hpre_main.c 40 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534
  1. // SPDX-License-Identifier: GPL-2.0
  2. /* Copyright (c) 2018-2019 HiSilicon Limited. */
  3. #include <linux/acpi.h>
  4. #include <linux/aer.h>
  5. #include <linux/bitops.h>
  6. #include <linux/debugfs.h>
  7. #include <linux/init.h>
  8. #include <linux/io.h>
  9. #include <linux/kernel.h>
  10. #include <linux/module.h>
  11. #include <linux/pci.h>
  12. #include <linux/pm_runtime.h>
  13. #include <linux/topology.h>
  14. #include <linux/uacce.h>
  15. #include "hpre.h"
  16. #define HPRE_QM_ABNML_INT_MASK 0x100004
  17. #define HPRE_CTRL_CNT_CLR_CE_BIT BIT(0)
  18. #define HPRE_COMM_CNT_CLR_CE 0x0
  19. #define HPRE_CTRL_CNT_CLR_CE 0x301000
  20. #define HPRE_FSM_MAX_CNT 0x301008
  21. #define HPRE_VFG_AXQOS 0x30100c
  22. #define HPRE_VFG_AXCACHE 0x301010
  23. #define HPRE_RDCHN_INI_CFG 0x301014
  24. #define HPRE_AWUSR_FP_CFG 0x301018
  25. #define HPRE_BD_ENDIAN 0x301020
  26. #define HPRE_ECC_BYPASS 0x301024
  27. #define HPRE_RAS_WIDTH_CFG 0x301028
  28. #define HPRE_POISON_BYPASS 0x30102c
  29. #define HPRE_BD_ARUSR_CFG 0x301030
  30. #define HPRE_BD_AWUSR_CFG 0x301034
  31. #define HPRE_TYPES_ENB 0x301038
  32. #define HPRE_RSA_ENB BIT(0)
  33. #define HPRE_ECC_ENB BIT(1)
  34. #define HPRE_DATA_RUSER_CFG 0x30103c
  35. #define HPRE_DATA_WUSER_CFG 0x301040
  36. #define HPRE_INT_MASK 0x301400
  37. #define HPRE_INT_STATUS 0x301800
  38. #define HPRE_HAC_INT_MSK 0x301400
  39. #define HPRE_HAC_RAS_CE_ENB 0x301410
  40. #define HPRE_HAC_RAS_NFE_ENB 0x301414
  41. #define HPRE_HAC_RAS_FE_ENB 0x301418
  42. #define HPRE_HAC_INT_SET 0x301500
  43. #define HPRE_RNG_TIMEOUT_NUM 0x301A34
  44. #define HPRE_CORE_INT_ENABLE 0
  45. #define HPRE_CORE_INT_DISABLE GENMASK(21, 0)
  46. #define HPRE_RDCHN_INI_ST 0x301a00
  47. #define HPRE_CLSTR_BASE 0x302000
  48. #define HPRE_CORE_EN_OFFSET 0x04
  49. #define HPRE_CORE_INI_CFG_OFFSET 0x20
  50. #define HPRE_CORE_INI_STATUS_OFFSET 0x80
  51. #define HPRE_CORE_HTBT_WARN_OFFSET 0x8c
  52. #define HPRE_CORE_IS_SCHD_OFFSET 0x90
  53. #define HPRE_RAS_CE_ENB 0x301410
  54. #define HPRE_RAS_NFE_ENB 0x301414
  55. #define HPRE_RAS_FE_ENB 0x301418
  56. #define HPRE_OOO_SHUTDOWN_SEL 0x301a3c
  57. #define HPRE_HAC_RAS_FE_ENABLE 0
  58. #define HPRE_CORE_ENB (HPRE_CLSTR_BASE + HPRE_CORE_EN_OFFSET)
  59. #define HPRE_CORE_INI_CFG (HPRE_CLSTR_BASE + HPRE_CORE_INI_CFG_OFFSET)
  60. #define HPRE_CORE_INI_STATUS (HPRE_CLSTR_BASE + HPRE_CORE_INI_STATUS_OFFSET)
  61. #define HPRE_HAC_ECC1_CNT 0x301a04
  62. #define HPRE_HAC_ECC2_CNT 0x301a08
  63. #define HPRE_HAC_SOURCE_INT 0x301600
  64. #define HPRE_CLSTR_ADDR_INTRVL 0x1000
  65. #define HPRE_CLUSTER_INQURY 0x100
  66. #define HPRE_CLSTR_ADDR_INQRY_RSLT 0x104
  67. #define HPRE_TIMEOUT_ABNML_BIT 6
  68. #define HPRE_PASID_EN_BIT 9
  69. #define HPRE_REG_RD_INTVRL_US 10
  70. #define HPRE_REG_RD_TMOUT_US 1000
  71. #define HPRE_DBGFS_VAL_MAX_LEN 20
  72. #define PCI_DEVICE_ID_HUAWEI_HPRE_PF 0xa258
  73. #define HPRE_QM_USR_CFG_MASK GENMASK(31, 1)
  74. #define HPRE_QM_AXI_CFG_MASK GENMASK(15, 0)
  75. #define HPRE_QM_VFG_AX_MASK GENMASK(7, 0)
  76. #define HPRE_BD_USR_MASK GENMASK(1, 0)
  77. #define HPRE_PREFETCH_CFG 0x301130
  78. #define HPRE_SVA_PREFTCH_DFX 0x30115C
  79. #define HPRE_PREFETCH_ENABLE (~(BIT(0) | BIT(30)))
  80. #define HPRE_PREFETCH_DISABLE BIT(30)
  81. #define HPRE_SVA_DISABLE_READY (BIT(4) | BIT(8))
  82. /* clock gate */
  83. #define HPRE_CLKGATE_CTL 0x301a10
  84. #define HPRE_PEH_CFG_AUTO_GATE 0x301a2c
  85. #define HPRE_CLUSTER_DYN_CTL 0x302010
  86. #define HPRE_CORE_SHB_CFG 0x302088
  87. #define HPRE_CLKGATE_CTL_EN BIT(0)
  88. #define HPRE_PEH_CFG_AUTO_GATE_EN BIT(0)
  89. #define HPRE_CLUSTER_DYN_CTL_EN BIT(0)
  90. #define HPRE_CORE_GATE_EN (BIT(30) | BIT(31))
  91. #define HPRE_AM_OOO_SHUTDOWN_ENB 0x301044
  92. #define HPRE_AM_OOO_SHUTDOWN_ENABLE BIT(0)
  93. #define HPRE_WR_MSI_PORT BIT(2)
  94. #define HPRE_CORE_ECC_2BIT_ERR BIT(1)
  95. #define HPRE_OOO_ECC_2BIT_ERR BIT(5)
  96. #define HPRE_QM_BME_FLR BIT(7)
  97. #define HPRE_QM_PM_FLR BIT(11)
  98. #define HPRE_QM_SRIOV_FLR BIT(12)
  99. #define HPRE_SHAPER_TYPE_RATE 640
  100. #define HPRE_VIA_MSI_DSM 1
  101. #define HPRE_SQE_MASK_OFFSET 8
  102. #define HPRE_SQE_MASK_LEN 24
  103. #define HPRE_DFX_BASE 0x301000
  104. #define HPRE_DFX_COMMON1 0x301400
  105. #define HPRE_DFX_COMMON2 0x301A00
  106. #define HPRE_DFX_CORE 0x302000
  107. #define HPRE_DFX_BASE_LEN 0x55
  108. #define HPRE_DFX_COMMON1_LEN 0x41
  109. #define HPRE_DFX_COMMON2_LEN 0xE
  110. #define HPRE_DFX_CORE_LEN 0x43
  111. #define HPRE_DEV_ALG_MAX_LEN 256
  112. static const char hpre_name[] = "hisi_hpre";
  113. static struct dentry *hpre_debugfs_root;
  114. static const struct pci_device_id hpre_dev_ids[] = {
  115. { PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, PCI_DEVICE_ID_HUAWEI_HPRE_PF) },
  116. { PCI_DEVICE(PCI_VENDOR_ID_HUAWEI, PCI_DEVICE_ID_HUAWEI_HPRE_VF) },
  117. { 0, }
  118. };
  119. MODULE_DEVICE_TABLE(pci, hpre_dev_ids);
  120. struct hpre_hw_error {
  121. u32 int_msk;
  122. const char *msg;
  123. };
  124. struct hpre_dev_alg {
  125. u32 alg_msk;
  126. const char *alg;
  127. };
  128. static const struct hpre_dev_alg hpre_dev_algs[] = {
  129. {
  130. .alg_msk = BIT(0),
  131. .alg = "rsa\n"
  132. }, {
  133. .alg_msk = BIT(1),
  134. .alg = "dh\n"
