cc_cipher.c 41 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509
  1. // SPDX-License-Identifier: GPL-2.0
  2. /* Copyright (C) 2012-2019 ARM Limited (or its affiliates). */
  3. #include <linux/kernel.h>
  4. #include <linux/module.h>
  5. #include <crypto/algapi.h>
  6. #include <crypto/internal/skcipher.h>
  7. #include <crypto/internal/des.h>
  8. #include <crypto/xts.h>
  9. #include <crypto/sm4.h>
  10. #include <crypto/scatterwalk.h>
  11. #include "cc_driver.h"
  12. #include "cc_lli_defs.h"
  13. #include "cc_buffer_mgr.h"
  14. #include "cc_cipher.h"
  15. #include "cc_request_mgr.h"
  16. #define MAX_SKCIPHER_SEQ_LEN 6
  17. #define template_skcipher template_u.skcipher
  18. struct cc_user_key_info {
  19. u8 *key;
  20. dma_addr_t key_dma_addr;
  21. };
  22. struct cc_hw_key_info {
  23. enum cc_hw_crypto_key key1_slot;
  24. enum cc_hw_crypto_key key2_slot;
  25. };
  26. struct cc_cpp_key_info {
  27. u8 slot;
  28. enum cc_cpp_alg alg;
  29. };
  30. enum cc_key_type {
  31. CC_UNPROTECTED_KEY, /* User key */
  32. CC_HW_PROTECTED_KEY, /* HW (FDE) key */
  33. CC_POLICY_PROTECTED_KEY, /* CPP key */
  34. CC_INVALID_PROTECTED_KEY /* Invalid key */
  35. };
  36. struct cc_cipher_ctx {
  37. struct cc_drvdata *drvdata;
  38. int keylen;
  39. int cipher_mode;
  40. int flow_mode;
  41. unsigned int flags;
  42. enum cc_key_type key_type;
  43. struct cc_user_key_info user;
  44. union {
  45. struct cc_hw_key_info hw;
  46. struct cc_cpp_key_info cpp;
  47. };
  48. struct crypto_shash *shash_tfm;
  49. struct crypto_skcipher *fallback_tfm;
  50. bool fallback_on;
  51. };
  52. static void cc_cipher_complete(struct device *dev, void *cc_req, int err);
  53. static inline enum cc_key_type cc_key_type(struct crypto_tfm *tfm)
  54. {
  55. struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
  56. return ctx_p->key_type;
  57. }
  58. static int validate_keys_sizes(struct cc_cipher_ctx *ctx_p, u32 size)
  59. {
  60. switch (ctx_p->flow_mode) {
  61. case S_DIN_to_AES:
  62. switch (size) {
  63. case CC_AES_128_BIT_KEY_SIZE:
  64. case CC_AES_192_BIT_KEY_SIZE:
  65. if (ctx_p->cipher_mode != DRV_CIPHER_XTS)
  66. return 0;
  67. break;
  68. case CC_AES_256_BIT_KEY_SIZE:
  69. return 0;
  70. case (CC_AES_192_BIT_KEY_SIZE * 2):
  71. case (CC_AES_256_BIT_KEY_SIZE * 2):
  72. if (ctx_p->cipher_mode == DRV_CIPHER_XTS ||
  73. ctx_p->cipher_mode == DRV_CIPHER_ESSIV)
  74. return 0;
  75. break;
  76. default:
  77. break;
  78. }
  79. break;
  80. case S_DIN_to_DES:
  81. if (size == DES3_EDE_KEY_SIZE || size == DES_KEY_SIZE)
  82. return 0;
  83. break;
  84. case S_DIN_to_SM4:
  85. if (size == SM4_KEY_SIZE)
  86. return 0;
  87. break;
  88. default:
  89. break;
  90. }
  91. return -EINVAL;
  92. }
  93. static int validate_data_size(struct cc_cipher_ctx *ctx_p,
  94. unsigned int size)
  95. {
  96. switch (ctx_p->flow_mode) {
  97. case S_DIN_to_AES:
  98. switch (ctx_p->cipher_mode) {
  99. case DRV_CIPHER_XTS:
  100. case DRV_CIPHER_CBC_CTS:
  101. if (size >= AES_BLOCK_SIZE)
  102. return 0;
  103. break;
  104. case DRV_CIPHER_OFB:
  105. case DRV_CIPHER_CTR:
  106. return 0;
  107. case DRV_CIPHER_ECB:
  108. case DRV_CIPHER_CBC:
  109. case DRV_CIPHER_ESSIV:
  110. if (IS_ALIGNED(size, AES_BLOCK_SIZE))
  111. return 0;
  112. break;
  113. default:
  114. break;
  115. }
  116. break;
  117. case S_DIN_to_DES:
  118. if (IS_ALIGNED(size, DES_BLOCK_SIZE))
  119. return 0;
  120. break;
  121. case S_DIN_to_SM4:
  122. switch (ctx_p->cipher_mode) {
  123. case DRV_CIPHER_CTR:
  124. return 0;
  125. case DRV_CIPHER_ECB:
  126. case DRV_CIPHER_CBC:
  127. if (IS_ALIGNED(size, SM4_BLOCK_SIZE))
  128. return 0;
  129. break;
  130. default:
  131. break;
  132. }
  133. break;
  134. default:
  135. break;
  136. }
  137. return -EINVAL;
  138. }
  139. static int cc_cipher_init(struct crypto_tfm *tfm)
  140. {
  141. struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
  142. struct cc_crypto_alg *cc_alg =
  143. container_of(tfm->__crt_alg, struct cc_crypto_alg,
  144. skcipher_alg.base);
  145. struct device *dev = drvdata_to_dev(cc_alg->drvdata);
  146. unsigned int max_key_buf_size = cc_alg->skcipher_alg.max_keysize;
  147. unsigned int fallback_req_size = 0;
  148. dev_dbg(dev, "Initializing context @%p for %s\n", ctx_p,
  149. crypto_tfm_alg_name(tfm));
  150. ctx_p->cipher_mode = cc_alg->cipher_mode;
  151. ctx_p->flow_mode = cc_alg->flow_mode;
  152. ctx_p->drvdata = cc_alg->drvdata;
  153. if (ctx_p->cipher_mode == DRV_CIPHER_ESSIV) {
  154. const char *name = crypto_tfm_alg_name(tfm);
  155. /* Alloc hash tfm for essiv */
  156. ctx_p->shash_tfm = crypto_alloc_shash("sha256", 0, 0);
  157. if (IS_ERR(ctx_p->shash_tfm)) {
  158. dev_err(dev, "Error allocating hash tfm for ESSIV.\n");
  159. return PTR_ERR(ctx_p->shash_tfm);
  160. }
  161. max_key_buf_size <<= 1;
  162. /* Alloc fallabck tfm or essiv when key size != 256 bit */
  163. ctx_p->fallback_tfm =
  164. crypto_alloc_skcipher(name, 0, CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC);
  165. if (IS_ERR(ctx_p->fallback_tfm)) {
  166. /* Note we're still allowing registration with no fallback since it's
  167. * better to have most modes supported than none at all.
