
  509. .cra_alignmask = 0,
  510. .cra_module = THIS_MODULE,
  511. .cra_init = mv_cesa_skcipher_cra_init,
  512. .cra_exit = mv_cesa_skcipher_cra_exit,
  513. },
  514. };
  515. static int mv_cesa_cbc_des3_op(struct skcipher_request *req,
  516. struct mv_cesa_op_ctx *tmpl)
  517. {
  518. memcpy(tmpl->ctx.skcipher.iv, req->iv, DES3_EDE_BLOCK_SIZE);
  519. return mv_cesa_des3_op(req, tmpl);
  520. }
  521. static int mv_cesa_cbc_des3_ede_encrypt(struct skcipher_request *req)
  522. {
  523. struct mv_cesa_op_ctx tmpl;
  524. mv_cesa_set_op_cfg(&tmpl,
  525. CESA_SA_DESC_CFG_CRYPTCM_CBC |
  526. CESA_SA_DESC_CFG_3DES_EDE |
  527. CESA_SA_DESC_CFG_DIR_ENC);
  528. return mv_cesa_cbc_des3_op(req, &tmpl);
  529. }
  530. static int mv_cesa_cbc_des3_ede_decrypt(struct skcipher_request *req)
  531. {
  532. struct mv_cesa_op_ctx tmpl;
  533. mv_cesa_set_op_cfg(&tmpl,
  534. CESA_SA_DESC_CFG_CRYPTCM_CBC |
  535. CESA_SA_DESC_CFG_3DES_EDE |
  536. CESA_SA_DESC_CFG_DIR_DEC);
  537. return mv_cesa_cbc_des3_op(req, &tmpl);
  538. }
  539. struct skcipher_alg mv_cesa_cbc_des3_ede_alg = {
  540. .setkey = mv_cesa_des3_ede_setkey,
  541. .encrypt = mv_cesa_cbc_des3_ede_encrypt,
  542. .decrypt = mv_cesa_cbc_des3_ede_decrypt,
  543. .min_keysize = DES3_EDE_KEY_SIZE,
  544. .max_keysize = DES3_EDE_KEY_SIZE,
  545. .ivsize = DES3_EDE_BLOCK_SIZE,
  546. .base = {
  547. .cra_name = "cbc(des3_ede)",
  548. .cra_driver_name = "mv-cbc-des3-ede",
  549. .cra_priority = 300,
  550. .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC |
  551. CRYPTO_ALG_ALLOCATES_MEMORY,
  552. .cra_blocksize = DES3_EDE_BLOCK_SIZE,
  553. .cra_ctxsize = sizeof(struct mv_cesa_des3_ctx),
  554. .cra_alignmask = 0,
  555. .cra_module = THIS_MODULE,
  556. .cra_init = mv_cesa_skcipher_cra_init,
  557. .cra_exit = mv_cesa_skcipher_cra_exit,
  558. },
  559. };
  560. static int mv_cesa_aes_op(struct skcipher_request *req,
  561. struct mv_cesa_op_ctx *tmpl)
  562. {
  563. struct mv_cesa_aes_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
  564. int i;
  565. u32 *key;
  566. u32 cfg;
  567. cfg = CESA_SA_DESC_CFG_CRYPTM_AES;
  568. if (mv_cesa_get_op_cfg(tmpl) & CESA_SA_DESC_CFG_DIR_DEC)
  569. key = ctx->aes.key_dec;
  570. else
  571. key = ctx->aes.key_enc;
  572. for (i = 0; i < ctx->aes.key_length / sizeof(u32); i++)
  573. tmpl->ctx.skcipher.key[i] = cpu_to_le32(key[i]);
  574. if (ctx->aes.key_length == 24)
  575. cfg |= CESA_SA_DESC_CFG_AES_LEN_192;
  576. else if (ctx->aes.key_length == 32)
  577. cfg |= CESA_SA_DESC_CFG_AES_LEN_256;
  578. mv_cesa_update_op_cfg(tmpl, cfg,
  579. CESA_SA_DESC_CFG_CRYPTM_MSK |
  580. CESA_SA_DESC_CFG_AES_LEN_MSK);
  581. return mv_cesa_skcipher_queue_req(req, tmpl);
  582. }
  583. static int mv_cesa_ecb_aes_encrypt(struct skcipher_request *req)
