adpll.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. #include <linux/clk.h>
  3. #include <linux/clkdev.h>
  4. #include <linux/clk-provider.h>
  5. #include <linux/delay.h>
  6. #include <linux/err.h>
  7. #include <linux/io.h>
  8. #include <linux/math64.h>
  9. #include <linux/module.h>
  10. #include <linux/of_device.h>
  11. #include <linux/string.h>
  12. #define ADPLL_PLLSS_MMR_LOCK_OFFSET 0x00 /* Managed by MPPULL */
  13. #define ADPLL_PLLSS_MMR_LOCK_ENABLED 0x1f125B64
  14. #define ADPLL_PLLSS_MMR_UNLOCK_MAGIC 0x1eda4c3d
  15. #define ADPLL_PWRCTRL_OFFSET 0x00
  16. #define ADPLL_PWRCTRL_PONIN 5
  17. #define ADPLL_PWRCTRL_PGOODIN 4
  18. #define ADPLL_PWRCTRL_RET 3
  19. #define ADPLL_PWRCTRL_ISORET 2
  20. #define ADPLL_PWRCTRL_ISOSCAN 1
  21. #define ADPLL_PWRCTRL_OFFMODE 0
  22. #define ADPLL_CLKCTRL_OFFSET 0x04
  23. #define ADPLL_CLKCTRL_CLKDCOLDOEN 29
  24. #define ADPLL_CLKCTRL_IDLE 23
  25. #define ADPLL_CLKCTRL_CLKOUTEN 20
  26. #define ADPLL_CLKINPHIFSEL_ADPLL_S 19 /* REVISIT: which bit? */
  27. #define ADPLL_CLKCTRL_CLKOUTLDOEN_ADPLL_LJ 19
  28. #define ADPLL_CLKCTRL_ULOWCLKEN 18
  29. #define ADPLL_CLKCTRL_CLKDCOLDOPWDNZ 17
  30. #define ADPLL_CLKCTRL_M2PWDNZ 16
  31. #define ADPLL_CLKCTRL_M3PWDNZ_ADPLL_S 15
  32. #define ADPLL_CLKCTRL_LOWCURRSTDBY_ADPLL_S 13
  33. #define ADPLL_CLKCTRL_LPMODE_ADPLL_S 12
  34. #define ADPLL_CLKCTRL_REGM4XEN_ADPLL_S 10
  35. #define ADPLL_CLKCTRL_SELFREQDCO_ADPLL_LJ 10
  36. #define ADPLL_CLKCTRL_TINITZ 0
  37. #define ADPLL_TENABLE_OFFSET 0x08
  38. #define ADPLL_TENABLEDIV_OFFSET 0x8c
  39. #define ADPLL_M2NDIV_OFFSET 0x10
  40. #define ADPLL_M2NDIV_M2 16
  41. #define ADPLL_M2NDIV_M2_ADPLL_S_WIDTH 5
  42. #define ADPLL_M2NDIV_M2_ADPLL_LJ_WIDTH 7
  43. #define ADPLL_MN2DIV_OFFSET 0x14
  44. #define ADPLL_MN2DIV_N2 16
  45. #define ADPLL_FRACDIV_OFFSET 0x18
  46. #define ADPLL_FRACDIV_REGSD 24
  47. #define ADPLL_FRACDIV_FRACTIONALM 0
  48. #define ADPLL_FRACDIV_FRACTIONALM_MASK 0x3ffff
  49. #define ADPLL_BWCTRL_OFFSET 0x1c
  50. #define ADPLL_BWCTRL_BWCONTROL 1
  51. #define ADPLL_BWCTRL_BW_INCR_DECRZ 0
  52. #define ADPLL_RESERVED_OFFSET 0x20
  53. #define ADPLL_STATUS_OFFSET 0x24
  54. #define ADPLL_STATUS_PONOUT 31
  55. #define ADPLL_STATUS_PGOODOUT 30
  56. #define ADPLL_STATUS_LDOPWDN 29
  57. #define ADPLL_STATUS_RECAL_BSTATUS3 28
  58. #define ADPLL_STATUS_RECAL_OPPIN 27
  59. #define ADPLL_STATUS_PHASELOCK 10
  60. #define ADPLL_STATUS_FREQLOCK 9
  61. #define ADPLL_STATUS_BYPASSACK 8
  62. #define ADPLL_STATUS_LOSSREF 6
  63. #define ADPLL_STATUS_CLKOUTENACK 5
  64. #define ADPLL_STATUS_LOCK2 4
  65. #define ADPLL_STATUS_M2CHANGEACK 3
  66. #define ADPLL_STATUS_HIGHJITTER 1
  67. #define ADPLL_STATUS_BYPASS 0
  68. #define ADPLL_STATUS_PREPARED_MASK (BIT(ADPLL_STATUS_PHASELOCK) | \
  69. BIT(ADPLL_STATUS_FREQLOCK))
  70. #define ADPLL_M3DIV_OFFSET 0x28 /* Only on MPUPLL */
  71. #define ADPLL_M3DIV_M3 0
  72. #define ADPLL_M3DIV_M3_WIDTH 5
  73. #define ADPLL_M3DIV_M3_MASK 0x1f
  74. #define ADPLL_RAMPCTRL_OFFSET 0x2c /* Only on MPUPLL */
  75. #define ADPLL_RAMPCTRL_CLKRAMPLEVEL 19
  76. #define ADPLL_RAMPCTRL_CLKRAMPRATE 16
  77. #define ADPLL_RAMPCTRL_RELOCK_RAMP_EN 0