  135. }, {
  136. .alg_msk = BIT(2),
  137. .alg = "ecdh\n"
  138. }, {
  139. .alg_msk = BIT(3),
  140. .alg = "ecdsa\n"
  141. }, {
  142. .alg_msk = BIT(4),
  143. .alg = "sm2\n"
  144. }, {
  145. .alg_msk = BIT(5),
  146. .alg = "x25519\n"
  147. }, {
  148. .alg_msk = BIT(6),
  149. .alg = "x448\n"
  150. }, {
  151. /* sentinel */
  152. }
  153. };
  154. static struct hisi_qm_list hpre_devices = {
  155. .register_to_crypto = hpre_algs_register,
  156. .unregister_from_crypto = hpre_algs_unregister,
  157. };
  158. static const char * const hpre_debug_file_name[] = {
  159. [HPRE_CLEAR_ENABLE] = "rdclr_en",
  160. [HPRE_CLUSTER_CTRL] = "cluster_ctrl",
  161. };
  162. enum hpre_cap_type {
  163. HPRE_QM_NFE_MASK_CAP,
  164. HPRE_QM_RESET_MASK_CAP,
  165. HPRE_QM_OOO_SHUTDOWN_MASK_CAP,
  166. HPRE_QM_CE_MASK_CAP,
  167. HPRE_NFE_MASK_CAP,
  168. HPRE_RESET_MASK_CAP,
  169. HPRE_OOO_SHUTDOWN_MASK_CAP,
  170. HPRE_CE_MASK_CAP,
  171. HPRE_CLUSTER_NUM_CAP,
  172. HPRE_CORE_TYPE_NUM_CAP,
  173. HPRE_CORE_NUM_CAP,
  174. HPRE_CLUSTER_CORE_NUM_CAP,
  175. HPRE_CORE_ENABLE_BITMAP_CAP,
  176. HPRE_DRV_ALG_BITMAP_CAP,
  177. HPRE_DEV_ALG_BITMAP_CAP,
  178. HPRE_CORE1_ALG_BITMAP_CAP,
  179. HPRE_CORE2_ALG_BITMAP_CAP,
  180. HPRE_CORE3_ALG_BITMAP_CAP,
  181. HPRE_CORE4_ALG_BITMAP_CAP,
  182. HPRE_CORE5_ALG_BITMAP_CAP,
  183. HPRE_CORE6_ALG_BITMAP_CAP,
  184. HPRE_CORE7_ALG_BITMAP_CAP,
  185. HPRE_CORE8_ALG_BITMAP_CAP,
  186. HPRE_CORE9_ALG_BITMAP_CAP,
  187. HPRE_CORE10_ALG_BITMAP_CAP
  188. };
  189. static const struct hisi_qm_cap_info hpre_basic_info[] = {
  190. {HPRE_QM_NFE_MASK_CAP, 0x3124, 0, GENMASK(31, 0), 0x0, 0x1C37, 0x7C37},
  191. {HPRE_QM_RESET_MASK_CAP, 0x3128, 0, GENMASK(31, 0), 0x0, 0xC37, 0x6C37},
  192. {HPRE_QM_OOO_SHUTDOWN_MASK_CAP, 0x3128, 0, GENMASK(31, 0), 0x0, 0x4, 0x6C37},
  193. {HPRE_QM_CE_MASK_CAP, 0x312C, 0, GENMASK(31, 0), 0x0, 0x8, 0x8},
  194. {HPRE_NFE_MASK_CAP, 0x3130, 0, GENMASK(31, 0), 0x0, 0x3FFFFE, 0xFFFFFE},
  195. {HPRE_RESET_MASK_CAP, 0x3134, 0, GENMASK(31, 0), 0x0, 0x3FFFFE, 0xBFFFFE},
  196. {HPRE_OOO_SHUTDOWN_MASK_CAP, 0x3134, 0, GENMASK(31, 0), 0x0, 0x22, 0xBFFFFE},
  197. {HPRE_CE_MASK_CAP, 0x3138, 0, GENMASK(31, 0), 0x0, 0x1, 0x1},
  198. {HPRE_CLUSTER_NUM_CAP, 0x313c, 20, GENMASK(3, 0), 0x0, 0x4, 0x1},
  199. {HPRE_CORE_TYPE_NUM_CAP, 0x313c, 16, GENMASK(3, 0), 0x0, 0x2, 0x2},
  200. {HPRE_CORE_NUM_CAP, 0x313c, 8, GENMASK(7, 0), 0x0, 0x8, 0xA},
  201. {HPRE_CLUSTER_CORE_NUM_CAP, 0x313c, 0, GENMASK(7, 0), 0x0, 0x2, 0xA},
  202. {HPRE_CORE_ENABLE_BITMAP_CAP, 0x3140, 0, GENMASK(31, 0), 0x0, 0xF, 0x3FF},
  203. {HPRE_DRV_ALG_BITMAP_CAP, 0x3144, 0, GENMASK(31, 0), 0x0, 0x03, 0x27},
  204. {HPRE_DEV_ALG_BITMAP_CAP, 0x3148, 0, GENMASK(31, 0), 0x0, 0x03, 0x7F},
  205. {HPRE_CORE1_ALG_BITMAP_CAP, 0x314c, 0, GENMASK(31, 0), 0x0, 0x7F, 0x7F},
  206. {HPRE_CORE2_ALG_BITMAP_CAP, 0x3150, 0, GENMASK(31, 0), 0x0, 0x7F, 0x7F},
  207. {HPRE_CORE3_ALG_BITMAP_CAP, 0x3154, 0, GENMASK(31, 0), 0x0, 0x7F, 0x7F},
  208. {HPRE_CORE4_ALG_BITMAP_CAP, 0x3158, 0, GENMASK(31, 0), 0x0, 0x7F, 0x7F},
  209. {HPRE_CORE5_ALG_BITMAP_CAP, 0x315c, 0, GENMASK(31, 0), 0x0, 0x7F, 0x7F},
  210. {HPRE_CORE6_ALG_BITMAP_CAP, 0x3160, 0, GENMASK(31, 0), 0x0, 0x7F, 0x7F},
  211. {HPRE_CORE7_ALG_BITMAP_CAP, 0x3164, 0, GENMASK(31, 0), 0x0, 0x7F, 0x7F},
  212. {HPRE_CORE8_ALG_BITMAP_CAP, 0x3168, 0, GENMASK(31, 0), 0x0, 0x7F, 0x7F},
  213. {HPRE_CORE9_ALG_BITMAP_CAP, 0x316c, 0, GENMASK(31, 0), 0x0, 0x10, 0x10},
  214. {HPRE_CORE10_ALG_BITMAP_CAP, 0x3170, 0, GENMASK(31, 0), 0x0, 0x10, 0x10}
  215. };
  216. static const struct hpre_hw_error hpre_hw_errors[] = {
  217. {
  218. .int_msk = BIT(0),
  219. .msg = "core_ecc_1bit_err_int_set"
  220. }, {
  221. .int_msk = BIT(1),
  222. .msg = "core_ecc_2bit_err_int_set"
  223. }, {
  224. .int_msk = BIT(2),
  225. .msg = "dat_wb_poison_int_set"
  226. }, {
  227. .int_msk = BIT(3),
  228. .msg = "dat_rd_poison_int_set"
  229. }, {
  230. .int_msk = BIT(4),
  231. .msg = "bd_rd_poison_int_set"
  232. }, {
  233. .int_msk = BIT(5),
  234. .msg = "ooo_ecc_2bit_err_int_set"
  235. }, {
  236. .int_msk = BIT(6),
  237. .msg = "cluster1_shb_timeout_int_set"
  238. }, {
  239. .int_msk = BIT(7),
  240. .msg = "cluster2_shb_timeout_int_set"
  241. }, {
  242. .int_msk = BIT(8),
  243. .msg = "cluster3_shb_timeout_int_set"
  244. }, {
  245. .int_msk = BIT(9),
  246. .msg = "cluster4_shb_timeout_int_set"
  247. }, {
  248. .int_msk = GENMASK(15, 10),
  249. .msg = "ooo_rdrsp_err_int_set"
  250. }, {
  251. .int_msk = GENMASK(21, 16),
  252. .msg = "ooo_wrrsp_err_int_set"
  253. }, {
  254. .int_msk = BIT(22),
  255. .msg = "pt_rng_timeout_int_set"
  256. }, {
  257. .int_msk = BIT(23),
  258. .msg = "sva_fsm_timeout_int_set"
  259. }, {
  260. /* sentinel */
  261. }
  262. };
  263. static const u64 hpre_cluster_offsets[] = {
  264. [HPRE_CLUSTER0] =
  265. HPRE_CLSTR_BASE + HPRE_CLUSTER0 * HPRE_CLSTR_ADDR_INTRVL,
  266. [HPRE_CLUSTER1] =
  267. HPRE_CLSTR_BASE + HPRE_CLUSTER1 * HPRE_CLSTR_ADDR_INTRVL,
  268. [HPRE_CLUSTER2] =
  269. HPRE_CLSTR_BASE + HPRE_CLUSTER2 * HPRE_CLSTR_ADDR_INTRVL,
  270. [HPRE_CLUSTER3] =
  271. HPRE_CLSTR_BASE + HPRE_CLUSTER3 * HPRE_CLSTR_ADDR_INTRVL,
  272. };
  273. static const struct debugfs_reg32 hpre_cluster_dfx_regs[] = {
  274. {"CORES_EN_STATUS ", HPRE_CORE_EN_OFFSET},
  275. {"CORES_INI_CFG ", HPRE_CORE_INI_CFG_OFFSET},