  168. */
  169. dev_warn(dev, "Error allocating fallback algo %s. Some modes may be available.\n",
  170. name);
  171. ctx_p->fallback_tfm = NULL;
  172. } else {
  173. fallback_req_size = crypto_skcipher_reqsize(ctx_p->fallback_tfm);
  174. }
  175. }
  176. crypto_skcipher_set_reqsize(__crypto_skcipher_cast(tfm),
  177. sizeof(struct cipher_req_ctx) + fallback_req_size);
  178. /* Allocate key buffer, cache line aligned */
  179. ctx_p->user.key = kzalloc(max_key_buf_size, GFP_KERNEL);
  180. if (!ctx_p->user.key)
  181. goto free_fallback;
  182. dev_dbg(dev, "Allocated key buffer in context. key=@%p\n",
  183. ctx_p->user.key);
  184. /* Map key buffer */
  185. ctx_p->user.key_dma_addr = dma_map_single(dev, ctx_p->user.key,
  186. max_key_buf_size,
  187. DMA_TO_DEVICE);
  188. if (dma_mapping_error(dev, ctx_p->user.key_dma_addr)) {
  189. dev_err(dev, "Mapping Key %u B at va=%pK for DMA failed\n",
  190. max_key_buf_size, ctx_p->user.key);
  191. goto free_key;
  192. }
  193. dev_dbg(dev, "Mapped key %u B at va=%pK to dma=%pad\n",
  194. max_key_buf_size, ctx_p->user.key, &ctx_p->user.key_dma_addr);
  195. return 0;
  196. free_key:
  197. kfree(ctx_p->user.key);
  198. free_fallback:
  199. crypto_free_skcipher(ctx_p->fallback_tfm);
  200. crypto_free_shash(ctx_p->shash_tfm);
  201. return -ENOMEM;
  202. }
  203. static void cc_cipher_exit(struct crypto_tfm *tfm)
  204. {
  205. struct crypto_alg *alg = tfm->__crt_alg;
  206. struct cc_crypto_alg *cc_alg =
  207. container_of(alg, struct cc_crypto_alg,
  208. skcipher_alg.base);
  209. unsigned int max_key_buf_size = cc_alg->skcipher_alg.max_keysize;
  210. struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
  211. struct device *dev = drvdata_to_dev(ctx_p->drvdata);
  212. dev_dbg(dev, "Clearing context @%p for %s\n",
  213. crypto_tfm_ctx(tfm), crypto_tfm_alg_name(tfm));
  214. if (ctx_p->cipher_mode == DRV_CIPHER_ESSIV) {
  215. /* Free hash tfm for essiv */
  216. crypto_free_shash(ctx_p->shash_tfm);
  217. ctx_p->shash_tfm = NULL;
  218. crypto_free_skcipher(ctx_p->fallback_tfm);
  219. ctx_p->fallback_tfm = NULL;
  220. }
  221. /* Unmap key buffer */
  222. dma_unmap_single(dev, ctx_p->user.key_dma_addr, max_key_buf_size,
  223. DMA_TO_DEVICE);
  224. dev_dbg(dev, "Unmapped key buffer key_dma_addr=%pad\n",
  225. &ctx_p->user.key_dma_addr);
  226. /* Free key buffer in context */
  227. dev_dbg(dev, "Free key buffer in context. key=@%p\n", ctx_p->user.key);
  228. kfree_sensitive(ctx_p->user.key);
  229. }
  230. struct tdes_keys {
  231. u8 key1[DES_KEY_SIZE];
  232. u8 key2[DES_KEY_SIZE];
  233. u8 key3[DES_KEY_SIZE];
  234. };
  235. static enum cc_hw_crypto_key cc_slot_to_hw_key(u8 slot_num)
  236. {
  237. switch (slot_num) {
  238. case 0:
  239. return KFDE0_KEY;
  240. case 1:
  241. return KFDE1_KEY;
  242. case 2:
  243. return KFDE2_KEY;
  244. case 3:
  245. return KFDE3_KEY;
  246. }
  247. return END_OF_KEYS;
  248. }
  249. static u8 cc_slot_to_cpp_key(u8 slot_num)
  250. {
  251. return (slot_num - CC_FIRST_CPP_KEY_SLOT);
  252. }
  253. static inline enum cc_key_type cc_slot_to_key_type(u8 slot_num)
  254. {
  255. if (slot_num >= CC_FIRST_HW_KEY_SLOT && slot_num <= CC_LAST_HW_KEY_SLOT)
  256. return CC_HW_PROTECTED_KEY;
  257. else if (slot_num >= CC_FIRST_CPP_KEY_SLOT &&
  258. slot_num <= CC_LAST_CPP_KEY_SLOT)
  259. return CC_POLICY_PROTECTED_KEY;
  260. else
  261. return CC_INVALID_PROTECTED_KEY;
  262. }
  263. static int cc_cipher_sethkey(struct crypto_skcipher *sktfm, const u8 *key,
  264. unsigned int keylen)
  265. {
  266. struct crypto_tfm *tfm = crypto_skcipher_tfm(sktfm);
  267. struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
  268. struct device *dev = drvdata_to_dev(ctx_p->drvdata);
  269. struct cc_hkey_info hki;
  270. dev_dbg(dev, "Setting HW key in context @%p for %s. keylen=%u\n",
  271. ctx_p, crypto_tfm_alg_name(tfm), keylen);
  272. dump_byte_array("key", key, keylen);
  273. /* STAT_PHASE_0: Init and sanity checks */
  274. /* This check the size of the protected key token */
  275. if (keylen != sizeof(hki)) {
  276. dev_err(dev, "Unsupported protected key size %d.\n", keylen);
  277. return -EINVAL;
  278. }
  279. memcpy(&hki, key, keylen);
  280. /* The real key len for crypto op is the size of the HW key
  281. * referenced by the HW key slot, not the hardware key token
  282. */
  283. keylen = hki.keylen;
  284. if (validate_keys_sizes(ctx_p, keylen)) {
  285. dev_dbg(dev, "Unsupported key size %d.\n", keylen);
  286. return -EINVAL;
  287. }
  288. ctx_p->keylen = keylen;
  289. ctx_p->fallback_on = false;
  290. switch (cc_slot_to_key_type(hki.hw_key1)) {
  291. case CC_HW_PROTECTED_KEY:
  292. if (ctx_p->flow_mode == S_DIN_to_SM4) {
  293. dev_err(dev, "Only AES HW protected keys are supported\n");
  294. return -EINVAL;
  295. }
  296. ctx_p->hw.key1_slot = cc_slot_to_hw_key(hki.hw_key1);
  297. if (ctx_p->hw.key1_slot == END_OF_KEYS) {
  298. dev_err(dev, "Unsupported hw key1 number (%d)\n",
  299. hki.hw_key1);
  300. return -EINVAL;
  301. }
  302. if (ctx_p->cipher_mode == DRV_CIPHER_XTS ||
  303. ctx_p->cipher_mode == DRV_CIPHER_ESSIV) {
  304. if (hki.hw_key1 == hki.hw_key2) {
  305. dev_err(dev, "Illegal hw key numbers (%d,%d)\n",
  306. hki.hw_key1, hki.hw_key2);
  307. return -EINVAL;
  308. }
  309. ctx_p->hw.key2_slot = cc_slot_to_hw_key(hki.hw_key2);
  310. if (ctx_p->hw.key2_slot == END_OF_KEYS) {
  311. dev_err(dev, "Unsupported hw key2 number (%d)\n",
  312. hki.hw_key2);
  313. return -EINVAL;
  314. }
  315. }
  316. ctx_p->key_type = CC_HW_PROTECTED_KEY;
  317. dev_dbg(dev, "HW protected key %d/%d set\n.",
  318. ctx_p->hw.key1_slot, ctx_p->hw.key2_slot);
  319. break;
  320. case CC_POLICY_PROTECTED_KEY:
  321. if (ctx_p->drvdata->hw_rev < CC_HW_REV_713) {
  322. dev_err(dev, "CPP keys not supported in this hardware revision.\n");
  323. return -EINVAL;
  324. }
  325. if (ctx_p->cipher_mode != DRV_CIPHER_CBC &&
  326. ctx_p->cipher_mode != DRV_CIPHER_CTR) {
  327. dev_err(dev, "CPP keys only supported in CBC or CTR modes.\n");
  328. return -EINVAL;
  329. }
  330. ctx_p->cpp.slot = cc_slot_to_cpp_key(hki.hw_key1);
  331. if (ctx_p->flow_mode == S_DIN_to_AES)
  332. ctx_p->cpp.alg = CC_CPP_AES;
  333. else /* Must be SM4 since due to sethkey registration */
  334. ctx_p->cpp.alg = CC_CPP_SM4;
  335. ctx_p->key_type = CC_POLICY_PROTECTED_KEY;
  336. dev_dbg(dev, "policy protected key alg: %d slot: %d.\n",
  337. ctx_p->cpp.alg, ctx_p->cpp.slot);
  338. break;
  339. default:
  340. dev_err(dev, "Unsupported protected key (%d)\n", hki.hw_key1);
  341. return -EINVAL;
  342. }
  343. return 0;
  344. }
  345. static int cc_cipher_setkey(struct crypto_skcipher *sktfm, const u8 *key,
  346. unsigned int keylen)
  347. {
  348. struct crypto_tfm *tfm = crypto_skcipher_tfm(sktfm);
  349. struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
  350. struct device *dev = drvdata_to_dev(ctx_p->drvdata);
  351. struct cc_crypto_alg *cc_alg =
  352. container_of(tfm->__crt_alg, struct cc_crypto_alg,
  353. skcipher_alg.base);
  354. unsigned int max_key_buf_size = cc_alg->skcipher_alg.max_keysize;
  355. dev_dbg(dev, "Setting key in context @%p for %s. keylen=%u\n",
  356. ctx_p, crypto_tfm_alg_name(tfm), keylen);
  357. dump_byte_array("key", key, keylen);
  358. /* STAT_PHASE_0: Init and sanity checks */
  359. if (validate_keys_sizes(ctx_p, keylen)) {
  360. dev_dbg(dev, "Invalid key size %d.\n", keylen);
  361. return -EINVAL;
  362. }
  363. if (ctx_p->cipher_mode == DRV_CIPHER_ESSIV) {
  364. /* We only support 256 bit ESSIV-CBC-AES keys */
  365. if (keylen != AES_KEYSIZE_256) {
  366. unsigned int flags = crypto_tfm_get_flags(tfm) & CRYPTO_TFM_REQ_MASK;
  367. if (likely(ctx_p->fallback_tfm)) {
  368. ctx_p->fallback_on = true;
  369. crypto_skcipher_clear_flags(ctx_p->fallback_tfm,
  370. CRYPTO_TFM_REQ_MASK);
  371. crypto_skcipher_clear_flags(ctx_p->fallback_tfm, flags);
  372. return crypto_skcipher_setkey(ctx_p->fallback_tfm, key, keylen);
  373. }
  374. dev_dbg(dev, "Unsupported key size %d and no fallback.\n", keylen);
  375. return -EINVAL;
  376. }
  377. /* Internal ESSIV key buffer is double sized */
  378. max_key_buf_size <<= 1;
  379. }
  380. ctx_p->fallback_on = false;
  381. ctx_p->key_type = CC_UNPROTECTED_KEY;
  382. /*
  383. * Verify DES weak keys
  384. * Note that we're dropping the expanded key since the
  385. * HW does the expansion on its own.