  78. #define MAX_ADPLL_INPUTS 3
  79. #define MAX_ADPLL_OUTPUTS 4
  80. #define ADPLL_MAX_RETRIES 5
  81. #define to_dco(_hw) container_of(_hw, struct ti_adpll_dco_data, hw)
  82. #define to_adpll(_hw) container_of(_hw, struct ti_adpll_data, dco)
  83. #define to_clkout(_hw) container_of(_hw, struct ti_adpll_clkout_data, hw)
  84. enum ti_adpll_clocks {
  85. TI_ADPLL_DCO,
  86. TI_ADPLL_DCO_GATE,
  87. TI_ADPLL_N2,
  88. TI_ADPLL_M2,
  89. TI_ADPLL_M2_GATE,
  90. TI_ADPLL_BYPASS,
  91. TI_ADPLL_HIF,
  92. TI_ADPLL_DIV2,
  93. TI_ADPLL_CLKOUT,
  94. TI_ADPLL_CLKOUT2,
  95. TI_ADPLL_M3,
  96. };
  97. #define TI_ADPLL_NR_CLOCKS (TI_ADPLL_M3 + 1)
  98. enum ti_adpll_inputs {
  99. TI_ADPLL_CLKINP,
  100. TI_ADPLL_CLKINPULOW,
  101. TI_ADPLL_CLKINPHIF,
  102. };
  103. enum ti_adpll_s_outputs {
  104. TI_ADPLL_S_DCOCLKLDO,
  105. TI_ADPLL_S_CLKOUT,
  106. TI_ADPLL_S_CLKOUTX2,
  107. TI_ADPLL_S_CLKOUTHIF,
  108. };
  109. enum ti_adpll_lj_outputs {
  110. TI_ADPLL_LJ_CLKDCOLDO,
  111. TI_ADPLL_LJ_CLKOUT,
  112. TI_ADPLL_LJ_CLKOUTLDO,
  113. };
  114. struct ti_adpll_platform_data {
  115. const bool is_type_s;
  116. const int nr_max_inputs;
  117. const int nr_max_outputs;
  118. const int output_index;
  119. };
  120. struct ti_adpll_clock {
  121. struct clk *clk;
  122. struct clk_lookup *cl;
  123. void (*unregister)(struct clk *clk);
  124. };
  125. struct ti_adpll_dco_data {
  126. struct clk_hw hw;
  127. };
  128. struct ti_adpll_clkout_data {
  129. struct ti_adpll_data *adpll;
  130. struct clk_gate gate;
  131. struct clk_hw hw;
  132. };
  133. struct ti_adpll_data {
  134. struct device *dev;
  135. const struct ti_adpll_platform_data *c;
  136. struct device_node *np;
  137. unsigned long pa;
  138. void __iomem *iobase;
  139. void __iomem *regs;
  140. spinlock_t lock; /* For ADPLL shared register access */
  141. const char *parent_names[MAX_ADPLL_INPUTS];
  142. struct clk *parent_clocks[MAX_ADPLL_INPUTS];
  143. struct ti_adpll_clock *clocks;
  144. struct clk_onecell_data outputs;
  145. struct ti_adpll_dco_data dco;
  146. };
  147. static const char *ti_adpll_clk_get_name(struct ti_adpll_data *d,
  148. int output_index,
  149. const char *postfix)
  150. {
  151. const char *name;
  152. int err;
  153. if (output_index >= 0) {
  154. err = of_property_read_string_index(d->np,
  155. "clock-output-names",
  156. output_index,
  157. &name);
  158. if (err)
  159. return NULL;
  160. } else {
  161. name = devm_kasprintf(d->dev, GFP_KERNEL, "%08lx.adpll.%s",
  162. d->pa, postfix);
  163. }
  164. return name;
  165. }
  166. #define ADPLL_MAX_CON_ID 16 /* See MAX_CON_ID */
  167. static int ti_adpll_setup_clock(struct ti_adpll_data *d, struct clk *clock,
  168. int index, int output_index, const char *name,
  169. void (*unregister)(struct clk *clk))
  170. {
  171. struct clk_lookup *cl;
  172. const char *postfix = NULL;
  173. char con_id[ADPLL_MAX_CON_ID];
  174. d->clocks[index].clk = clock;
  175. d->clocks[index].unregister = unregister;
  176. /* Separate con_id in format "pll040dcoclkldo" to fit MAX_CON_ID */
  177. postfix = strrchr(name, '.');
  178. if (postfix && strlen(postfix) > 1) {
  179. if (strlen(postfix) > ADPLL_MAX_CON_ID)