  276. {"CORES_INI_STATUS ", HPRE_CORE_INI_STATUS_OFFSET},
  277. {"CORES_HTBT_WARN ", HPRE_CORE_HTBT_WARN_OFFSET},
  278. {"CORES_IS_SCHD ", HPRE_CORE_IS_SCHD_OFFSET},
  279. };
  280. static const struct debugfs_reg32 hpre_com_dfx_regs[] = {
  281. {"READ_CLR_EN ", HPRE_CTRL_CNT_CLR_CE},
  282. {"AXQOS ", HPRE_VFG_AXQOS},
  283. {"AWUSR_CFG ", HPRE_AWUSR_FP_CFG},
  284. {"BD_ENDIAN ", HPRE_BD_ENDIAN},
  285. {"ECC_CHECK_CTRL ", HPRE_ECC_BYPASS},
  286. {"RAS_INT_WIDTH ", HPRE_RAS_WIDTH_CFG},
  287. {"POISON_BYPASS ", HPRE_POISON_BYPASS},
  288. {"BD_ARUSER ", HPRE_BD_ARUSR_CFG},
  289. {"BD_AWUSER ", HPRE_BD_AWUSR_CFG},
  290. {"DATA_ARUSER ", HPRE_DATA_RUSER_CFG},
  291. {"DATA_AWUSER ", HPRE_DATA_WUSER_CFG},
  292. {"INT_STATUS ", HPRE_INT_STATUS},
  293. {"INT_MASK ", HPRE_HAC_INT_MSK},
  294. {"RAS_CE_ENB ", HPRE_HAC_RAS_CE_ENB},
  295. {"RAS_NFE_ENB ", HPRE_HAC_RAS_NFE_ENB},
  296. {"RAS_FE_ENB ", HPRE_HAC_RAS_FE_ENB},
  297. {"INT_SET ", HPRE_HAC_INT_SET},
  298. {"RNG_TIMEOUT_NUM ", HPRE_RNG_TIMEOUT_NUM},
  299. };
  300. static const char *hpre_dfx_files[HPRE_DFX_FILE_NUM] = {
  301. "send_cnt",
  302. "recv_cnt",
  303. "send_fail_cnt",
  304. "send_busy_cnt",
  305. "over_thrhld_cnt",
  306. "overtime_thrhld",
  307. "invalid_req_cnt"
  308. };
  309. /* define the HPRE's dfx regs region and region length */
  310. static struct dfx_diff_registers hpre_diff_regs[] = {
  311. {
  312. .reg_offset = HPRE_DFX_BASE,
  313. .reg_len = HPRE_DFX_BASE_LEN,
  314. }, {
  315. .reg_offset = HPRE_DFX_COMMON1,
  316. .reg_len = HPRE_DFX_COMMON1_LEN,
  317. }, {
  318. .reg_offset = HPRE_DFX_COMMON2,
  319. .reg_len = HPRE_DFX_COMMON2_LEN,
  320. }, {
  321. .reg_offset = HPRE_DFX_CORE,
  322. .reg_len = HPRE_DFX_CORE_LEN,
  323. },
  324. };
  325. bool hpre_check_alg_support(struct hisi_qm *qm, u32 alg)
  326. {
  327. u32 cap_val;
  328. cap_val = hisi_qm_get_hw_info(qm, hpre_basic_info, HPRE_DRV_ALG_BITMAP_CAP, qm->cap_ver);
  329. if (alg & cap_val)
  330. return true;
  331. return false;
  332. }
  333. static int hpre_set_qm_algs(struct hisi_qm *qm)
  334. {
  335. struct device *dev = &qm->pdev->dev;
  336. char *algs, *ptr;
  337. u32 alg_msk;
  338. int i;
  339. if (!qm->use_sva)
  340. return 0;
  341. algs = devm_kzalloc(dev, HPRE_DEV_ALG_MAX_LEN * sizeof(char), GFP_KERNEL);
  342. if (!algs)
  343. return -ENOMEM;
  344. alg_msk = hisi_qm_get_hw_info(qm, hpre_basic_info, HPRE_DEV_ALG_BITMAP_CAP, qm->cap_ver);
  345. for (i = 0; i < ARRAY_SIZE(hpre_dev_algs); i++)
  346. if (alg_msk & hpre_dev_algs[i].alg_msk)
  347. strcat(algs, hpre_dev_algs[i].alg);
  348. ptr = strrchr(algs, '\n');
  349. if (ptr)
  350. *ptr = '\0';
  351. qm->uacce->algs = algs;
  352. return 0;
  353. }
  354. static int hpre_diff_regs_show(struct seq_file *s, void *unused)
  355. {
  356. struct hisi_qm *qm = s->private;
  357. hisi_qm_acc_diff_regs_dump(qm, s, qm->debug.acc_diff_regs,
  358. ARRAY_SIZE(hpre_diff_regs));
  359. return 0;
  360. }
  361. DEFINE_SHOW_ATTRIBUTE(hpre_diff_regs);
  362. static int hpre_com_regs_show(struct seq_file *s, void *unused)
  363. {
  364. hisi_qm_regs_dump(s, s->private);
  365. return 0;
  366. }
  367. DEFINE_SHOW_ATTRIBUTE(hpre_com_regs);
  368. static int hpre_cluster_regs_show(struct seq_file *s, void *unused)
  369. {
  370. hisi_qm_regs_dump(s, s->private);
  371. return 0;
  372. }
  373. DEFINE_SHOW_ATTRIBUTE(hpre_cluster_regs);
  374. static const struct kernel_param_ops hpre_uacce_mode_ops = {
  375. .set = uacce_mode_set,
  376. .get = param_get_int,
  377. };
  378. /*
  379. * uacce_mode = 0 means hpre only register to crypto,
  380. * uacce_mode = 1 means hpre both register to crypto and uacce.
  381. */
  382. static u32 uacce_mode = UACCE_MODE_NOUACCE;
  383. module_param_cb(uacce_mode, &hpre_uacce_mode_ops, &uacce_mode, 0444);
  384. MODULE_PARM_DESC(uacce_mode, UACCE_MODE_DESC);
  385. static bool pf_q_num_flag;
  386. static int pf_q_num_set(const char *val, const struct kernel_param *kp)
  387. {
  388. pf_q_num_flag = true;
  389. return q_num_set(val, kp, PCI_DEVICE_ID_HUAWEI_HPRE_PF);
  390. }
  391. static const struct kernel_param_ops hpre_pf_q_num_ops = {
  392. .set = pf_q_num_set,
  393. .get = param_get_int,
  394. };
  395. static u32 pf_q_num = HPRE_PF_DEF_Q_NUM;
  396. module_param_cb(pf_q_num, &hpre_pf_q_num_ops, &pf_q_num, 0444);
  397. MODULE_PARM_DESC(pf_q_num, "Number of queues in PF of CS(2-1024)");
  398. static const struct kernel_param_ops vfs_num_ops = {
  399. .set = vfs_num_set,
  400. .get = param_get_int,
  401. };
  402. static u32 vfs_num;
  403. module_param_cb(vfs_num, &vfs_num_ops, &vfs_num, 0444);
  404. MODULE_PARM_DESC(vfs_num, "Number of VFs to enable(1-63), 0(default)");
  405. static inline int hpre_cluster_num(struct hisi_qm *qm)
  406. {
  407. return hisi_qm_get_hw_info(qm, hpre_basic_info, HPRE_CLUSTER_NUM_CAP, qm->cap_ver);
  408. }
  409. static inline int hpre_cluster_core_mask(struct hisi_qm *qm)
  410. {
  411. return hisi_qm_get_hw_info(qm, hpre_basic_info, HPRE_CORE_ENABLE_BITMAP_CAP, qm->cap_ver);
  412. }
  413. struct hisi_qp *hpre_create_qp(u8 type)
  414. {
  415. int node = cpu_to_node(smp_processor_id());
  416. struct hisi_qp *qp = NULL;
  417. int ret;
  418. if (type != HPRE_V2_ALG_TYPE && type != HPRE_V3_ECC_ALG_TYPE)
  419. return NULL;
  420. /*
  421. * type: 0 - RSA/DH. algorithm supported in V2,
  422. * 1 - ECC algorithm in V3.