  386. */
  387. if (ctx_p->flow_mode == S_DIN_to_DES) {
  388. if ((keylen == DES3_EDE_KEY_SIZE &&
  389. verify_skcipher_des3_key(sktfm, key)) ||
  390. verify_skcipher_des_key(sktfm, key)) {
  391. dev_dbg(dev, "weak DES key");
  392. return -EINVAL;
  393. }
  394. }
  395. if (ctx_p->cipher_mode == DRV_CIPHER_XTS &&
  396. xts_check_key(tfm, key, keylen)) {
  397. dev_dbg(dev, "weak XTS key");
  398. return -EINVAL;
  399. }
  400. /* STAT_PHASE_1: Copy key to ctx */
  401. dma_sync_single_for_cpu(dev, ctx_p->user.key_dma_addr,
  402. max_key_buf_size, DMA_TO_DEVICE);
  403. memcpy(ctx_p->user.key, key, keylen);
  404. if (ctx_p->cipher_mode == DRV_CIPHER_ESSIV) {
  405. /* sha256 for key2 - use sw implementation */
  406. int err;
  407. err = crypto_shash_tfm_digest(ctx_p->shash_tfm,
  408. ctx_p->user.key, keylen,
  409. ctx_p->user.key + keylen);
  410. if (err) {
  411. dev_err(dev, "Failed to hash ESSIV key.\n");
  412. return err;
  413. }
  414. keylen <<= 1;
  415. }
  416. dma_sync_single_for_device(dev, ctx_p->user.key_dma_addr,
  417. max_key_buf_size, DMA_TO_DEVICE);
  418. ctx_p->keylen = keylen;
  419. dev_dbg(dev, "return safely");
  420. return 0;
  421. }
  422. static int cc_out_setup_mode(struct cc_cipher_ctx *ctx_p)
  423. {
  424. switch (ctx_p->flow_mode) {
  425. case S_DIN_to_AES:
  426. return S_AES_to_DOUT;
  427. case S_DIN_to_DES:
  428. return S_DES_to_DOUT;
  429. case S_DIN_to_SM4:
  430. return S_SM4_to_DOUT;
  431. default:
  432. return ctx_p->flow_mode;
  433. }
  434. }
  435. static void cc_setup_readiv_desc(struct crypto_tfm *tfm,
  436. struct cipher_req_ctx *req_ctx,
  437. unsigned int ivsize, struct cc_hw_desc desc[],
  438. unsigned int *seq_size)
  439. {
  440. struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
  441. struct device *dev = drvdata_to_dev(ctx_p->drvdata);
  442. int cipher_mode = ctx_p->cipher_mode;
  443. int flow_mode = cc_out_setup_mode(ctx_p);
  444. int direction = req_ctx->gen_ctx.op_type;
  445. dma_addr_t iv_dma_addr = req_ctx->gen_ctx.iv_dma_addr;
  446. if (ctx_p->key_type == CC_POLICY_PROTECTED_KEY)
  447. return;
  448. switch (cipher_mode) {
  449. case DRV_CIPHER_ECB:
  450. break;
  451. case DRV_CIPHER_CBC:
  452. case DRV_CIPHER_CBC_CTS:
  453. case DRV_CIPHER_CTR:
  454. case DRV_CIPHER_OFB:
  455. /* Read next IV */
  456. hw_desc_init(&desc[*seq_size]);
  457. set_dout_dlli(&desc[*seq_size], iv_dma_addr, ivsize, NS_BIT, 1);
  458. set_cipher_config0(&desc[*seq_size], direction);
  459. set_flow_mode(&desc[*seq_size], flow_mode);
  460. set_cipher_mode(&desc[*seq_size], cipher_mode);
  461. if (cipher_mode == DRV_CIPHER_CTR ||
  462. cipher_mode == DRV_CIPHER_OFB) {
  463. set_setup_mode(&desc[*seq_size], SETUP_WRITE_STATE1);
  464. } else {
  465. set_setup_mode(&desc[*seq_size], SETUP_WRITE_STATE0);
  466. }
  467. set_queue_last_ind(ctx_p->drvdata, &desc[*seq_size]);
  468. (*seq_size)++;
  469. break;
  470. case DRV_CIPHER_XTS:
  471. case DRV_CIPHER_ESSIV:
  472. /* IV */
  473. hw_desc_init(&desc[*seq_size]);
  474. set_setup_mode(&desc[*seq_size], SETUP_WRITE_STATE1);
  475. set_cipher_mode(&desc[*seq_size], cipher_mode);
  476. set_cipher_config0(&desc[*seq_size], direction);
  477. set_flow_mode(&desc[*seq_size], flow_mode);
  478. set_dout_dlli(&desc[*seq_size], iv_dma_addr, CC_AES_BLOCK_SIZE,
  479. NS_BIT, 1);
  480. set_queue_last_ind(ctx_p->drvdata, &desc[*seq_size]);
  481. (*seq_size)++;
  482. break;
  483. default:
  484. dev_err(dev, "Unsupported cipher mode (%d)\n", cipher_mode);
  485. }
  486. }
  487. static void cc_setup_state_desc(struct crypto_tfm *tfm,
  488. struct cipher_req_ctx *req_ctx,
  489. unsigned int ivsize, unsigned int nbytes,
  490. struct cc_hw_desc desc[],
  491. unsigned int *seq_size)
  492. {
  493. struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
  494. struct device *dev = drvdata_to_dev(ctx_p->drvdata);
  495. int cipher_mode = ctx_p->cipher_mode;
  496. int flow_mode = ctx_p->flow_mode;
  497. int direction = req_ctx->gen_ctx.op_type;
  498. dma_addr_t iv_dma_addr = req_ctx->gen_ctx.iv_dma_addr;
  499. switch (cipher_mode) {
  500. case DRV_CIPHER_ECB:
  501. break;
  502. case DRV_CIPHER_CBC:
  503. case DRV_CIPHER_CBC_CTS:
  504. case DRV_CIPHER_CTR:
  505. case DRV_CIPHER_OFB:
  506. /* Load IV */
  507. hw_desc_init(&desc[*seq_size]);
  508. set_din_type(&desc[*seq_size], DMA_DLLI, iv_dma_addr, ivsize,
  509. NS_BIT);
  510. set_cipher_config0(&desc[*seq_size], direction);
  511. set_flow_mode(&desc[*seq_size], flow_mode);
  512. set_cipher_mode(&desc[*seq_size], cipher_mode);
  513. if (cipher_mode == DRV_CIPHER_CTR ||
  514. cipher_mode == DRV_CIPHER_OFB) {
  515. set_setup_mode(&desc[*seq_size], SETUP_LOAD_STATE1);
  516. } else {
  517. set_setup_mode(&desc[*seq_size], SETUP_LOAD_STATE0);
  518. }
  519. (*seq_size)++;
  520. break;
  521. case DRV_CIPHER_XTS:
  522. case DRV_CIPHER_ESSIV:
  523. break;
  524. default:
  525. dev_err(dev, "Unsupported cipher mode (%d)\n", cipher_mode);
  526. }
  527. }
  528. static void cc_setup_xex_state_desc(struct crypto_tfm *tfm,
  529. struct cipher_req_ctx *req_ctx,
  530. unsigned int ivsize, unsigned int nbytes,
  531. struct cc_hw_desc desc[],
  532. unsigned int *seq_size)
  533. {
  534. struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
  535. struct device *dev = drvdata_to_dev(ctx_p->drvdata);
  536. int cipher_mode = ctx_p->cipher_mode;
  537. int flow_mode = ctx_p->flow_mode;