  180. dev_warn(d->dev, "clock %s con_id lookup may fail\n",
  181. name);
  182. snprintf(con_id, 16, "pll%03lx%s", d->pa & 0xfff, postfix + 1);
  183. cl = clkdev_create(clock, con_id, NULL);
  184. if (!cl)
  185. return -ENOMEM;
  186. d->clocks[index].cl = cl;
  187. } else {
  188. dev_warn(d->dev, "no con_id for clock %s\n", name);
  189. }
  190. if (output_index < 0)
  191. return 0;
  192. d->outputs.clks[output_index] = clock;
  193. d->outputs.clk_num++;
  194. return 0;
  195. }
  196. static int ti_adpll_init_divider(struct ti_adpll_data *d,
  197. enum ti_adpll_clocks index,
  198. int output_index, char *name,
  199. struct clk *parent_clock,
  200. void __iomem *reg,
  201. u8 shift, u8 width,
  202. u8 clk_divider_flags)
  203. {
  204. const char *child_name;
  205. const char *parent_name;
  206. struct clk *clock;
  207. child_name = ti_adpll_clk_get_name(d, output_index, name);
  208. if (!child_name)
  209. return -EINVAL;
  210. parent_name = __clk_get_name(parent_clock);
  211. clock = clk_register_divider(d->dev, child_name, parent_name, 0,
  212. reg, shift, width, clk_divider_flags,
  213. &d->lock);
  214. if (IS_ERR(clock)) {
  215. dev_err(d->dev, "failed to register divider %s: %li\n",
  216. name, PTR_ERR(clock));
  217. return PTR_ERR(clock);
  218. }
  219. return ti_adpll_setup_clock(d, clock, index, output_index, child_name,
  220. clk_unregister_divider);
  221. }
  222. static int ti_adpll_init_mux(struct ti_adpll_data *d,
  223. enum ti_adpll_clocks index,
  224. char *name, struct clk *clk0,
  225. struct clk *clk1,
  226. void __iomem *reg,
  227. u8 shift)
  228. {
  229. const char *child_name;
  230. const char *parents[2];
  231. struct clk *clock;
  232. child_name = ti_adpll_clk_get_name(d, -ENODEV, name);
  233. if (!child_name)
  234. return -ENOMEM;
  235. parents[0] = __clk_get_name(clk0);
  236. parents[1] = __clk_get_name(clk1);
  237. clock = clk_register_mux(d->dev, child_name, parents, 2, 0,
  238. reg, shift, 1, 0, &d->lock);
  239. if (IS_ERR(clock)) {
  240. dev_err(d->dev, "failed to register mux %s: %li\n",
  241. name, PTR_ERR(clock));
  242. return PTR_ERR(clock);
  243. }
  244. return ti_adpll_setup_clock(d, clock, index, -ENODEV, child_name,
  245. clk_unregister_mux);
  246. }
  247. static int ti_adpll_init_gate(struct ti_adpll_data *d,
  248. enum ti_adpll_clocks index,
  249. int output_index, char *name,
  250. struct clk *parent_clock,
  251. void __iomem *reg,
  252. u8 bit_idx,
  253. u8 clk_gate_flags)
  254. {
  255. const char *child_name;
  256. const char *parent_name;
  257. struct clk *clock;
  258. child_name = ti_adpll_clk_get_name(d, output_index, name);
  259. if (!child_name)
  260. return -EINVAL;
  261. parent_name = __clk_get_name(parent_clock);
  262. clock = clk_register_gate(d->dev, child_name, parent_name, 0,
  263. reg, bit_idx, clk_gate_flags,
  264. &d->lock);
  265. if (IS_ERR(clock)) {
  266. dev_err(d->dev, "failed to register gate %s: %li\n",
  267. name, PTR_ERR(clock));
  268. return PTR_ERR(clock);
  269. }
  270. return ti_adpll_setup_clock(d, clock, index, output_index, child_name,
  271. clk_unregister_gate);
  272. }
  273. static int ti_adpll_init_fixed_factor(struct ti_adpll_data *d,