  423. */
  424. ret = hisi_qm_alloc_qps_node(&hpre_devices, 1, type, node, &qp);
  425. if (!ret)
  426. return qp;
  427. return NULL;
  428. }
  429. static void hpre_config_pasid(struct hisi_qm *qm)
  430. {
  431. u32 val1, val2;
  432. if (qm->ver >= QM_HW_V3)
  433. return;
  434. val1 = readl_relaxed(qm->io_base + HPRE_DATA_RUSER_CFG);
  435. val2 = readl_relaxed(qm->io_base + HPRE_DATA_WUSER_CFG);
  436. if (qm->use_sva) {
  437. val1 |= BIT(HPRE_PASID_EN_BIT);
  438. val2 |= BIT(HPRE_PASID_EN_BIT);
  439. } else {
  440. val1 &= ~BIT(HPRE_PASID_EN_BIT);
  441. val2 &= ~BIT(HPRE_PASID_EN_BIT);
  442. }
  443. writel_relaxed(val1, qm->io_base + HPRE_DATA_RUSER_CFG);
  444. writel_relaxed(val2, qm->io_base + HPRE_DATA_WUSER_CFG);
  445. }
  446. static int hpre_cfg_by_dsm(struct hisi_qm *qm)
  447. {
  448. struct device *dev = &qm->pdev->dev;
  449. union acpi_object *obj;
  450. guid_t guid;
  451. if (guid_parse("b06b81ab-0134-4a45-9b0c-483447b95fa7", &guid)) {
  452. dev_err(dev, "Hpre GUID failed\n");
  453. return -EINVAL;
  454. }
  455. /* Switch over to MSI handling due to non-standard PCI implementation */
  456. obj = acpi_evaluate_dsm(ACPI_HANDLE(dev), &guid,
  457. 0, HPRE_VIA_MSI_DSM, NULL);
  458. if (!obj) {
  459. dev_err(dev, "ACPI handle failed!\n");
  460. return -EIO;
  461. }
  462. ACPI_FREE(obj);
  463. return 0;
  464. }
  465. static int hpre_set_cluster(struct hisi_qm *qm)
  466. {
  467. u32 cluster_core_mask = hpre_cluster_core_mask(qm);
  468. u8 clusters_num = hpre_cluster_num(qm);
  469. struct device *dev = &qm->pdev->dev;
  470. unsigned long offset;
  471. u32 val = 0;
  472. int ret, i;
  473. for (i = 0; i < clusters_num; i++) {
  474. offset = i * HPRE_CLSTR_ADDR_INTRVL;
  475. /* clusters initiating */
  476. writel(cluster_core_mask,
  477. qm->io_base + offset + HPRE_CORE_ENB);
  478. writel(0x1, qm->io_base + offset + HPRE_CORE_INI_CFG);
  479. ret = readl_relaxed_poll_timeout(qm->io_base + offset +
  480. HPRE_CORE_INI_STATUS, val,
  481. ((val & cluster_core_mask) ==
  482. cluster_core_mask),
  483. HPRE_REG_RD_INTVRL_US,
  484. HPRE_REG_RD_TMOUT_US);
  485. if (ret) {
  486. dev_err(dev,
  487. "cluster %d int st status timeout!\n", i);
  488. return -ETIMEDOUT;
  489. }
  490. }
  491. return 0;
  492. }
  493. /*
  494. * For Kunpeng 920, we should disable FLR triggered by hardware (BME/PM/SRIOV).
  495. * Or it may stay in D3 state when we bind and unbind hpre quickly,
  496. * as it does FLR triggered by hardware.
  497. */
  498. static void disable_flr_of_bme(struct hisi_qm *qm)
  499. {
  500. u32 val;
  501. val = readl(qm->io_base + QM_PEH_AXUSER_CFG);
  502. val &= ~(HPRE_QM_BME_FLR | HPRE_QM_SRIOV_FLR);
  503. val |= HPRE_QM_PM_FLR;
  504. writel(val, qm->io_base + QM_PEH_AXUSER_CFG);
  505. writel(PEH_AXUSER_CFG_ENABLE, qm->io_base + QM_PEH_AXUSER_CFG_ENABLE);
  506. }
  507. static void hpre_open_sva_prefetch(struct hisi_qm *qm)
  508. {
  509. u32 val;
  510. int ret;
  511. if (!test_bit(QM_SUPPORT_SVA_PREFETCH, &qm->caps))
  512. return;
  513. /* Enable prefetch */
  514. val = readl_relaxed(qm->io_base + HPRE_PREFETCH_CFG);
  515. val &= HPRE_PREFETCH_ENABLE;
  516. writel(val, qm->io_base + HPRE_PREFETCH_CFG);
  517. ret = readl_relaxed_poll_timeout(qm->io_base + HPRE_PREFETCH_CFG,
  518. val, !(val & HPRE_PREFETCH_DISABLE),
  519. HPRE_REG_RD_INTVRL_US,
  520. HPRE_REG_RD_TMOUT_US);
  521. if (ret)
  522. pci_err(qm->pdev, "failed to open sva prefetch\n");
  523. }
  524. static void hpre_close_sva_prefetch(struct hisi_qm *qm)
  525. {
  526. u32 val;
  527. int ret;
  528. if (!test_bit(QM_SUPPORT_SVA_PREFETCH, &qm->caps))
  529. return;
  530. val = readl_relaxed(qm->io_base + HPRE_PREFETCH_CFG);
  531. val |= HPRE_PREFETCH_DISABLE;
  532. writel(val, qm->io_base + HPRE_PREFETCH_CFG);
  533. ret = readl_relaxed_poll_timeout(qm->io_base + HPRE_SVA_PREFTCH_DFX,
  534. val, !(val & HPRE_SVA_DISABLE_READY),
  535. HPRE_REG_RD_INTVRL_US,
  536. HPRE_REG_RD_TMOUT_US);
  537. if (ret)
  538. pci_err(qm->pdev, "failed to close sva prefetch\n");
  539. }
  540. static void hpre_enable_clock_gate(struct hisi_qm *qm)
  541. {
  542. u32 val;
  543. if (qm->ver < QM_HW_V3)
  544. return;
  545. val = readl(qm->io_base + HPRE_CLKGATE_CTL);
  546. val |= HPRE_CLKGATE_CTL_EN;
  547. writel(val, qm->io_base + HPRE_CLKGATE_CTL);
  548. val = readl(qm->io_base + HPRE_PEH_CFG_AUTO_GATE);
  549. val |= HPRE_PEH_CFG_AUTO_GATE_EN;
  550. writel(val, qm->io_base + HPRE_PEH_CFG_AUTO_GATE);
  551. val = readl(qm->io_base + HPRE_CLUSTER_DYN_CTL);
  552. val |= HPRE_CLUSTER_DYN_CTL_EN;
  553. writel(val, qm->io_base + HPRE_CLUSTER_DYN_CTL);
  554. val = readl_relaxed(qm->io_base + HPRE_CORE_SHB_CFG);
  555. val |= HPRE_CORE_GATE_EN;
  556. writel(val, qm->io_base + HPRE_CORE_SHB_CFG);
  557. }
  558. static void hpre_disable_clock_gate(struct hisi_qm *qm)
  559. {
  560. u32 val;
  561. if (qm->ver < QM_HW_V3)
  562. return;
  563. val = readl(qm->io_base + HPRE_CLKGATE_CTL);
  564. val &= ~HPRE_CLKGATE_CTL_EN;
  565. writel(val, qm->io_base + HPRE_CLKGATE_CTL);
  566. val = readl(qm->io_base + HPRE_PEH_CFG_AUTO_GATE);
  567. val &= ~HPRE_PEH_CFG_AUTO_GATE_EN;
  568. writel(val, qm->io_base + HPRE_PEH_CFG_AUTO_GATE);
  569. val = readl(qm->io_base + HPRE_CLUSTER_DYN_CTL);
  570. val &= ~HPRE_CLUSTER_DYN_CTL_EN;
  571. writel(val, qm->io_base + HPRE_CLUSTER_DYN_CTL);
  572. val = readl_relaxed(qm->io_base + HPRE_CORE_SHB_CFG);
  573. val &= ~HPRE_CORE_GATE_EN;
  574. writel(val, qm->io_base + HPRE_CORE_SHB_CFG);
  575. }
  576. static int hpre_set_user_domain_and_cache(struct hisi_qm *qm)
  577. {
  578. struct device *dev = &qm->pdev->dev;
  579. u32 val;
  580. int ret;
  581. /* disabel dynamic clock gate before sram init */
  582. hpre_disable_clock_gate(qm);
  583. writel(HPRE_QM_USR_CFG_MASK, qm->io_base + QM_ARUSER_M_CFG_ENABLE);
  584. writel(HPRE_QM_USR_CFG_MASK, qm->io_base + QM_AWUSER_M_CFG_ENABLE);
  585. writel_relaxed(HPRE_QM_AXI_CFG_MASK, qm->io_base + QM_AXI_M_CFG);
  586. /* HPRE need more time, we close this interrupt */
  587. val = readl_relaxed(qm->io_base + HPRE_QM_ABNML_INT_MASK);
  588. val |= BIT(HPRE_TIMEOUT_ABNML_BIT);
  589. writel_relaxed(val, qm->io_base + HPRE_QM_ABNML_INT_MASK);
  590. if (qm->ver >= QM_HW_V3)
  591. writel(HPRE_RSA_ENB | HPRE_ECC_ENB,
  592. qm->io_base + HPRE_TYPES_ENB);
  593. else
  594. writel(HPRE_RSA_ENB, qm->io_base + HPRE_TYPES_ENB);
  595. writel(HPRE_QM_VFG_AX_MASK, qm->io_base + HPRE_VFG_AXCACHE);
  596. writel(0x0, qm->io_base + HPRE_BD_ENDIAN);
  597. writel(0x0, qm->io_base + HPRE_INT_MASK);