  538. int direction = req_ctx->gen_ctx.op_type;
  539. dma_addr_t key_dma_addr = ctx_p->user.key_dma_addr;
  540. unsigned int key_len = (ctx_p->keylen / 2);
  541. dma_addr_t iv_dma_addr = req_ctx->gen_ctx.iv_dma_addr;
  542. unsigned int key_offset = key_len;
  543. switch (cipher_mode) {
  544. case DRV_CIPHER_ECB:
  545. break;
  546. case DRV_CIPHER_CBC:
  547. case DRV_CIPHER_CBC_CTS:
  548. case DRV_CIPHER_CTR:
  549. case DRV_CIPHER_OFB:
  550. break;
  551. case DRV_CIPHER_XTS:
  552. case DRV_CIPHER_ESSIV:
  553. if (cipher_mode == DRV_CIPHER_ESSIV)
  554. key_len = SHA256_DIGEST_SIZE;
  555. /* load XEX key */
  556. hw_desc_init(&desc[*seq_size]);
  557. set_cipher_mode(&desc[*seq_size], cipher_mode);
  558. set_cipher_config0(&desc[*seq_size], direction);
  559. if (cc_key_type(tfm) == CC_HW_PROTECTED_KEY) {
  560. set_hw_crypto_key(&desc[*seq_size],
  561. ctx_p->hw.key2_slot);
  562. } else {
  563. set_din_type(&desc[*seq_size], DMA_DLLI,
  564. (key_dma_addr + key_offset),
  565. key_len, NS_BIT);
  566. }
  567. set_xex_data_unit_size(&desc[*seq_size], nbytes);
  568. set_flow_mode(&desc[*seq_size], S_DIN_to_AES2);
  569. set_key_size_aes(&desc[*seq_size], key_len);
  570. set_setup_mode(&desc[*seq_size], SETUP_LOAD_XEX_KEY);
  571. (*seq_size)++;
  572. /* Load IV */
  573. hw_desc_init(&desc[*seq_size]);
  574. set_setup_mode(&desc[*seq_size], SETUP_LOAD_STATE1);
  575. set_cipher_mode(&desc[*seq_size], cipher_mode);
  576. set_cipher_config0(&desc[*seq_size], direction);
  577. set_key_size_aes(&desc[*seq_size], key_len);
  578. set_flow_mode(&desc[*seq_size], flow_mode);
  579. set_din_type(&desc[*seq_size], DMA_DLLI, iv_dma_addr,
  580. CC_AES_BLOCK_SIZE, NS_BIT);
  581. (*seq_size)++;
  582. break;
  583. default:
  584. dev_err(dev, "Unsupported cipher mode (%d)\n", cipher_mode);
  585. }
  586. }
  587. static int cc_out_flow_mode(struct cc_cipher_ctx *ctx_p)
  588. {
  589. switch (ctx_p->flow_mode) {
  590. case S_DIN_to_AES:
  591. return DIN_AES_DOUT;
  592. case S_DIN_to_DES:
  593. return DIN_DES_DOUT;
  594. case S_DIN_to_SM4:
  595. return DIN_SM4_DOUT;
  596. default:
  597. return ctx_p->flow_mode;
  598. }
  599. }
  600. static void cc_setup_key_desc(struct crypto_tfm *tfm,
  601. struct cipher_req_ctx *req_ctx,
  602. unsigned int nbytes, struct cc_hw_desc desc[],
  603. unsigned int *seq_size)
  604. {
  605. struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
  606. struct device *dev = drvdata_to_dev(ctx_p->drvdata);
  607. int cipher_mode = ctx_p->cipher_mode;
  608. int flow_mode = ctx_p->flow_mode;
  609. int direction = req_ctx->gen_ctx.op_type;
  610. dma_addr_t key_dma_addr = ctx_p->user.key_dma_addr;
  611. unsigned int key_len = ctx_p->keylen;
  612. unsigned int din_size;
  613. switch (cipher_mode) {
  614. case DRV_CIPHER_CBC:
  615. case DRV_CIPHER_CBC_CTS:
  616. case DRV_CIPHER_CTR:
  617. case DRV_CIPHER_OFB:
  618. case DRV_CIPHER_ECB:
  619. /* Load key */
  620. hw_desc_init(&desc[*seq_size]);
  621. set_cipher_mode(&desc[*seq_size], cipher_mode);
  622. set_cipher_config0(&desc[*seq_size], direction);
  623. if (cc_key_type(tfm) == CC_POLICY_PROTECTED_KEY) {
  624. /* We use the AES key size coding for all CPP algs */
  625. set_key_size_aes(&desc[*seq_size], key_len);
  626. set_cpp_crypto_key(&desc[*seq_size], ctx_p->cpp.slot);
  627. flow_mode = cc_out_flow_mode(ctx_p);
  628. } else {
  629. if (flow_mode == S_DIN_to_AES) {
  630. if (cc_key_type(tfm) == CC_HW_PROTECTED_KEY) {
  631. set_hw_crypto_key(&desc[*seq_size],
  632. ctx_p->hw.key1_slot);
  633. } else {
  634. /* CC_POLICY_UNPROTECTED_KEY
  635. * Invalid keys are filtered out in
  636. * sethkey()
  637. */
  638. din_size = (key_len == 24) ?
  639. AES_MAX_KEY_SIZE : key_len;
  640. set_din_type(&desc[*seq_size], DMA_DLLI,
  641. key_dma_addr, din_size,
  642. NS_BIT);
  643. }
  644. set_key_size_aes(&desc[*seq_size], key_len);
  645. } else {
  646. /*des*/
  647. set_din_type(&desc[*seq_size], DMA_DLLI,
  648. key_dma_addr, key_len, NS_BIT);
  649. set_key_size_des(&desc[*seq_size], key_len);
  650. }
  651. set_setup_mode(&desc[*seq_size], SETUP_LOAD_KEY0);
  652. }
  653. set_flow_mode(&desc[*seq_size], flow_mode);
  654. (*seq_size)++;
  655. break;
  656. case DRV_CIPHER_XTS:
  657. case DRV_CIPHER_ESSIV:
  658. /* Load AES key */
  659. hw_desc_init(&desc[*seq_size]);
  660. set_cipher_mode(&desc[*seq_size], cipher_mode);
  661. set_cipher_config0(&desc[*seq_size], direction);
  662. if (cc_key_type(tfm) == CC_HW_PROTECTED_KEY) {
  663. set_hw_crypto_key(&desc[*seq_size],
  664. ctx_p->hw.key1_slot);
  665. } else {
  666. set_din_type(&desc[*seq_size], DMA_DLLI, key_dma_addr,
  667. (key_len / 2), NS_BIT);
  668. }
  669. set_key_size_aes(&desc[*seq_size], (key_len / 2));
  670. set_flow_mode(&desc[*seq_size], flow_mode);
  671. set_setup_mode(&desc[*seq_size], SETUP_LOAD_KEY0);
  672. (*seq_size)++;
  673. break;
  674. default:
  675. dev_err(dev, "Unsupported cipher mode (%d)\n", cipher_mode);
  676. }
  677. }
  678. static void cc_setup_mlli_desc(struct crypto_tfm *tfm,
  679. struct cipher_req_ctx *req_ctx,
  680. struct scatterlist *dst, struct scatterlist *src,
  681. unsigned int nbytes, void *areq,
  682. struct cc_hw_desc desc[], unsigned int *seq_size)
  683. {
  684. struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
  685. struct device *dev = drvdata_to_dev(ctx_p->drvdata);
  686. if (req_ctx->dma_buf_type == CC_DMA_BUF_MLLI) {