  274. enum ti_adpll_clocks index,
  275. char *name,
  276. struct clk *parent_clock,
  277. unsigned int mult,
  278. unsigned int div)
  279. {
  280. const char *child_name;
  281. const char *parent_name;
  282. struct clk *clock;
  283. child_name = ti_adpll_clk_get_name(d, -ENODEV, name);
  284. if (!child_name)
  285. return -ENOMEM;
  286. parent_name = __clk_get_name(parent_clock);
  287. clock = clk_register_fixed_factor(d->dev, child_name, parent_name,
  288. 0, mult, div);
  289. if (IS_ERR(clock))
  290. return PTR_ERR(clock);
  291. return ti_adpll_setup_clock(d, clock, index, -ENODEV, child_name,
  292. clk_unregister);
  293. }
  294. static void ti_adpll_set_idle_bypass(struct ti_adpll_data *d)
  295. {
  296. unsigned long flags;
  297. u32 v;
  298. spin_lock_irqsave(&d->lock, flags);
  299. v = readl_relaxed(d->regs + ADPLL_CLKCTRL_OFFSET);
  300. v |= BIT(ADPLL_CLKCTRL_IDLE);
  301. writel_relaxed(v, d->regs + ADPLL_CLKCTRL_OFFSET);
  302. spin_unlock_irqrestore(&d->lock, flags);
  303. }
  304. static void ti_adpll_clear_idle_bypass(struct ti_adpll_data *d)
  305. {
  306. unsigned long flags;
  307. u32 v;
  308. spin_lock_irqsave(&d->lock, flags);
  309. v = readl_relaxed(d->regs + ADPLL_CLKCTRL_OFFSET);
  310. v &= ~BIT(ADPLL_CLKCTRL_IDLE);
  311. writel_relaxed(v, d->regs + ADPLL_CLKCTRL_OFFSET);
  312. spin_unlock_irqrestore(&d->lock, flags);
  313. }
  314. static bool ti_adpll_clock_is_bypass(struct ti_adpll_data *d)
  315. {
  316. u32 v;
  317. v = readl_relaxed(d->regs + ADPLL_STATUS_OFFSET);
  318. return v & BIT(ADPLL_STATUS_BYPASS);
  319. }
  320. /*
  321. * Locked and bypass are not actually mutually exclusive: if you only care
  322. * about the DCO clock and not CLKOUT you can clear M2PWDNZ before enabling
  323. * the PLL, resulting in status (FREQLOCK | PHASELOCK | BYPASS) after lock.
  324. */
  325. static bool ti_adpll_is_locked(struct ti_adpll_data *d)
  326. {
  327. u32 v = readl_relaxed(d->regs + ADPLL_STATUS_OFFSET);
  328. return (v & ADPLL_STATUS_PREPARED_MASK) == ADPLL_STATUS_PREPARED_MASK;
  329. }
  330. static int ti_adpll_wait_lock(struct ti_adpll_data *d)
  331. {
  332. int retries = ADPLL_MAX_RETRIES;
  333. do {
  334. if (ti_adpll_is_locked(d))
  335. return 0;
  336. usleep_range(200, 300);
  337. } while (retries--);
  338. dev_err(d->dev, "pll failed to lock\n");
  339. return -ETIMEDOUT;
  340. }
  341. static int ti_adpll_prepare(struct clk_hw *hw)
  342. {
  343. struct ti_adpll_dco_data *dco = to_dco(hw);
  344. struct ti_adpll_data *d = to_adpll(dco);
  345. ti_adpll_clear_idle_bypass(d);
  346. ti_adpll_wait_lock(d);
  347. return 0;
  348. }
  349. static void ti_adpll_unprepare(struct clk_hw *hw)
  350. {
  351. struct ti_adpll_dco_data *dco = to_dco(hw);
  352. struct ti_adpll_data *d = to_adpll(dco);
  353. ti_adpll_set_idle_bypass(d);
  354. }
  355. static int ti_adpll_is_prepared(struct clk_hw *hw)
  356. {
  357. struct ti_adpll_dco_data *dco = to_dco(hw);
  358. struct ti_adpll_data *d = to_adpll(dco);
  359. return ti_adpll_is_locked(d);
  360. }
  361. /*
  362. * Note that the DCO clock is never subject to bypass: if the PLL is off,
  363. * dcoclk is low.