  598. writel(0x0, qm->io_base + HPRE_POISON_BYPASS);
  599. writel(0x0, qm->io_base + HPRE_COMM_CNT_CLR_CE);
  600. writel(0x0, qm->io_base + HPRE_ECC_BYPASS);
  601. writel(HPRE_BD_USR_MASK, qm->io_base + HPRE_BD_ARUSR_CFG);
  602. writel(HPRE_BD_USR_MASK, qm->io_base + HPRE_BD_AWUSR_CFG);
  603. writel(0x1, qm->io_base + HPRE_RDCHN_INI_CFG);
  604. ret = readl_relaxed_poll_timeout(qm->io_base + HPRE_RDCHN_INI_ST, val,
  605. val & BIT(0),
  606. HPRE_REG_RD_INTVRL_US,
  607. HPRE_REG_RD_TMOUT_US);
  608. if (ret) {
  609. dev_err(dev, "read rd channel timeout fail!\n");
  610. return -ETIMEDOUT;
  611. }
  612. ret = hpre_set_cluster(qm);
  613. if (ret)
  614. return -ETIMEDOUT;
  615. /* This setting is only needed by Kunpeng 920. */
  616. if (qm->ver == QM_HW_V2) {
  617. ret = hpre_cfg_by_dsm(qm);
  618. if (ret)
  619. return ret;
  620. disable_flr_of_bme(qm);
  621. }
  622. /* Config data buffer pasid needed by Kunpeng 920 */
  623. hpre_config_pasid(qm);
  624. hpre_enable_clock_gate(qm);
  625. return ret;
  626. }
  627. static void hpre_cnt_regs_clear(struct hisi_qm *qm)
  628. {
  629. u8 clusters_num = hpre_cluster_num(qm);
  630. unsigned long offset;
  631. int i;
  632. /* clear clusterX/cluster_ctrl */
  633. for (i = 0; i < clusters_num; i++) {
  634. offset = HPRE_CLSTR_BASE + i * HPRE_CLSTR_ADDR_INTRVL;
  635. writel(0x0, qm->io_base + offset + HPRE_CLUSTER_INQURY);
  636. }
  637. /* clear rdclr_en */
  638. writel(0x0, qm->io_base + HPRE_CTRL_CNT_CLR_CE);
  639. hisi_qm_debug_regs_clear(qm);
  640. }
  641. static void hpre_master_ooo_ctrl(struct hisi_qm *qm, bool enable)
  642. {
  643. u32 val1, val2;
  644. val1 = readl(qm->io_base + HPRE_AM_OOO_SHUTDOWN_ENB);
  645. if (enable) {
  646. val1 |= HPRE_AM_OOO_SHUTDOWN_ENABLE;
  647. val2 = hisi_qm_get_hw_info(qm, hpre_basic_info,
  648. HPRE_OOO_SHUTDOWN_MASK_CAP, qm->cap_ver);
  649. } else {
  650. val1 &= ~HPRE_AM_OOO_SHUTDOWN_ENABLE;
  651. val2 = 0x0;
  652. }
  653. if (qm->ver > QM_HW_V2)
  654. writel(val2, qm->io_base + HPRE_OOO_SHUTDOWN_SEL);
  655. writel(val1, qm->io_base + HPRE_AM_OOO_SHUTDOWN_ENB);
  656. }
  657. static void hpre_hw_error_disable(struct hisi_qm *qm)
  658. {
  659. u32 ce, nfe;
  660. ce = hisi_qm_get_hw_info(qm, hpre_basic_info, HPRE_CE_MASK_CAP, qm->cap_ver);
  661. nfe = hisi_qm_get_hw_info(qm, hpre_basic_info, HPRE_NFE_MASK_CAP, qm->cap_ver);
  662. /* disable hpre hw error interrupts */
  663. writel(ce | nfe | HPRE_HAC_RAS_FE_ENABLE, qm->io_base + HPRE_INT_MASK);
  664. /* disable HPRE block master OOO when nfe occurs on Kunpeng930 */
  665. hpre_master_ooo_ctrl(qm, false);
  666. }
  667. static void hpre_hw_error_enable(struct hisi_qm *qm)
  668. {
  669. u32 ce, nfe;
  670. ce = hisi_qm_get_hw_info(qm, hpre_basic_info, HPRE_CE_MASK_CAP, qm->cap_ver);
  671. nfe = hisi_qm_get_hw_info(qm, hpre_basic_info, HPRE_NFE_MASK_CAP, qm->cap_ver);
  672. /* clear HPRE hw error source if having */
  673. writel(ce | nfe | HPRE_HAC_RAS_FE_ENABLE, qm->io_base + HPRE_HAC_SOURCE_INT);
  674. /* configure error type */
  675. writel(ce, qm->io_base + HPRE_RAS_CE_ENB);
  676. writel(nfe, qm->io_base + HPRE_RAS_NFE_ENB);
  677. writel(HPRE_HAC_RAS_FE_ENABLE, qm->io_base + HPRE_RAS_FE_ENB);
  678. /* enable HPRE block master OOO when nfe occurs on Kunpeng930 */
  679. hpre_master_ooo_ctrl(qm, true);
  680. /* enable hpre hw error interrupts */
  681. writel(HPRE_CORE_INT_ENABLE, qm->io_base + HPRE_INT_MASK);
  682. }
  683. static inline struct hisi_qm *hpre_file_to_qm(struct hpre_debugfs_file *file)
  684. {
  685. struct hpre *hpre = container_of(file->debug, struct hpre, debug);
  686. return &hpre->qm;
  687. }
  688. static u32 hpre_clear_enable_read(struct hpre_debugfs_file *file)
  689. {
  690. struct hisi_qm *qm = hpre_file_to_qm(file);
  691. return readl(qm->io_base + HPRE_CTRL_CNT_CLR_CE) &
  692. HPRE_CTRL_CNT_CLR_CE_BIT;
  693. }
  694. static int hpre_clear_enable_write(struct hpre_debugfs_file *file, u32 val)
  695. {
  696. struct hisi_qm *qm = hpre_file_to_qm(file);
  697. u32 tmp;
  698. if (val != 1 && val != 0)
  699. return -EINVAL;
  700. tmp = (readl(qm->io_base + HPRE_CTRL_CNT_CLR_CE) &
  701. ~HPRE_CTRL_CNT_CLR_CE_BIT) | val;
  702. writel(tmp, qm->io_base + HPRE_CTRL_CNT_CLR_CE);
  703. return 0;
  704. }
  705. static u32 hpre_cluster_inqry_read(struct hpre_debugfs_file *file)
  706. {
  707. struct hisi_qm *qm = hpre_file_to_qm(file);
  708. int cluster_index = file->index - HPRE_CLUSTER_CTRL;
  709. unsigned long offset = HPRE_CLSTR_BASE +
  710. cluster_index * HPRE_CLSTR_ADDR_INTRVL;
  711. return readl(qm->io_base + offset + HPRE_CLSTR_ADDR_INQRY_RSLT);
  712. }
  713. static void hpre_cluster_inqry_write(struct hpre_debugfs_file *file, u32 val)
  714. {
  715. struct hisi_qm *qm = hpre_file_to_qm(file);
  716. int cluster_index = file->index - HPRE_CLUSTER_CTRL;
  717. unsigned long offset = HPRE_CLSTR_BASE + cluster_index *
  718. HPRE_CLSTR_ADDR_INTRVL;
  719. writel(val, qm->io_base + offset + HPRE_CLUSTER_INQURY);
  720. }
  721. static ssize_t hpre_ctrl_debug_read(struct file *filp, char __user *buf,
  722. size_t count, loff_t *pos)
  723. {
  724. struct hpre_debugfs_file *file = filp->private_data;
  725. struct hisi_qm *qm = hpre_file_to_qm(file);
  726. char tbuf[HPRE_DBGFS_VAL_MAX_LEN];
  727. u32 val;
  728. int ret;
  729. ret = hisi_qm_get_dfx_access(qm);
  730. if (ret)
  731. return ret;
  732. spin_lock_irq(&file->lock);
  733. switch (file->type) {
  734. case HPRE_CLEAR_ENABLE:
  735. val = hpre_clear_enable_read(file);
  736. break;
  737. case HPRE_CLUSTER_CTRL:
  738. val = hpre_cluster_inqry_read(file);
  739. break;
  740. default:
  741. goto err_input;
  742. }
  743. spin_unlock_irq(&file->lock);
  744. hisi_qm_put_dfx_access(qm);
  745. ret = snprintf(tbuf, HPRE_DBGFS_VAL_MAX_LEN, "%u\n", val);
  746. return simple_read_from_buffer(buf, count, pos, tbuf, ret);
  747. err_input:
  748. spin_unlock_irq(&file->lock);
  749. hisi_qm_put_dfx_access(qm);
  750. return -EINVAL;
  751. }
  752. static ssize_t hpre_ctrl_debug_write(struct file *filp, const char __user *buf,
  753. size_t count, loff_t *pos)
  754. {
  755. struct hpre_debugfs_file *file = filp->private_data;
  756. struct hisi_qm *qm = hpre_file_to_qm(file);
  757. char tbuf[HPRE_DBGFS_VAL_MAX_LEN];
  758. unsigned long val;
  759. int len, ret;
  760. if (*pos != 0)
  761. return 0;
  762. if (count >= HPRE_DBGFS_VAL_MAX_LEN)
  763. return -ENOSPC;
  764. len = simple_write_to_buffer(tbuf, HPRE_DBGFS_VAL_MAX_LEN - 1,
  765. pos, buf, count);
  766. if (len < 0)
  767. return len;
  768. tbuf[len] = '\0';