  584. {
  585. struct mv_cesa_op_ctx tmpl;
  586. mv_cesa_set_op_cfg(&tmpl,
  587. CESA_SA_DESC_CFG_CRYPTCM_ECB |
  588. CESA_SA_DESC_CFG_DIR_ENC);
  589. return mv_cesa_aes_op(req, &tmpl);
  590. }
  591. static int mv_cesa_ecb_aes_decrypt(struct skcipher_request *req)
  592. {
  593. struct mv_cesa_op_ctx tmpl;
  594. mv_cesa_set_op_cfg(&tmpl,
  595. CESA_SA_DESC_CFG_CRYPTCM_ECB |
  596. CESA_SA_DESC_CFG_DIR_DEC);
  597. return mv_cesa_aes_op(req, &tmpl);
  598. }
  599. struct skcipher_alg mv_cesa_ecb_aes_alg = {
  600. .setkey = mv_cesa_aes_setkey,
  601. .encrypt = mv_cesa_ecb_aes_encrypt,
  602. .decrypt = mv_cesa_ecb_aes_decrypt,
  603. .min_keysize = AES_MIN_KEY_SIZE,
  604. .max_keysize = AES_MAX_KEY_SIZE,
  605. .base = {
  606. .cra_name = "ecb(aes)",
  607. .cra_driver_name = "mv-ecb-aes",
  608. .cra_priority = 300,
  609. .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC |
  610. CRYPTO_ALG_ALLOCATES_MEMORY,
  611. .cra_blocksize = AES_BLOCK_SIZE,
  612. .cra_ctxsize = sizeof(struct mv_cesa_aes_ctx),
  613. .cra_alignmask = 0,
  614. .cra_module = THIS_MODULE,
  615. .cra_init = mv_cesa_skcipher_cra_init,
  616. .cra_exit = mv_cesa_skcipher_cra_exit,
  617. },
  618. };
  619. static int mv_cesa_cbc_aes_op(struct skcipher_request *req,
  620. struct mv_cesa_op_ctx *tmpl)
  621. {
  622. mv_cesa_update_op_cfg(tmpl, CESA_SA_DESC_CFG_CRYPTCM_CBC,
  623. CESA_SA_DESC_CFG_CRYPTCM_MSK);
  624. memcpy(tmpl->ctx.skcipher.iv, req->iv, AES_BLOCK_SIZE);
  625. return mv_cesa_aes_op(req, tmpl);
  626. }
  627. static int mv_cesa_cbc_aes_encrypt(struct skcipher_request *req)
  628. {
  629. struct mv_cesa_op_ctx tmpl;
  630. mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_DIR_ENC);
  631. return mv_cesa_cbc_aes_op(req, &tmpl);
  632. }
  633. static int mv_cesa_cbc_aes_decrypt(struct skcipher_request *req)
  634. {
  635. struct mv_cesa_op_ctx tmpl;
  636. mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_DIR_DEC);
  637. return mv_cesa_cbc_aes_op(req, &tmpl);
  638. }
  639. struct skcipher_alg mv_cesa_cbc_aes_alg = {
  640. .setkey = mv_cesa_aes_setkey,
  641. .encrypt = mv_cesa_cbc_aes_encrypt,
  642. .decrypt = mv_cesa_cbc_aes_decrypt,
  643. .min_keysize = AES_MIN_KEY_SIZE,
  644. .max_keysize = AES_MAX_KEY_SIZE,
  645. .ivsize = AES_BLOCK_SIZE,
  646. .base = {
  647. .cra_name = "cbc(aes)",
  648. .cra_driver_name = "mv-cbc-aes",
  649. .cra_priority = 300,
  650. .cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC |
  651. CRYPTO_ALG_ALLOCATES_MEMORY,
  652. .cra_blocksize = AES_BLOCK_SIZE,
  653. .cra_ctxsize = sizeof(struct mv_cesa_aes_ctx),
  654. .cra_alignmask = 0,
  655. .cra_module = THIS_MODULE,
  656. .cra_init = mv_cesa_skcipher_cra_init,
  657. .cra_exit = mv_cesa_skcipher_cra_exit,
  658. },
  659. };