  364. */
  365. static unsigned long ti_adpll_recalc_rate(struct clk_hw *hw,
  366. unsigned long parent_rate)
  367. {
  368. struct ti_adpll_dco_data *dco = to_dco(hw);
  369. struct ti_adpll_data *d = to_adpll(dco);
  370. u32 frac_m, divider, v;
  371. u64 rate;
  372. unsigned long flags;
  373. if (ti_adpll_clock_is_bypass(d))
  374. return 0;
  375. spin_lock_irqsave(&d->lock, flags);
  376. frac_m = readl_relaxed(d->regs + ADPLL_FRACDIV_OFFSET);
  377. frac_m &= ADPLL_FRACDIV_FRACTIONALM_MASK;
  378. rate = (u64)readw_relaxed(d->regs + ADPLL_MN2DIV_OFFSET) << 18;
  379. rate += frac_m;
  380. rate *= parent_rate;
  381. divider = (readw_relaxed(d->regs + ADPLL_M2NDIV_OFFSET) + 1) << 18;
  382. spin_unlock_irqrestore(&d->lock, flags);
  383. do_div(rate, divider);
  384. if (d->c->is_type_s) {
  385. v = readl_relaxed(d->regs + ADPLL_CLKCTRL_OFFSET);
  386. if (v & BIT(ADPLL_CLKCTRL_REGM4XEN_ADPLL_S))
  387. rate *= 4;
  388. rate *= 2;
  389. }
  390. return rate;
  391. }
  392. /* PLL parent is always clkinp, bypass only affects the children */
  393. static u8 ti_adpll_get_parent(struct clk_hw *hw)
  394. {
  395. return 0;
  396. }
  397. static const struct clk_ops ti_adpll_ops = {
  398. .prepare = ti_adpll_prepare,
  399. .unprepare = ti_adpll_unprepare,
  400. .is_prepared = ti_adpll_is_prepared,
  401. .recalc_rate = ti_adpll_recalc_rate,
  402. .get_parent = ti_adpll_get_parent,
  403. };
  404. static int ti_adpll_init_dco(struct ti_adpll_data *d)
  405. {
  406. struct clk_init_data init;
  407. struct clk *clock;
  408. const char *postfix;
  409. int width, err;
  410. d->outputs.clks = devm_kcalloc(d->dev,
  411. MAX_ADPLL_OUTPUTS,
  412. sizeof(struct clk *),
  413. GFP_KERNEL);
  414. if (!d->outputs.clks)
  415. return -ENOMEM;
  416. if (d->c->output_index < 0)
  417. postfix = "dco";
  418. else
  419. postfix = NULL;
  420. init.name = ti_adpll_clk_get_name(d, d->c->output_index, postfix);
  421. if (!init.name)
  422. return -EINVAL;
  423. init.parent_names = d->parent_names;
  424. init.num_parents = d->c->nr_max_inputs;
  425. init.ops = &ti_adpll_ops;
  426. init.flags = CLK_GET_RATE_NOCACHE;
  427. d->dco.hw.init = &init;
  428. if (d->c->is_type_s)
  429. width = 5;
  430. else
  431. width = 4;
  432. /* Internal input clock divider N2 */
  433. err = ti_adpll_init_divider(d, TI_ADPLL_N2, -ENODEV, "n2",
  434. d->parent_clocks[TI_ADPLL_CLKINP],
  435. d->regs + ADPLL_MN2DIV_OFFSET,
  436. ADPLL_MN2DIV_N2, width, 0);
  437. if (err)
  438. return err;
  439. clock = devm_clk_register(d->dev, &d->dco.hw);
  440. if (IS_ERR(clock))
  441. return PTR_ERR(clock);
  442. return ti_adpll_setup_clock(d, clock, TI_ADPLL_DCO, d->c->output_index,
  443. init.name, NULL);
  444. }
  445. static int ti_adpll_clkout_enable(struct clk_hw *hw)
  446. {
  447. struct ti_adpll_clkout_data *co = to_clkout(hw);
  448. struct clk_hw *gate_hw = &co->gate.hw;
  449. __clk_hw_set_clk(gate_hw, hw);
  450. return clk_gate_ops.enable(gate_hw);
  451. }
  452. static void ti_adpll_clkout_disable(struct clk_hw *hw)
  453. {
  454. struct ti_adpll_clkout_data *co = to_clkout(hw);
  455. struct clk_hw *gate_hw = &co->gate.hw;
  456. __clk_hw_set_clk(gate_hw, hw);
  457. clk_gate_ops.disable(gate_hw);
  458. }
  459. static int ti_adpll_clkout_is_enabled(struct clk_hw *hw)
  460. {
  461. struct ti_adpll_clkout_data *co = to_clkout(hw);
  462. struct clk_hw *gate_hw = &co->gate.hw;
  463. __clk_hw_set_clk(gate_hw, hw);
  464. return clk_gate_ops.is_enabled(gate_hw);
  465. }
  466. /* Setting PLL bypass puts clkout and clkoutx2 into bypass */
  467. static u8 ti_adpll_clkout_get_parent(struct clk_hw *hw)
  468. {
  469. struct ti_adpll_clkout_data *co = to_clkout(hw);
  470. struct ti_adpll_data *d = co->adpll;
  471. return ti_adpll_clock_is_bypass(d);