  769. if (kstrtoul(tbuf, 0, &val))
  770. return -EFAULT;
  771. ret = hisi_qm_get_dfx_access(qm);
  772. if (ret)
  773. return ret;
  774. spin_lock_irq(&file->lock);
  775. switch (file->type) {
  776. case HPRE_CLEAR_ENABLE:
  777. ret = hpre_clear_enable_write(file, val);
  778. if (ret)
  779. goto err_input;
  780. break;
  781. case HPRE_CLUSTER_CTRL:
  782. hpre_cluster_inqry_write(file, val);
  783. break;
  784. default:
  785. ret = -EINVAL;
  786. goto err_input;
  787. }
  788. ret = count;
  789. err_input:
  790. spin_unlock_irq(&file->lock);
  791. hisi_qm_put_dfx_access(qm);
  792. return ret;
  793. }
  794. static const struct file_operations hpre_ctrl_debug_fops = {
  795. .owner = THIS_MODULE,
  796. .open = simple_open,
  797. .read = hpre_ctrl_debug_read,
  798. .write = hpre_ctrl_debug_write,
  799. };
  800. static int hpre_debugfs_atomic64_get(void *data, u64 *val)
  801. {
  802. struct hpre_dfx *dfx_item = data;
  803. *val = atomic64_read(&dfx_item->value);
  804. return 0;
  805. }
  806. static int hpre_debugfs_atomic64_set(void *data, u64 val)
  807. {
  808. struct hpre_dfx *dfx_item = data;
  809. struct hpre_dfx *hpre_dfx = NULL;
  810. if (dfx_item->type == HPRE_OVERTIME_THRHLD) {
  811. hpre_dfx = dfx_item - HPRE_OVERTIME_THRHLD;
  812. atomic64_set(&hpre_dfx[HPRE_OVER_THRHLD_CNT].value, 0);
  813. } else if (val) {
  814. return -EINVAL;
  815. }
  816. atomic64_set(&dfx_item->value, val);
  817. return 0;
  818. }
  819. DEFINE_DEBUGFS_ATTRIBUTE(hpre_atomic64_ops, hpre_debugfs_atomic64_get,
  820. hpre_debugfs_atomic64_set, "%llu\n");
  821. static int hpre_create_debugfs_file(struct hisi_qm *qm, struct dentry *dir,
  822. enum hpre_ctrl_dbgfs_file type, int indx)
  823. {
  824. struct hpre *hpre = container_of(qm, struct hpre, qm);
  825. struct hpre_debug *dbg = &hpre->debug;
  826. struct dentry *file_dir;
  827. if (dir)
  828. file_dir = dir;
  829. else
  830. file_dir = qm->debug.debug_root;
  831. if (type >= HPRE_DEBUG_FILE_NUM)
  832. return -EINVAL;
  833. spin_lock_init(&dbg->files[indx].lock);
  834. dbg->files[indx].debug = dbg;
  835. dbg->files[indx].type = type;
  836. dbg->files[indx].index = indx;
  837. debugfs_create_file(hpre_debug_file_name[type], 0600, file_dir,
  838. dbg->files + indx, &hpre_ctrl_debug_fops);
  839. return 0;
  840. }
  841. static int hpre_pf_comm_regs_debugfs_init(struct hisi_qm *qm)
  842. {
  843. struct device *dev = &qm->pdev->dev;
  844. struct debugfs_regset32 *regset;
  845. regset = devm_kzalloc(dev, sizeof(*regset), GFP_KERNEL);
  846. if (!regset)
  847. return -ENOMEM;
  848. regset->regs = hpre_com_dfx_regs;
  849. regset->nregs = ARRAY_SIZE(hpre_com_dfx_regs);
  850. regset->base = qm->io_base;
  851. regset->dev = dev;
  852. debugfs_create_file("regs", 0444, qm->debug.debug_root,
  853. regset, &hpre_com_regs_fops);
  854. return 0;
  855. }
  856. static int hpre_cluster_debugfs_init(struct hisi_qm *qm)
  857. {
  858. u8 clusters_num = hpre_cluster_num(qm);
  859. struct device *dev = &qm->pdev->dev;
  860. char buf[HPRE_DBGFS_VAL_MAX_LEN];
  861. struct debugfs_regset32 *regset;
  862. struct dentry *tmp_d;
  863. int i, ret;
  864. for (i = 0; i < clusters_num; i++) {
  865. ret = snprintf(buf, HPRE_DBGFS_VAL_MAX_LEN, "cluster%d", i);
  866. if (ret >= HPRE_DBGFS_VAL_MAX_LEN)
  867. return -EINVAL;
  868. tmp_d = debugfs_create_dir(buf, qm->debug.debug_root);
  869. regset = devm_kzalloc(dev, sizeof(*regset), GFP_KERNEL);
  870. if (!regset)
  871. return -ENOMEM;
  872. regset->regs = hpre_cluster_dfx_regs;
  873. regset->nregs = ARRAY_SIZE(hpre_cluster_dfx_regs);
  874. regset->base = qm->io_base + hpre_cluster_offsets[i];
  875. regset->dev = dev;
  876. debugfs_create_file("regs", 0444, tmp_d, regset,
  877. &hpre_cluster_regs_fops);
  878. ret = hpre_create_debugfs_file(qm, tmp_d, HPRE_CLUSTER_CTRL,
  879. i + HPRE_CLUSTER_CTRL);
  880. if (ret)
  881. return ret;
  882. }
  883. return 0;
  884. }
  885. static int hpre_ctrl_debug_init(struct hisi_qm *qm)
  886. {
  887. int ret;
  888. ret = hpre_create_debugfs_file(qm, NULL, HPRE_CLEAR_ENABLE,
  889. HPRE_CLEAR_ENABLE);
  890. if (ret)
  891. return ret;
  892. ret = hpre_pf_comm_regs_debugfs_init(qm);
  893. if (ret)
  894. return ret;
  895. return hpre_cluster_debugfs_init(qm);
  896. }
  897. static void hpre_dfx_debug_init(struct hisi_qm *qm)
  898. {
  899. struct dfx_diff_registers *hpre_regs = qm->debug.acc_diff_regs;
  900. struct hpre *hpre = container_of(qm, struct hpre, qm);
  901. struct hpre_dfx *dfx = hpre->debug.dfx;
  902. struct dentry *parent;
  903. int i;
  904. parent = debugfs_create_dir("hpre_dfx", qm->debug.debug_root);
  905. for (i = 0; i < HPRE_DFX_FILE_NUM; i++) {
  906. dfx[i].type = i;
  907. debugfs_create_file(hpre_dfx_files[i], 0644, parent, &dfx[i],
  908. &hpre_atomic64_ops);
  909. }
  910. if (qm->fun_type == QM_HW_PF && hpre_regs)
  911. debugfs_create_file("diff_regs", 0444, parent,
  912. qm, &hpre_diff_regs_fops);
  913. }
  914. static int hpre_debugfs_init(struct hisi_qm *qm)
  915. {
  916. struct device *dev = &qm->pdev->dev;
  917. int ret;
  918. qm->debug.debug_root = debugfs_create_dir(dev_name(dev),
  919. hpre_debugfs_root);
  920. qm->debug.sqe_mask_offset = HPRE_SQE_MASK_OFFSET;
  921. qm->debug.sqe_mask_len = HPRE_SQE_MASK_LEN;
  922. ret = hisi_qm_regs_debugfs_init(qm, hpre_diff_regs, ARRAY_SIZE(hpre_diff_regs));
  923. if (ret) {
  924. dev_warn(dev, "Failed to init HPRE diff regs!\n");
  925. goto debugfs_remove;
  926. }
  927. hisi_qm_debug_init(qm);
  928. if (qm->pdev->device == PCI_DEVICE_ID_HUAWEI_HPRE_PF) {
  929. ret = hpre_ctrl_debug_init(qm);
  930. if (ret)
  931. goto failed_to_create;
  932. }
  933. hpre_dfx_debug_init(qm);
  934. return 0;
  935. failed_to_create:
  936. hisi_qm_regs_debugfs_uninit(qm, ARRAY_SIZE(hpre_diff_regs));
  937. debugfs_remove:
  938. debugfs_remove_recursive(qm->debug.debug_root);
  939. return ret;
  940. }
  941. static void hpre_debugfs_exit(struct hisi_qm *qm)
  942. {
  943. hisi_qm_regs_debugfs_uninit(qm, ARRAY_SIZE(hpre_diff_regs));
  944. debugfs_remove_recursive(qm->debug.debug_root);
  945. }
  946. static int hpre_qm_init(struct hisi_qm *qm, struct pci_dev *pdev)
  947. {
  948. int ret;
  949. if (pdev->revision == QM_HW_V1) {
  950. pci_warn(pdev, "HPRE version 1 is not supported!\n");
  951. return -EINVAL;
  952. }
  953. qm->mode = uacce_mode;
  954. qm->pdev = pdev;
  955. qm->ver = pdev->revision;
  956. qm->sqe_size = HPRE_SQE_SIZE;
  957. qm->dev_name = hpre_name;
  958. qm->fun_type = (pdev->device == PCI_DEVICE_ID_HUAWEI_HPRE_PF) ?