  687. /* bypass */
  688. dev_dbg(dev, " bypass params addr %pad length 0x%X addr 0x%08X\n",
  689. &req_ctx->mlli_params.mlli_dma_addr,
  690. req_ctx->mlli_params.mlli_len,
  691. ctx_p->drvdata->mlli_sram_addr);
  692. hw_desc_init(&desc[*seq_size]);
  693. set_din_type(&desc[*seq_size], DMA_DLLI,
  694. req_ctx->mlli_params.mlli_dma_addr,
  695. req_ctx->mlli_params.mlli_len, NS_BIT);
  696. set_dout_sram(&desc[*seq_size],
  697. ctx_p->drvdata->mlli_sram_addr,
  698. req_ctx->mlli_params.mlli_len);
  699. set_flow_mode(&desc[*seq_size], BYPASS);
  700. (*seq_size)++;
  701. }
  702. }
  703. static void cc_setup_flow_desc(struct crypto_tfm *tfm,
  704. struct cipher_req_ctx *req_ctx,
  705. struct scatterlist *dst, struct scatterlist *src,
  706. unsigned int nbytes, struct cc_hw_desc desc[],
  707. unsigned int *seq_size)
  708. {
  709. struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
  710. struct device *dev = drvdata_to_dev(ctx_p->drvdata);
  711. unsigned int flow_mode = cc_out_flow_mode(ctx_p);
  712. bool last_desc = (ctx_p->key_type == CC_POLICY_PROTECTED_KEY ||
  713. ctx_p->cipher_mode == DRV_CIPHER_ECB);
  714. /* Process */
  715. if (req_ctx->dma_buf_type == CC_DMA_BUF_DLLI) {
  716. dev_dbg(dev, " data params addr %pad length 0x%X\n",
  717. &sg_dma_address(src), nbytes);
  718. dev_dbg(dev, " data params addr %pad length 0x%X\n",
  719. &sg_dma_address(dst), nbytes);
  720. hw_desc_init(&desc[*seq_size]);
  721. set_din_type(&desc[*seq_size], DMA_DLLI, sg_dma_address(src),
  722. nbytes, NS_BIT);
  723. set_dout_dlli(&desc[*seq_size], sg_dma_address(dst),
  724. nbytes, NS_BIT, (!last_desc ? 0 : 1));
  725. if (last_desc)
  726. set_queue_last_ind(ctx_p->drvdata, &desc[*seq_size]);
  727. set_flow_mode(&desc[*seq_size], flow_mode);
  728. (*seq_size)++;
  729. } else {
  730. hw_desc_init(&desc[*seq_size]);
  731. set_din_type(&desc[*seq_size], DMA_MLLI,
  732. ctx_p->drvdata->mlli_sram_addr,
  733. req_ctx->in_mlli_nents, NS_BIT);
  734. if (req_ctx->out_nents == 0) {
  735. dev_dbg(dev, " din/dout params addr 0x%08X addr 0x%08X\n",
  736. ctx_p->drvdata->mlli_sram_addr,
  737. ctx_p->drvdata->mlli_sram_addr);
  738. set_dout_mlli(&desc[*seq_size],
  739. ctx_p->drvdata->mlli_sram_addr,
  740. req_ctx->in_mlli_nents, NS_BIT,
  741. (!last_desc ? 0 : 1));
  742. } else {
  743. dev_dbg(dev, " din/dout params addr 0x%08X addr 0x%08X\n",
  744. ctx_p->drvdata->mlli_sram_addr,
  745. ctx_p->drvdata->mlli_sram_addr +
  746. (u32)LLI_ENTRY_BYTE_SIZE * req_ctx->in_nents);
  747. set_dout_mlli(&desc[*seq_size],
  748. (ctx_p->drvdata->mlli_sram_addr +
  749. (LLI_ENTRY_BYTE_SIZE *
  750. req_ctx->in_mlli_nents)),
  751. req_ctx->out_mlli_nents, NS_BIT,
  752. (!last_desc ? 0 : 1));
  753. }
  754. if (last_desc)
  755. set_queue_last_ind(ctx_p->drvdata, &desc[*seq_size]);
  756. set_flow_mode(&desc[*seq_size], flow_mode);
  757. (*seq_size)++;
  758. }
  759. }
  760. static void cc_cipher_complete(struct device *dev, void *cc_req, int err)
  761. {
  762. struct skcipher_request *req = (struct skcipher_request *)cc_req;
  763. struct scatterlist *dst = req->dst;
  764. struct scatterlist *src = req->src;
  765. struct cipher_req_ctx *req_ctx = skcipher_request_ctx(req);
  766. struct crypto_skcipher *sk_tfm = crypto_skcipher_reqtfm(req);
  767. unsigned int ivsize = crypto_skcipher_ivsize(sk_tfm);
  768. if (err != -EINPROGRESS) {
  769. /* Not a BACKLOG notification */
  770. cc_unmap_cipher_request(dev, req_ctx, ivsize, src, dst);
  771. memcpy(req->iv, req_ctx->iv, ivsize);
  772. kfree_sensitive(req_ctx->iv);
  773. }
  774. skcipher_request_complete(req, err);
  775. }
  776. static int cc_cipher_process(struct skcipher_request *req,
  777. enum drv_crypto_direction direction)
  778. {
  779. struct crypto_skcipher *sk_tfm = crypto_skcipher_reqtfm(req);
  780. struct crypto_tfm *tfm = crypto_skcipher_tfm(sk_tfm);
  781. struct cipher_req_ctx *req_ctx = skcipher_request_ctx(req);
  782. unsigned int ivsize = crypto_skcipher_ivsize(sk_tfm);
  783. struct scatterlist *dst = req->dst;
  784. struct scatterlist *src = req->src;
  785. unsigned int nbytes = req->cryptlen;
  786. void *iv = req->iv;
  787. struct cc_cipher_ctx *ctx_p = crypto_tfm_ctx(tfm);
  788. struct device *dev = drvdata_to_dev(ctx_p->drvdata);
  789. struct cc_hw_desc desc[MAX_SKCIPHER_SEQ_LEN];
  790. struct cc_crypto_req cc_req = {};
  791. int rc;
  792. unsigned int seq_len = 0;
  793. gfp_t flags = cc_gfp_flags(&req->base);
  794. dev_dbg(dev, "%s req=%p iv=%p nbytes=%d\n",
  795. ((direction == DRV_CRYPTO_DIRECTION_ENCRYPT) ?
  796. "Encrypt" : "Decrypt"), req, iv, nbytes);
  797. /* STAT_PHASE_0: Init and sanity checks */
  798. if (validate_data_size(ctx_p, nbytes)) {
  799. dev_dbg(dev, "Unsupported data size %d.\n", nbytes);
  800. rc = -EINVAL;
  801. goto exit_process;
  802. }
  803. if (nbytes == 0) {
  804. /* No data to process is valid */
  805. rc = 0;
  806. goto exit_process;
  807. }
  808. if (ctx_p->fallback_on) {
  809. struct skcipher_request *subreq = skcipher_request_ctx(req);
  810. *subreq = *req;
  811. skcipher_request_set_tfm(subreq, ctx_p->fallback_tfm);
  812. if (direction == DRV_CRYPTO_DIRECTION_ENCRYPT)
  813. return crypto_skcipher_encrypt(subreq);
  814. else
  815. return crypto_skcipher_decrypt(subreq);
  816. }
  817. /* The IV we are handed may be allocated from the stack so
  818. * we must copy it to a DMAable buffer before use.