  472. }
  473. static int ti_adpll_init_clkout(struct ti_adpll_data *d,
  474. enum ti_adpll_clocks index,
  475. int output_index, int gate_bit,
  476. char *name, struct clk *clk0,
  477. struct clk *clk1)
  478. {
  479. struct ti_adpll_clkout_data *co;
  480. struct clk_init_data init;
  481. struct clk_ops *ops;
  482. const char *parent_names[2];
  483. const char *child_name;
  484. struct clk *clock;
  485. int err;
  486. co = devm_kzalloc(d->dev, sizeof(*co), GFP_KERNEL);
  487. if (!co)
  488. return -ENOMEM;
  489. co->adpll = d;
  490. err = of_property_read_string_index(d->np,
  491. "clock-output-names",
  492. output_index,
  493. &child_name);
  494. if (err)
  495. return err;
  496. ops = devm_kzalloc(d->dev, sizeof(*ops), GFP_KERNEL);
  497. if (!ops)
  498. return -ENOMEM;
  499. init.name = child_name;
  500. init.ops = ops;
  501. init.flags = 0;
  502. co->hw.init = &init;
  503. parent_names[0] = __clk_get_name(clk0);
  504. parent_names[1] = __clk_get_name(clk1);
  505. init.parent_names = parent_names;
  506. init.num_parents = 2;
  507. ops->get_parent = ti_adpll_clkout_get_parent;
  508. ops->determine_rate = __clk_mux_determine_rate;
  509. if (gate_bit) {
  510. co->gate.lock = &d->lock;
  511. co->gate.reg = d->regs + ADPLL_CLKCTRL_OFFSET;
  512. co->gate.bit_idx = gate_bit;
  513. ops->enable = ti_adpll_clkout_enable;
  514. ops->disable = ti_adpll_clkout_disable;
  515. ops->is_enabled = ti_adpll_clkout_is_enabled;
  516. }
  517. clock = devm_clk_register(d->dev, &co->hw);
  518. if (IS_ERR(clock)) {
  519. dev_err(d->dev, "failed to register output %s: %li\n",
  520. name, PTR_ERR(clock));
  521. return PTR_ERR(clock);
  522. }
  523. return ti_adpll_setup_clock(d, clock, index, output_index, child_name,
  524. NULL);
  525. }
  526. static int ti_adpll_init_children_adpll_s(struct ti_adpll_data *d)
  527. {
  528. int err;
  529. if (!d->c->is_type_s)
  530. return 0;
  531. /* Internal mux, sources from divider N2 or clkinpulow */
  532. err = ti_adpll_init_mux(d, TI_ADPLL_BYPASS, "bypass",
  533. d->clocks[TI_ADPLL_N2].clk,
  534. d->parent_clocks[TI_ADPLL_CLKINPULOW],
  535. d->regs + ADPLL_CLKCTRL_OFFSET,
  536. ADPLL_CLKCTRL_ULOWCLKEN);
  537. if (err)
  538. return err;
  539. /* Internal divider M2, sources DCO */
  540. err = ti_adpll_init_divider(d, TI_ADPLL_M2, -ENODEV, "m2",
  541. d->clocks[TI_ADPLL_DCO].clk,
  542. d->regs + ADPLL_M2NDIV_OFFSET,
  543. ADPLL_M2NDIV_M2,
  544. ADPLL_M2NDIV_M2_ADPLL_S_WIDTH,
  545. CLK_DIVIDER_ONE_BASED);
  546. if (err)
  547. return err;
  548. /* Internal fixed divider, after M2 before clkout */
  549. err = ti_adpll_init_fixed_factor(d, TI_ADPLL_DIV2, "div2",
  550. d->clocks[TI_ADPLL_M2].clk,
  551. 1, 2);
  552. if (err)
  553. return err;
  554. /* Output clkout with a mux and gate, sources from div2 or bypass */
  555. err = ti_adpll_init_clkout(d, TI_ADPLL_CLKOUT, TI_ADPLL_S_CLKOUT,
  556. ADPLL_CLKCTRL_CLKOUTEN, "clkout",
  557. d->clocks[TI_ADPLL_DIV2].clk,
  558. d->clocks[TI_ADPLL_BYPASS].clk);
  559. if (err)
  560. return err;
  561. /* Output clkoutx2 with a mux and gate, sources from M2 or bypass */
  562. err = ti_adpll_init_clkout(d, TI_ADPLL_CLKOUT2, TI_ADPLL_S_CLKOUTX2, 0,
  563. "clkout2", d->clocks[TI_ADPLL_M2].clk,
  564. d->clocks[TI_ADPLL_BYPASS].clk);
  565. if (err)
  566. return err;
  567. /* Internal mux, sources from DCO and clkinphif */
  568. if (d->parent_clocks[TI_ADPLL_CLKINPHIF]) {
  569. err = ti_adpll_init_mux(d, TI_ADPLL_HIF, "hif",
  570. d->clocks[TI_ADPLL_DCO].clk,
  571. d->parent_clocks[TI_ADPLL_CLKINPHIF],
  572. d->regs + ADPLL_CLKCTRL_OFFSET,
  573. ADPLL_CLKINPHIFSEL_ADPLL_S);
  574. if (err)
  575. return err;
  576. }
  577. /* Output clkouthif with a divider M3, sources from hif */