  959. QM_HW_PF : QM_HW_VF;
  960. if (qm->fun_type == QM_HW_PF) {
  961. qm->qp_base = HPRE_PF_DEF_Q_BASE;
  962. qm->qp_num = pf_q_num;
  963. qm->debug.curr_qm_qp_num = pf_q_num;
  964. qm->qm_list = &hpre_devices;
  965. if (pf_q_num_flag)
  966. set_bit(QM_MODULE_PARAM, &qm->misc_ctl);
  967. }
  968. ret = hisi_qm_init(qm);
  969. if (ret) {
  970. pci_err(pdev, "Failed to init hpre qm configures!\n");
  971. return ret;
  972. }
  973. ret = hpre_set_qm_algs(qm);
  974. if (ret) {
  975. pci_err(pdev, "Failed to set hpre algs!\n");
  976. hisi_qm_uninit(qm);
  977. }
  978. return ret;
  979. }
  980. static int hpre_show_last_regs_init(struct hisi_qm *qm)
  981. {
  982. int cluster_dfx_regs_num = ARRAY_SIZE(hpre_cluster_dfx_regs);
  983. int com_dfx_regs_num = ARRAY_SIZE(hpre_com_dfx_regs);
  984. u8 clusters_num = hpre_cluster_num(qm);
  985. struct qm_debug *debug = &qm->debug;
  986. void __iomem *io_base;
  987. int i, j, idx;
  988. debug->last_words = kcalloc(cluster_dfx_regs_num * clusters_num +
  989. com_dfx_regs_num, sizeof(unsigned int), GFP_KERNEL);
  990. if (!debug->last_words)
  991. return -ENOMEM;
  992. for (i = 0; i < com_dfx_regs_num; i++)
  993. debug->last_words[i] = readl_relaxed(qm->io_base +
  994. hpre_com_dfx_regs[i].offset);
  995. for (i = 0; i < clusters_num; i++) {
  996. io_base = qm->io_base + hpre_cluster_offsets[i];
  997. for (j = 0; j < cluster_dfx_regs_num; j++) {
  998. idx = com_dfx_regs_num + i * cluster_dfx_regs_num + j;
  999. debug->last_words[idx] = readl_relaxed(
  1000. io_base + hpre_cluster_dfx_regs[j].offset);
  1001. }
  1002. }
  1003. return 0;
  1004. }
  1005. static void hpre_show_last_regs_uninit(struct hisi_qm *qm)
  1006. {
  1007. struct qm_debug *debug = &qm->debug;
  1008. if (qm->fun_type == QM_HW_VF || !debug->last_words)
  1009. return;
  1010. kfree(debug->last_words);
  1011. debug->last_words = NULL;
  1012. }
  1013. static void hpre_show_last_dfx_regs(struct hisi_qm *qm)
  1014. {
  1015. int cluster_dfx_regs_num = ARRAY_SIZE(hpre_cluster_dfx_regs);
  1016. int com_dfx_regs_num = ARRAY_SIZE(hpre_com_dfx_regs);
  1017. u8 clusters_num = hpre_cluster_num(qm);
  1018. struct qm_debug *debug = &qm->debug;
  1019. struct pci_dev *pdev = qm->pdev;
  1020. void __iomem *io_base;
  1021. int i, j, idx;
  1022. u32 val;
  1023. if (qm->fun_type == QM_HW_VF || !debug->last_words)
  1024. return;
  1025. /* dumps last word of the debugging registers during controller reset */
  1026. for (i = 0; i < com_dfx_regs_num; i++) {
  1027. val = readl_relaxed(qm->io_base + hpre_com_dfx_regs[i].offset);
  1028. if (debug->last_words[i] != val)
  1029. pci_info(pdev, "Common_core:%s \t= 0x%08x => 0x%08x\n",
  1030. hpre_com_dfx_regs[i].name, debug->last_words[i], val);
  1031. }
  1032. for (i = 0; i < clusters_num; i++) {
  1033. io_base = qm->io_base + hpre_cluster_offsets[i];
  1034. for (j = 0; j < cluster_dfx_regs_num; j++) {
  1035. val = readl_relaxed(io_base +
  1036. hpre_cluster_dfx_regs[j].offset);
  1037. idx = com_dfx_regs_num + i * cluster_dfx_regs_num + j;
  1038. if (debug->last_words[idx] != val)
  1039. pci_info(pdev, "cluster-%d:%s \t= 0x%08x => 0x%08x\n",
  1040. i, hpre_cluster_dfx_regs[j].name, debug->last_words[idx], val);
  1041. }
  1042. }
  1043. }
  1044. static void hpre_log_hw_error(struct hisi_qm *qm, u32 err_sts)
  1045. {
  1046. const struct hpre_hw_error *err = hpre_hw_errors;
  1047. struct device *dev = &qm->pdev->dev;
  1048. while (err->msg) {
  1049. if (err->int_msk & err_sts)
  1050. dev_warn(dev, "%s [error status=0x%x] found\n",
  1051. err->msg, err->int_msk);
  1052. err++;
  1053. }
  1054. }
  1055. static u32 hpre_get_hw_err_status(struct hisi_qm *qm)
  1056. {
  1057. return readl(qm->io_base + HPRE_INT_STATUS);
  1058. }
  1059. static void hpre_clear_hw_err_status(struct hisi_qm *qm, u32 err_sts)
  1060. {
  1061. u32 nfe;
  1062. writel(err_sts, qm->io_base + HPRE_HAC_SOURCE_INT);
  1063. nfe = hisi_qm_get_hw_info(qm, hpre_basic_info, HPRE_NFE_MASK_CAP, qm->cap_ver);
  1064. writel(nfe, qm->io_base + HPRE_RAS_NFE_ENB);
  1065. }
  1066. static void hpre_open_axi_master_ooo(struct hisi_qm *qm)
  1067. {
  1068. u32 value;
  1069. value = readl(qm->io_base + HPRE_AM_OOO_SHUTDOWN_ENB);
  1070. writel(value & ~HPRE_AM_OOO_SHUTDOWN_ENABLE,
  1071. qm->io_base + HPRE_AM_OOO_SHUTDOWN_ENB);
  1072. writel(value | HPRE_AM_OOO_SHUTDOWN_ENABLE,
  1073. qm->io_base + HPRE_AM_OOO_SHUTDOWN_ENB);
  1074. }
  1075. static void hpre_err_info_init(struct hisi_qm *qm)
  1076. {
  1077. struct hisi_qm_err_info *err_info = &qm->err_info;
  1078. err_info->fe = HPRE_HAC_RAS_FE_ENABLE;
  1079. err_info->ce = hisi_qm_get_hw_info(qm, hpre_basic_info, HPRE_QM_CE_MASK_CAP, qm->cap_ver);
  1080. err_info->nfe = hisi_qm_get_hw_info(qm, hpre_basic_info, HPRE_QM_NFE_MASK_CAP, qm->cap_ver);
  1081. err_info->ecc_2bits_mask = HPRE_CORE_ECC_2BIT_ERR | HPRE_OOO_ECC_2BIT_ERR;
  1082. err_info->dev_shutdown_mask = hisi_qm_get_hw_info(qm, hpre_basic_info,
  1083. HPRE_OOO_SHUTDOWN_MASK_CAP, qm->cap_ver);
  1084. err_info->qm_shutdown_mask = hisi_qm_get_hw_info(qm, hpre_basic_info,
  1085. HPRE_QM_OOO_SHUTDOWN_MASK_CAP, qm->cap_ver);
  1086. err_info->qm_reset_mask = hisi_qm_get_hw_info(qm, hpre_basic_info,
  1087. HPRE_QM_RESET_MASK_CAP, qm->cap_ver);
  1088. err_info->dev_reset_mask = hisi_qm_get_hw_info(qm, hpre_basic_info,
  1089. HPRE_RESET_MASK_CAP, qm->cap_ver);
  1090. err_info->msi_wr_port = HPRE_WR_MSI_PORT;
  1091. err_info->acpi_rst = "HRST";
  1092. }
  1093. static const struct hisi_qm_err_ini hpre_err_ini = {
  1094. .hw_init = hpre_set_user_domain_and_cache,
  1095. .hw_err_enable = hpre_hw_error_enable,
  1096. .hw_err_disable = hpre_hw_error_disable,
  1097. .get_dev_hw_err_status = hpre_get_hw_err_status,