  819. */
  820. req_ctx->iv = kmemdup(iv, ivsize, flags);
  821. if (!req_ctx->iv) {
  822. rc = -ENOMEM;
  823. goto exit_process;
  824. }
  825. /* Setup request structure */
  826. cc_req.user_cb = cc_cipher_complete;
  827. cc_req.user_arg = req;
  828. /* Setup CPP operation details */
  829. if (ctx_p->key_type == CC_POLICY_PROTECTED_KEY) {
  830. cc_req.cpp.is_cpp = true;
  831. cc_req.cpp.alg = ctx_p->cpp.alg;
  832. cc_req.cpp.slot = ctx_p->cpp.slot;
  833. }
  834. /* Setup request context */
  835. req_ctx->gen_ctx.op_type = direction;
  836. /* STAT_PHASE_1: Map buffers */
  837. rc = cc_map_cipher_request(ctx_p->drvdata, req_ctx, ivsize, nbytes,
  838. req_ctx->iv, src, dst, flags);
  839. if (rc) {
  840. dev_err(dev, "map_request() failed\n");
  841. goto exit_process;
  842. }
  843. /* STAT_PHASE_2: Create sequence */
  844. /* Setup state (IV) */
  845. cc_setup_state_desc(tfm, req_ctx, ivsize, nbytes, desc, &seq_len);
  846. /* Setup MLLI line, if needed */
  847. cc_setup_mlli_desc(tfm, req_ctx, dst, src, nbytes, req, desc, &seq_len);
  848. /* Setup key */
  849. cc_setup_key_desc(tfm, req_ctx, nbytes, desc, &seq_len);
  850. /* Setup state (IV and XEX key) */
  851. cc_setup_xex_state_desc(tfm, req_ctx, ivsize, nbytes, desc, &seq_len);
  852. /* Data processing */
  853. cc_setup_flow_desc(tfm, req_ctx, dst, src, nbytes, desc, &seq_len);
  854. /* Read next IV */
  855. cc_setup_readiv_desc(tfm, req_ctx, ivsize, desc, &seq_len);
  856. /* STAT_PHASE_3: Lock HW and push sequence */
  857. rc = cc_send_request(ctx_p->drvdata, &cc_req, desc, seq_len,
  858. &req->base);
  859. if (rc != -EINPROGRESS && rc != -EBUSY) {
  860. /* Failed to send the request or request completed
  861. * synchronously
  862. */
  863. cc_unmap_cipher_request(dev, req_ctx, ivsize, src, dst);
  864. }
  865. exit_process:
  866. if (rc != -EINPROGRESS && rc != -EBUSY) {
  867. kfree_sensitive(req_ctx->iv);
  868. }
  869. return rc;
  870. }
  871. static int cc_cipher_encrypt(struct skcipher_request *req)
  872. {
  873. struct cipher_req_ctx *req_ctx = skcipher_request_ctx(req);
  874. memset(req_ctx, 0, sizeof(*req_ctx));
  875. return cc_cipher_process(req, DRV_CRYPTO_DIRECTION_ENCRYPT);
  876. }
  877. static int cc_cipher_decrypt(struct skcipher_request *req)
  878. {
  879. struct cipher_req_ctx *req_ctx = skcipher_request_ctx(req);
  880. memset(req_ctx, 0, sizeof(*req_ctx));
  881. return cc_cipher_process(req, DRV_CRYPTO_DIRECTION_DECRYPT);
  882. }
  883. /* Block cipher alg */
  884. static const struct cc_alg_template skcipher_algs[] = {
  885. {
  886. .name = "xts(paes)",
  887. .driver_name = "xts-paes-ccree",
  888. .blocksize = 1,
  889. .template_skcipher = {
  890. .setkey = cc_cipher_sethkey,
  891. .encrypt = cc_cipher_encrypt,
  892. .decrypt = cc_cipher_decrypt,
  893. .min_keysize = CC_HW_KEY_SIZE,
  894. .max_keysize = CC_HW_KEY_SIZE,
  895. .ivsize = AES_BLOCK_SIZE,
  896. },
  897. .cipher_mode = DRV_CIPHER_XTS,
  898. .flow_mode = S_DIN_to_AES,
  899. .min_hw_rev = CC_HW_REV_630,
  900. .std_body = CC_STD_NIST,
  901. .sec_func = true,
  902. },
  903. {
  904. .name = "essiv(cbc(paes),sha256)",
  905. .driver_name = "essiv-paes-ccree",
  906. .blocksize = AES_BLOCK_SIZE,
  907. .template_skcipher = {
  908. .setkey = cc_cipher_sethkey,
  909. .encrypt = cc_cipher_encrypt,
  910. .decrypt = cc_cipher_decrypt,
  911. .min_keysize = CC_HW_KEY_SIZE,
  912. .max_keysize = CC_HW_KEY_SIZE,
  913. .ivsize = AES_BLOCK_SIZE,
  914. },
  915. .cipher_mode = DRV_CIPHER_ESSIV,
  916. .flow_mode = S_DIN_to_AES,
  917. .min_hw_rev = CC_HW_REV_712,
  918. .std_body = CC_STD_NIST,
  919. .sec_func = true,
  920. },
  921. {
  922. .name = "ecb(paes)",
  923. .driver_name = "ecb-paes-ccree",
  924. .blocksize = AES_BLOCK_SIZE,
  925. .template_skcipher = {
  926. .setkey = cc_cipher_sethkey,
  927. .encrypt = cc_cipher_encrypt,
  928. .decrypt = cc_cipher_decrypt,
  929. .min_keysize = CC_HW_KEY_SIZE,
  930. .max_keysize = CC_HW_KEY_SIZE,
  931. .ivsize = 0,
  932. },
  933. .cipher_mode = DRV_CIPHER_ECB,
  934. .flow_mode = S_DIN_to_AES,
  935. .min_hw_rev = CC_HW_REV_712,
  936. .std_body = CC_STD_NIST,
  937. .sec_func = true,
  938. },
  939. {
  940. .name = "cbc(paes)",
  941. .driver_name = "cbc-paes-ccree",
  942. .blocksize = AES_BLOCK_SIZE,
  943. .template_skcipher = {
  944. .setkey = cc_cipher_sethkey,
  945. .encrypt = cc_cipher_encrypt,
  946. .decrypt = cc_cipher_decrypt,
  947. .min_keysize = CC_HW_KEY_SIZE,
  948. .max_keysize = CC_HW_KEY_SIZE,
  949. .ivsize = AES_BLOCK_SIZE,
  950. },
  951. .cipher_mode = DRV_CIPHER_CBC,
  952. .flow_mode = S_DIN_to_AES,
  953. .min_hw_rev = CC_HW_REV_712,
  954. .std_body = CC_STD_NIST,
  955. .sec_func = true,
  956. },
  957. {
  958. .name = "ofb(paes)",
  959. .driver_name = "ofb-paes-ccree",
  960. .blocksize = AES_BLOCK_SIZE,
  961. .template_skcipher = {
  962. .setkey = cc_cipher_sethkey,
  963. .encrypt = cc_cipher_encrypt,
  964. .decrypt = cc_cipher_decrypt,
  965. .min_keysize = CC_HW_KEY_SIZE,
  966. .max_keysize = CC_HW_KEY_SIZE,
  967. .ivsize = AES_BLOCK_SIZE,
  968. },
  969. .cipher_mode = DRV_CIPHER_OFB,
  970. .flow_mode = S_DIN_to_AES,
  971. .min_hw_rev = CC_HW_REV_712,
  972. .std_body = CC_STD_NIST,
  973. .sec_func = true,
  974. },
  975. {
  976. .name = "cts(cbc(paes))",
  977. .driver_name = "cts-cbc-paes-ccree",
  978. .blocksize = AES_BLOCK_SIZE,
  979. .template_skcipher = {
  980. .setkey = cc_cipher_sethkey,
  981. .encrypt = cc_cipher_encrypt,
  982. .decrypt = cc_cipher_decrypt,
  983. .min_keysize = CC_HW_KEY_SIZE,
  984. .max_keysize = CC_HW_KEY_SIZE,
  985. .ivsize = AES_BLOCK_SIZE,
  986. },
  987. .cipher_mode = DRV_CIPHER_CBC_CTS,
  988. .flow_mode = S_DIN_to_AES,
  989. .min_hw_rev = CC_HW_REV_712,
  990. .std_body = CC_STD_NIST,
  991. .sec_func = true,
  992. },
  993. {
  994. .name = "ctr(paes)",
  995. .driver_name = "ctr-paes-ccree",
  996. .blocksize = 1,
  997. .template_skcipher = {
  998. .setkey = cc_cipher_sethkey,
  999. .encrypt = cc_cipher_encrypt,
  1000. .decrypt = cc_cipher_decrypt,
  1001. .min_keysize = CC_HW_KEY_SIZE,
  1002. .max_keysize = CC_HW_KEY_SIZE,
  1003. .ivsize = AES_BLOCK_SIZE,
  1004. },
  1005. .cipher_mode = DRV_CIPHER_CTR,
  1006. .flow_mode = S_DIN_to_AES,
  1007. .min_hw_rev = CC_HW_REV_712,
  1008. .std_body = CC_STD_NIST,
  1009. .sec_func = true,
  1010. },
  1011. {
  1012. /* See https://www.mail-archive.com/[email protected]/msg40576.html
  1013. * for the reason why this differs from the generic
  1014. * implementation.