  578. err = ti_adpll_init_divider(d, TI_ADPLL_M3, TI_ADPLL_S_CLKOUTHIF, "m3",
  579. d->clocks[TI_ADPLL_HIF].clk,
  580. d->regs + ADPLL_M3DIV_OFFSET,
  581. ADPLL_M3DIV_M3,
  582. ADPLL_M3DIV_M3_WIDTH,
  583. CLK_DIVIDER_ONE_BASED);
  584. if (err)
  585. return err;
  586. /* Output clock dcoclkldo is the DCO */
  587. return 0;
  588. }
  589. static int ti_adpll_init_children_adpll_lj(struct ti_adpll_data *d)
  590. {
  591. int err;
  592. if (d->c->is_type_s)
  593. return 0;
  594. /* Output clkdcoldo, gated output of DCO */
  595. err = ti_adpll_init_gate(d, TI_ADPLL_DCO_GATE, TI_ADPLL_LJ_CLKDCOLDO,
  596. "clkdcoldo", d->clocks[TI_ADPLL_DCO].clk,
  597. d->regs + ADPLL_CLKCTRL_OFFSET,
  598. ADPLL_CLKCTRL_CLKDCOLDOEN, 0);
  599. if (err)
  600. return err;
  601. /* Internal divider M2, sources from DCO */
  602. err = ti_adpll_init_divider(d, TI_ADPLL_M2, -ENODEV,
  603. "m2", d->clocks[TI_ADPLL_DCO].clk,
  604. d->regs + ADPLL_M2NDIV_OFFSET,
  605. ADPLL_M2NDIV_M2,
  606. ADPLL_M2NDIV_M2_ADPLL_LJ_WIDTH,
  607. CLK_DIVIDER_ONE_BASED);
  608. if (err)
  609. return err;
  610. /* Output clkoutldo, gated output of M2 */
  611. err = ti_adpll_init_gate(d, TI_ADPLL_M2_GATE, TI_ADPLL_LJ_CLKOUTLDO,
  612. "clkoutldo", d->clocks[TI_ADPLL_M2].clk,
  613. d->regs + ADPLL_CLKCTRL_OFFSET,
  614. ADPLL_CLKCTRL_CLKOUTLDOEN_ADPLL_LJ,
  615. 0);
  616. if (err)
  617. return err;
  618. /* Internal mux, sources from divider N2 or clkinpulow */
  619. err = ti_adpll_init_mux(d, TI_ADPLL_BYPASS, "bypass",
  620. d->clocks[TI_ADPLL_N2].clk,
  621. d->parent_clocks[TI_ADPLL_CLKINPULOW],
  622. d->regs + ADPLL_CLKCTRL_OFFSET,
  623. ADPLL_CLKCTRL_ULOWCLKEN);
  624. if (err)
  625. return err;
  626. /* Output clkout, sources M2 or bypass */
  627. err = ti_adpll_init_clkout(d, TI_ADPLL_CLKOUT, TI_ADPLL_S_CLKOUT,
  628. ADPLL_CLKCTRL_CLKOUTEN, "clkout",
  629. d->clocks[TI_ADPLL_M2].clk,
  630. d->clocks[TI_ADPLL_BYPASS].clk);
  631. if (err)
  632. return err;
  633. return 0;
  634. }
  635. static void ti_adpll_free_resources(struct ti_adpll_data *d)
  636. {
  637. int i;
  638. for (i = TI_ADPLL_M3; i >= 0; i--) {
  639. struct ti_adpll_clock *ac = &d->clocks[i];
  640. if (!ac || IS_ERR_OR_NULL(ac->clk))
  641. continue;
  642. if (ac->cl)
  643. clkdev_drop(ac->cl);
  644. if (ac->unregister)
  645. ac->unregister(ac->clk);
  646. }
  647. }
  648. /* MPU PLL manages the lock register for all PLLs */
  649. static void ti_adpll_unlock_all(void __iomem *reg)
  650. {
  651. u32 v;
  652. v = readl_relaxed(reg);
  653. if (v == ADPLL_PLLSS_MMR_LOCK_ENABLED)
  654. writel_relaxed(ADPLL_PLLSS_MMR_UNLOCK_MAGIC, reg);
  655. }
  656. static int ti_adpll_init_registers(struct ti_adpll_data *d)
  657. {
  658. int register_offset = 0;
  659. if (d->c->is_type_s) {
  660. register_offset = 8;
  661. ti_adpll_unlock_all(d->iobase + ADPLL_PLLSS_MMR_LOCK_OFFSET);
  662. }
  663. d->regs = d->iobase + register_offset + ADPLL_PWRCTRL_OFFSET;
  664. return 0;
  665. }
  666. static int ti_adpll_init_inputs(struct ti_adpll_data *d)
  667. {
  668. static const char error[] = "need at least %i inputs";
  669. struct clk *clock;
  670. int nr_inputs;
  671. nr_inputs = of_clk_get_parent_count(d->np);
  672. if (nr_inputs < d->c->nr_max_inputs) {
  673. dev_err(d->dev, error, nr_inputs);
  674. return -EINVAL;
  675. }
  676. of_clk_parent_fill(d->np, d->parent_names, nr_inputs);
  677. clock = devm_clk_get(d->dev, d->parent_names[0]);
  678. if (IS_ERR(clock)) {
  679. dev_err(d->dev, "could not get clkinp\n");
  680. return PTR_ERR(clock);
  681. }
  682. d->parent_clocks[TI_ADPLL_CLKINP] = clock;
  683. clock = devm_clk_get(d->dev, d->parent_names[1]);
  684. if (IS_ERR(clock)) {
  685. dev_err(d->dev, "could not get clkinpulow clock\n");
  686. return PTR_ERR(clock);
  687. }