  1098. .clear_dev_hw_err_status = hpre_clear_hw_err_status,
  1099. .log_dev_hw_err = hpre_log_hw_error,
  1100. .open_axi_master_ooo = hpre_open_axi_master_ooo,
  1101. .open_sva_prefetch = hpre_open_sva_prefetch,
  1102. .close_sva_prefetch = hpre_close_sva_prefetch,
  1103. .show_last_dfx_regs = hpre_show_last_dfx_regs,
  1104. .err_info_init = hpre_err_info_init,
  1105. };
  1106. static int hpre_pf_probe_init(struct hpre *hpre)
  1107. {
  1108. struct hisi_qm *qm = &hpre->qm;
  1109. int ret;
  1110. ret = hpre_set_user_domain_and_cache(qm);
  1111. if (ret)
  1112. return ret;
  1113. hpre_open_sva_prefetch(qm);
  1114. qm->err_ini = &hpre_err_ini;
  1115. qm->err_ini->err_info_init(qm);
  1116. hisi_qm_dev_err_init(qm);
  1117. ret = hpre_show_last_regs_init(qm);
  1118. if (ret)
  1119. pci_err(qm->pdev, "Failed to init last word regs!\n");
  1120. return ret;
  1121. }
  1122. static int hpre_probe_init(struct hpre *hpre)
  1123. {
  1124. u32 type_rate = HPRE_SHAPER_TYPE_RATE;
  1125. struct hisi_qm *qm = &hpre->qm;
  1126. int ret;
  1127. if (qm->fun_type == QM_HW_PF) {
  1128. ret = hpre_pf_probe_init(hpre);
  1129. if (ret)
  1130. return ret;
  1131. /* Enable shaper type 0 */
  1132. if (qm->ver >= QM_HW_V3) {
  1133. type_rate |= QM_SHAPER_ENABLE;
  1134. qm->type_rate = type_rate;
  1135. }
  1136. }
  1137. return 0;
  1138. }
  1139. static int hpre_probe(struct pci_dev *pdev, const struct pci_device_id *id)
  1140. {
  1141. struct hisi_qm *qm;
  1142. struct hpre *hpre;
  1143. int ret;
  1144. hpre = devm_kzalloc(&pdev->dev, sizeof(*hpre), GFP_KERNEL);
  1145. if (!hpre)
  1146. return -ENOMEM;
  1147. qm = &hpre->qm;
  1148. ret = hpre_qm_init(qm, pdev);
  1149. if (ret) {
  1150. pci_err(pdev, "Failed to init HPRE QM (%d)!\n", ret);
  1151. return ret;
  1152. }
  1153. ret = hpre_probe_init(hpre);
  1154. if (ret) {
  1155. pci_err(pdev, "Failed to probe (%d)!\n", ret);
  1156. goto err_with_qm_init;
  1157. }
  1158. ret = hisi_qm_start(qm);
  1159. if (ret)
  1160. goto err_with_err_init;
  1161. ret = hpre_debugfs_init(qm);
  1162. if (ret)
  1163. dev_warn(&pdev->dev, "init debugfs fail!\n");
  1164. ret = hisi_qm_alg_register(qm, &hpre_devices);
  1165. if (ret < 0) {
  1166. pci_err(pdev, "fail to register algs to crypto!\n");
  1167. goto err_with_qm_start;
  1168. }
  1169. if (qm->uacce) {
  1170. ret = uacce_register(qm->uacce);
  1171. if (ret) {
  1172. pci_err(pdev, "failed to register uacce (%d)!\n", ret);
  1173. goto err_with_alg_register;
  1174. }
  1175. }
  1176. if (qm->fun_type == QM_HW_PF && vfs_num) {
  1177. ret = hisi_qm_sriov_enable(pdev, vfs_num);
  1178. if (ret < 0)
  1179. goto err_with_alg_register;
  1180. }
  1181. hisi_qm_pm_init(qm);
  1182. return 0;
  1183. err_with_alg_register:
  1184. hisi_qm_alg_unregister(qm, &hpre_devices);
  1185. err_with_qm_start:
  1186. hpre_debugfs_exit(qm);
  1187. hisi_qm_stop(qm, QM_NORMAL);
  1188. err_with_err_init:
  1189. hpre_show_last_regs_uninit(qm);
  1190. hisi_qm_dev_err_uninit(qm);
  1191. err_with_qm_init:
  1192. hisi_qm_uninit(qm);
  1193. return ret;
  1194. }
  1195. static void hpre_remove(struct pci_dev *pdev)
  1196. {
  1197. struct hisi_qm *qm = pci_get_drvdata(pdev);
  1198. hisi_qm_pm_uninit(qm);
  1199. hisi_qm_wait_task_finish(qm, &hpre_devices);
  1200. hisi_qm_alg_unregister(qm, &hpre_devices);
  1201. if (qm->fun_type == QM_HW_PF && qm->vfs_num)
  1202. hisi_qm_sriov_disable(pdev, true);
  1203. hpre_debugfs_exit(qm);
  1204. hisi_qm_stop(qm, QM_NORMAL);
  1205. if (qm->fun_type == QM_HW_PF) {
  1206. hpre_cnt_regs_clear(qm);
  1207. qm->debug.curr_qm_qp_num = 0;
  1208. hpre_show_last_regs_uninit(qm);
  1209. hisi_qm_dev_err_uninit(qm);
  1210. }
  1211. hisi_qm_uninit(qm);
  1212. }
  1213. static const struct dev_pm_ops hpre_pm_ops = {
  1214. SET_RUNTIME_PM_OPS(hisi_qm_suspend, hisi_qm_resume, NULL)
  1215. };
  1216. static const struct pci_error_handlers hpre_err_handler = {
  1217. .error_detected = hisi_qm_dev_err_detected,
  1218. .slot_reset = hisi_qm_dev_slot_reset,
  1219. .reset_prepare = hisi_qm_reset_prepare,
  1220. .reset_done = hisi_qm_reset_done,
  1221. };
  1222. static struct pci_driver hpre_pci_driver = {
  1223. .name = hpre_name,
  1224. .id_table = hpre_dev_ids,
  1225. .probe = hpre_probe,
  1226. .remove = hpre_remove,
  1227. .sriov_configure = IS_ENABLED(CONFIG_PCI_IOV) ?
  1228. hisi_qm_sriov_configure : NULL,
  1229. .err_handler = &hpre_err_handler,
  1230. .shutdown = hisi_qm_dev_shutdown,
  1231. .driver.pm = &hpre_pm_ops,
  1232. };
  1233. struct pci_driver *hisi_hpre_get_pf_driver(void)
  1234. {
  1235. return &hpre_pci_driver;
  1236. }
  1237. EXPORT_SYMBOL_GPL(hisi_hpre_get_pf_driver);
  1238. static void hpre_register_debugfs(void)
  1239. {
  1240. if (!debugfs_initialized())
  1241. return;
  1242. hpre_debugfs_root = debugfs_create_dir(hpre_name, NULL);
  1243. }
  1244. static void hpre_unregister_debugfs(void)
  1245. {
  1246. debugfs_remove_recursive(hpre_debugfs_root);
  1247. }
  1248. static int __init hpre_init(void)
  1249. {
  1250. int ret;
  1251. hisi_qm_init_list(&hpre_devices);
  1252. hpre_register_debugfs();
  1253. ret = pci_register_driver(&hpre_pci_driver);
  1254. if (ret) {
  1255. hpre_unregister_debugfs();
  1256. pr_err("hpre: can't register hisi hpre driver.\n");
  1257. }
  1258. return ret;
  1259. }
  1260. static void __exit hpre_exit(void)
  1261. {
  1262. pci_unregister_driver(&hpre_pci_driver);
  1263. hpre_unregister_debugfs();
  1264. }
  1265. module_init(hpre_init);
  1266. module_exit(hpre_exit);
  1267. MODULE_LICENSE("GPL v2");
  1268. MODULE_AUTHOR("Zaibo Xu <[email protected]>");
  1269. MODULE_AUTHOR("Meng Yu <[email protected]>");
  1270. MODULE_DESCRIPTION("Driver for HiSilicon HPRE accelerator");