  1015. */
  1016. .name = "xts(aes)",
  1017. .driver_name = "xts-aes-ccree",
  1018. .blocksize = 1,
  1019. .template_skcipher = {
  1020. .setkey = cc_cipher_setkey,
  1021. .encrypt = cc_cipher_encrypt,
  1022. .decrypt = cc_cipher_decrypt,
  1023. .min_keysize = AES_MIN_KEY_SIZE * 2,
  1024. .max_keysize = AES_MAX_KEY_SIZE * 2,
  1025. .ivsize = AES_BLOCK_SIZE,
  1026. },
  1027. .cipher_mode = DRV_CIPHER_XTS,
  1028. .flow_mode = S_DIN_to_AES,
  1029. .min_hw_rev = CC_HW_REV_630,
  1030. .std_body = CC_STD_NIST,
  1031. },
  1032. {
  1033. .name = "essiv(cbc(aes),sha256)",
  1034. .driver_name = "essiv-aes-ccree",
  1035. .blocksize = AES_BLOCK_SIZE,
  1036. .template_skcipher = {
  1037. .setkey = cc_cipher_setkey,
  1038. .encrypt = cc_cipher_encrypt,
  1039. .decrypt = cc_cipher_decrypt,
  1040. .min_keysize = AES_MIN_KEY_SIZE,
  1041. .max_keysize = AES_MAX_KEY_SIZE,
  1042. .ivsize = AES_BLOCK_SIZE,
  1043. },
  1044. .cipher_mode = DRV_CIPHER_ESSIV,
  1045. .flow_mode = S_DIN_to_AES,
  1046. .min_hw_rev = CC_HW_REV_712,
  1047. .std_body = CC_STD_NIST,
  1048. },
  1049. {
  1050. .name = "ecb(aes)",
  1051. .driver_name = "ecb-aes-ccree",
  1052. .blocksize = AES_BLOCK_SIZE,
  1053. .template_skcipher = {
  1054. .setkey = cc_cipher_setkey,
  1055. .encrypt = cc_cipher_encrypt,
  1056. .decrypt = cc_cipher_decrypt,
  1057. .min_keysize = AES_MIN_KEY_SIZE,
  1058. .max_keysize = AES_MAX_KEY_SIZE,
  1059. .ivsize = 0,
  1060. },
  1061. .cipher_mode = DRV_CIPHER_ECB,
  1062. .flow_mode = S_DIN_to_AES,
  1063. .min_hw_rev = CC_HW_REV_630,
  1064. .std_body = CC_STD_NIST,
  1065. },
  1066. {
  1067. .name = "cbc(aes)",
  1068. .driver_name = "cbc-aes-ccree",
  1069. .blocksize = AES_BLOCK_SIZE,
  1070. .template_skcipher = {
  1071. .setkey = cc_cipher_setkey,
  1072. .encrypt = cc_cipher_encrypt,
  1073. .decrypt = cc_cipher_decrypt,
  1074. .min_keysize = AES_MIN_KEY_SIZE,
  1075. .max_keysize = AES_MAX_KEY_SIZE,
  1076. .ivsize = AES_BLOCK_SIZE,
  1077. },
  1078. .cipher_mode = DRV_CIPHER_CBC,
  1079. .flow_mode = S_DIN_to_AES,
  1080. .min_hw_rev = CC_HW_REV_630,
  1081. .std_body = CC_STD_NIST,
  1082. },
  1083. {
  1084. .name = "ofb(aes)",
  1085. .driver_name = "ofb-aes-ccree",
  1086. .blocksize = 1,
  1087. .template_skcipher = {
  1088. .setkey = cc_cipher_setkey,
  1089. .encrypt = cc_cipher_encrypt,
  1090. .decrypt = cc_cipher_decrypt,
  1091. .min_keysize = AES_MIN_KEY_SIZE,
  1092. .max_keysize = AES_MAX_KEY_SIZE,
  1093. .ivsize = AES_BLOCK_SIZE,
  1094. },
  1095. .cipher_mode = DRV_CIPHER_OFB,
  1096. .flow_mode = S_DIN_to_AES,
  1097. .min_hw_rev = CC_HW_REV_630,
  1098. .std_body = CC_STD_NIST,
  1099. },
  1100. {
  1101. .name = "cts(cbc(aes))",
  1102. .driver_name = "cts-cbc-aes-ccree",
  1103. .blocksize = AES_BLOCK_SIZE,
  1104. .template_skcipher = {
  1105. .setkey = cc_cipher_setkey,
  1106. .encrypt = cc_cipher_encrypt,
  1107. .decrypt = cc_cipher_decrypt,
  1108. .min_keysize = AES_MIN_KEY_SIZE,
  1109. .max_keysize = AES_MAX_KEY_SIZE,
  1110. .ivsize = AES_BLOCK_SIZE,
  1111. },
  1112. .cipher_mode = DRV_CIPHER_CBC_CTS,
  1113. .flow_mode = S_DIN_to_AES,
  1114. .min_hw_rev = CC_HW_REV_630,
  1115. .std_body = CC_STD_NIST,
  1116. },
  1117. {
  1118. .name = "ctr(aes)",
  1119. .driver_name = "ctr-aes-ccree",
  1120. .blocksize = 1,
  1121. .template_skcipher = {
  1122. .setkey = cc_cipher_setkey,
  1123. .encrypt = cc_cipher_encrypt,
  1124. .decrypt = cc_cipher_decrypt,
  1125. .min_keysize = AES_MIN_KEY_SIZE,
  1126. .max_keysize = AES_MAX_KEY_SIZE,
  1127. .ivsize = AES_BLOCK_SIZE,
  1128. },
  1129. .cipher_mode = DRV_CIPHER_CTR,
  1130. .flow_mode = S_DIN_to_AES,
  1131. .min_hw_rev = CC_HW_REV_630,
  1132. .std_body = CC_STD_NIST,
  1133. },
  1134. {
  1135. .name = "cbc(des3_ede)",
  1136. .driver_name = "cbc-3des-ccree",
  1137. .blocksize = DES3_EDE_BLOCK_SIZE,
  1138. .template_skcipher = {
  1139. .setkey = cc_cipher_setkey,
  1140. .encrypt = cc_cipher_encrypt,
  1141. .decrypt = cc_cipher_decrypt,
  1142. .min_keysize = DES3_EDE_KEY_SIZE,
  1143. .max_keysize = DES3_EDE_KEY_SIZE,
  1144. .ivsize = DES3_EDE_BLOCK_SIZE,
  1145. },
  1146. .cipher_mode = DRV_CIPHER_CBC,
  1147. .flow_mode = S_DIN_to_DES,
  1148. .min_hw_rev = CC_HW_REV_630,
  1149. .std_body = CC_STD_NIST,
  1150. },
  1151. {
  1152. .name = "ecb(des3_ede)",
  1153. .driver_name = "ecb-3des-ccree",
  1154. .blocksize = DES3_EDE_BLOCK_SIZE,
  1155. .template_skcipher = {
  1156. .setkey = cc_cipher_setkey,
  1157. .encrypt = cc_cipher_encrypt,
  1158. .decrypt = cc_cipher_decrypt,
  1159. .min_keysize = DES3_EDE_KEY_SIZE,
  1160. .max_keysize = DES3_EDE_KEY_SIZE,
  1161. .ivsize = 0,
  1162. },
  1163. .cipher_mode = DRV_CIPHER_ECB,
  1164. .flow_mode = S_DIN_to_DES,
  1165. .min_hw_rev = CC_HW_REV_630,
  1166. .std_body = CC_STD_NIST,
  1167. },
  1168. {
  1169. .name = "cbc(des)",
  1170. .driver_name = "cbc-des-ccree",
  1171. .blocksize = DES_BLOCK_SIZE,
  1172. .template_skcipher = {
  1173. .setkey = cc_cipher_setkey,
  1174. .encrypt = cc_cipher_encrypt,
  1175. .decrypt = cc_cipher_decrypt,
  1176. .min_keysize = DES_KEY_SIZE,
  1177. .max_keysize = DES_KEY_SIZE,
  1178. .ivsize = DES_BLOCK_SIZE,
  1179. },
  1180. .cipher_mode = DRV_CIPHER_CBC,
  1181. .flow_mode = S_DIN_to_DES,
  1182. .min_hw_rev = CC_HW_REV_630,
  1183. .std_body = CC_STD_NIST,
  1184. },
  1185. {
  1186. .name = "ecb(des)",
  1187. .driver_name = "ecb-des-ccree",
  1188. .blocksize = DES_BLOCK_SIZE,
  1189. .template_skcipher = {
  1190. .setkey = cc_cipher_setkey,
  1191. .encrypt = cc_cipher_encrypt,
  1192. .decrypt = cc_cipher_decrypt,
  1193. .min_keysize = DES_KEY_SIZE,
  1194. .max_keysize = DES_KEY_SIZE,
  1195. .ivsize = 0,
  1196. },
  1197. .cipher_mode = DRV_CIPHER_ECB,
  1198. .flow_mode = S_DIN_to_DES,