  688. d->parent_clocks[TI_ADPLL_CLKINPULOW] = clock;
  689. if (d->c->is_type_s) {
  690. clock = devm_clk_get(d->dev, d->parent_names[2]);
  691. if (IS_ERR(clock)) {
  692. dev_err(d->dev, "could not get clkinphif clock\n");
  693. return PTR_ERR(clock);
  694. }
  695. d->parent_clocks[TI_ADPLL_CLKINPHIF] = clock;
  696. }
  697. return 0;
  698. }
  699. static const struct ti_adpll_platform_data ti_adpll_type_s = {
  700. .is_type_s = true,
  701. .nr_max_inputs = MAX_ADPLL_INPUTS,
  702. .nr_max_outputs = MAX_ADPLL_OUTPUTS,
  703. .output_index = TI_ADPLL_S_DCOCLKLDO,
  704. };
  705. static const struct ti_adpll_platform_data ti_adpll_type_lj = {
  706. .is_type_s = false,
  707. .nr_max_inputs = MAX_ADPLL_INPUTS - 1,
  708. .nr_max_outputs = MAX_ADPLL_OUTPUTS - 1,
  709. .output_index = -EINVAL,
  710. };
  711. static const struct of_device_id ti_adpll_match[] = {
  712. { .compatible = "ti,dm814-adpll-s-clock", &ti_adpll_type_s },
  713. { .compatible = "ti,dm814-adpll-lj-clock", &ti_adpll_type_lj },
  714. {},
  715. };
  716. MODULE_DEVICE_TABLE(of, ti_adpll_match);
  717. static int ti_adpll_probe(struct platform_device *pdev)
  718. {
  719. struct device_node *node = pdev->dev.of_node;
  720. struct device *dev = &pdev->dev;
  721. const struct of_device_id *match;
  722. const struct ti_adpll_platform_data *pdata;
  723. struct ti_adpll_data *d;
  724. struct resource *res;
  725. int err;
  726. match = of_match_device(ti_adpll_match, dev);
  727. if (match)
  728. pdata = match->data;
  729. else
  730. return -ENODEV;
  731. d = devm_kzalloc(dev, sizeof(*d), GFP_KERNEL);
  732. if (!d)
  733. return -ENOMEM;
  734. d->dev = dev;
  735. d->np = node;
  736. d->c = pdata;
  737. dev_set_drvdata(d->dev, d);
  738. spin_lock_init(&d->lock);
  739. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  740. if (!res)
  741. return -ENODEV;
  742. d->pa = res->start;
  743. d->iobase = devm_ioremap_resource(dev, res);
  744. if (IS_ERR(d->iobase))
  745. return PTR_ERR(d->iobase);
  746. err = ti_adpll_init_registers(d);
  747. if (err)
  748. return err;
  749. err = ti_adpll_init_inputs(d);
  750. if (err)
  751. return err;
  752. d->clocks = devm_kcalloc(d->dev,
  753. TI_ADPLL_NR_CLOCKS,
  754. sizeof(struct ti_adpll_clock),
  755. GFP_KERNEL);
  756. if (!d->clocks)
  757. return -ENOMEM;
  758. err = ti_adpll_init_dco(d);
  759. if (err) {
  760. dev_err(dev, "could not register dco: %i\n", err);
  761. goto free;
  762. }
  763. err = ti_adpll_init_children_adpll_s(d);
  764. if (err)
  765. goto free;
  766. err = ti_adpll_init_children_adpll_lj(d);
  767. if (err)
  768. goto free;
  769. err = of_clk_add_provider(d->np, of_clk_src_onecell_get, &d->outputs);
  770. if (err)
  771. goto free;
  772. return 0;
  773. free:
  774. WARN_ON(1);
  775. ti_adpll_free_resources(d);
  776. return err;
  777. }
  778. static int ti_adpll_remove(struct platform_device *pdev)
  779. {
  780. struct ti_adpll_data *d = dev_get_drvdata(&pdev->dev);
  781. ti_adpll_free_resources(d);
  782. return 0;
  783. }
  784. static struct platform_driver ti_adpll_driver = {
  785. .driver = {
  786. .name = "ti-adpll",
  787. .of_match_table = ti_adpll_match,
  788. },
  789. .probe = ti_adpll_probe,
  790. .remove = ti_adpll_remove,
  791. };
  792. static int __init ti_adpll_init(void)
  793. {
  794. return platform_driver_register(&ti_adpll_driver);
  795. }
  796. core_initcall(ti_adpll_init);
  797. static void __exit ti_adpll_exit(void)
  798. {
  799. platform_driver_unregister(&ti_adpll_driver);
  800. }
  801. module_exit(ti_adpll_exit);
  802. MODULE_DESCRIPTION("Clock driver for dm814x ADPLL");
  803. MODULE_ALIAS("platform:dm814-adpll-clock");
  804. MODULE_AUTHOR("Tony LIndgren <[email protected]>");
  805. MODULE_LICENSE("GPL v2");