  1199. .min_hw_rev = CC_HW_REV_630,
  1200. .std_body = CC_STD_NIST,
  1201. },
  1202. {
  1203. .name = "cbc(sm4)",
  1204. .driver_name = "cbc-sm4-ccree",
  1205. .blocksize = SM4_BLOCK_SIZE,
  1206. .template_skcipher = {
  1207. .setkey = cc_cipher_setkey,
  1208. .encrypt = cc_cipher_encrypt,
  1209. .decrypt = cc_cipher_decrypt,
  1210. .min_keysize = SM4_KEY_SIZE,
  1211. .max_keysize = SM4_KEY_SIZE,
  1212. .ivsize = SM4_BLOCK_SIZE,
  1213. },
  1214. .cipher_mode = DRV_CIPHER_CBC,
  1215. .flow_mode = S_DIN_to_SM4,
  1216. .min_hw_rev = CC_HW_REV_713,
  1217. .std_body = CC_STD_OSCCA,
  1218. },
  1219. {
  1220. .name = "ecb(sm4)",
  1221. .driver_name = "ecb-sm4-ccree",
  1222. .blocksize = SM4_BLOCK_SIZE,
  1223. .template_skcipher = {
  1224. .setkey = cc_cipher_setkey,
  1225. .encrypt = cc_cipher_encrypt,
  1226. .decrypt = cc_cipher_decrypt,
  1227. .min_keysize = SM4_KEY_SIZE,
  1228. .max_keysize = SM4_KEY_SIZE,
  1229. .ivsize = 0,
  1230. },
  1231. .cipher_mode = DRV_CIPHER_ECB,
  1232. .flow_mode = S_DIN_to_SM4,
  1233. .min_hw_rev = CC_HW_REV_713,
  1234. .std_body = CC_STD_OSCCA,
  1235. },
  1236. {
  1237. .name = "ctr(sm4)",
  1238. .driver_name = "ctr-sm4-ccree",
  1239. .blocksize = 1,
  1240. .template_skcipher = {
  1241. .setkey = cc_cipher_setkey,
  1242. .encrypt = cc_cipher_encrypt,
  1243. .decrypt = cc_cipher_decrypt,
  1244. .min_keysize = SM4_KEY_SIZE,
  1245. .max_keysize = SM4_KEY_SIZE,
  1246. .ivsize = SM4_BLOCK_SIZE,
  1247. },
  1248. .cipher_mode = DRV_CIPHER_CTR,
  1249. .flow_mode = S_DIN_to_SM4,
  1250. .min_hw_rev = CC_HW_REV_713,
  1251. .std_body = CC_STD_OSCCA,
  1252. },
  1253. {
  1254. .name = "cbc(psm4)",
  1255. .driver_name = "cbc-psm4-ccree",
  1256. .blocksize = SM4_BLOCK_SIZE,
  1257. .template_skcipher = {
  1258. .setkey = cc_cipher_sethkey,
  1259. .encrypt = cc_cipher_encrypt,
  1260. .decrypt = cc_cipher_decrypt,
  1261. .min_keysize = CC_HW_KEY_SIZE,
  1262. .max_keysize = CC_HW_KEY_SIZE,
  1263. .ivsize = SM4_BLOCK_SIZE,
  1264. },
  1265. .cipher_mode = DRV_CIPHER_CBC,
  1266. .flow_mode = S_DIN_to_SM4,
  1267. .min_hw_rev = CC_HW_REV_713,
  1268. .std_body = CC_STD_OSCCA,
  1269. .sec_func = true,
  1270. },
  1271. {
  1272. .name = "ctr(psm4)",
  1273. .driver_name = "ctr-psm4-ccree",
  1274. .blocksize = SM4_BLOCK_SIZE,
  1275. .template_skcipher = {
  1276. .setkey = cc_cipher_sethkey,
  1277. .encrypt = cc_cipher_encrypt,
  1278. .decrypt = cc_cipher_decrypt,
  1279. .min_keysize = CC_HW_KEY_SIZE,
  1280. .max_keysize = CC_HW_KEY_SIZE,
  1281. .ivsize = SM4_BLOCK_SIZE,
  1282. },
  1283. .cipher_mode = DRV_CIPHER_CTR,
  1284. .flow_mode = S_DIN_to_SM4,
  1285. .min_hw_rev = CC_HW_REV_713,
  1286. .std_body = CC_STD_OSCCA,
  1287. .sec_func = true,
  1288. },
  1289. };
  1290. static struct cc_crypto_alg *cc_create_alg(const struct cc_alg_template *tmpl,
  1291. struct device *dev)
  1292. {
  1293. struct cc_crypto_alg *t_alg;
  1294. struct skcipher_alg *alg;
  1295. t_alg = devm_kzalloc(dev, sizeof(*t_alg), GFP_KERNEL);
  1296. if (!t_alg)
  1297. return ERR_PTR(-ENOMEM);
  1298. alg = &t_alg->skcipher_alg;
  1299. memcpy(alg, &tmpl->template_skcipher, sizeof(*alg));
  1300. snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
  1301. snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
  1302. tmpl->driver_name);
  1303. alg->base.cra_module = THIS_MODULE;
  1304. alg->base.cra_priority = CC_CRA_PRIO;
  1305. alg->base.cra_blocksize = tmpl->blocksize;
  1306. alg->base.cra_alignmask = 0;
  1307. alg->base.cra_ctxsize = sizeof(struct cc_cipher_ctx);
  1308. alg->base.cra_init = cc_cipher_init;
  1309. alg->base.cra_exit = cc_cipher_exit;
  1310. alg->base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY;
  1311. t_alg->cipher_mode = tmpl->cipher_mode;
  1312. t_alg->flow_mode = tmpl->flow_mode;
  1313. return t_alg;
  1314. }
  1315. int cc_cipher_free(struct cc_drvdata *drvdata)
  1316. {
  1317. struct cc_crypto_alg *t_alg, *n;
  1318. /* Remove registered algs */
  1319. list_for_each_entry_safe(t_alg, n, &drvdata->alg_list, entry) {
  1320. crypto_unregister_skcipher(&t_alg->skcipher_alg);
  1321. list_del(&t_alg->entry);
  1322. }
  1323. return 0;
  1324. }
  1325. int cc_cipher_alloc(struct cc_drvdata *drvdata)
  1326. {
  1327. struct cc_crypto_alg *t_alg;
  1328. struct device *dev = drvdata_to_dev(drvdata);
  1329. int rc = -ENOMEM;
  1330. int alg;
  1331. INIT_LIST_HEAD(&drvdata->alg_list);
  1332. /* Linux crypto */
  1333. dev_dbg(dev, "Number of algorithms = %zu\n",
  1334. ARRAY_SIZE(skcipher_algs));
  1335. for (alg = 0; alg < ARRAY_SIZE(skcipher_algs); alg++) {
  1336. if ((skcipher_algs[alg].min_hw_rev > drvdata->hw_rev) ||
  1337. !(drvdata->std_bodies & skcipher_algs[alg].std_body) ||
  1338. (drvdata->sec_disabled && skcipher_algs[alg].sec_func))
  1339. continue;
  1340. dev_dbg(dev, "creating %s\n", skcipher_algs[alg].driver_name);
  1341. t_alg = cc_create_alg(&skcipher_algs[alg], dev);
  1342. if (IS_ERR(t_alg)) {
  1343. rc = PTR_ERR(t_alg);
  1344. dev_err(dev, "%s alg allocation failed\n",
  1345. skcipher_algs[alg].driver_name);
  1346. goto fail0;
  1347. }
  1348. t_alg->drvdata = drvdata;
  1349. dev_dbg(dev, "registering %s\n",
  1350. skcipher_algs[alg].driver_name);
  1351. rc = crypto_register_skcipher(&t_alg->skcipher_alg);
  1352. dev_dbg(dev, "%s alg registration rc = %x\n",
  1353. t_alg->skcipher_alg.base.cra_driver_name, rc);
  1354. if (rc) {
  1355. dev_err(dev, "%s alg registration failed\n",
  1356. t_alg->skcipher_alg.base.cra_driver_name);
  1357. goto fail0;
  1358. }
  1359. list_add_tail(&t_alg->entry, &drvdata->alg_list);
  1360. dev_dbg(dev, "Registered %s\n",
  1361. t_alg->skcipher_alg.base.cra_driver_name);
  1362. }
  1363. return 0;
  1364. fail0:
  1365. cc_cipher_free(drvdata);
  1366. return rc;
  1367. }