clk-alpha-pll.c 123 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Copyright (c) 2015, 2018-2021, The Linux Foundation. All rights reserved.
  4. * Copyright (c) 2021-2024, Qualcomm Innovation Center, Inc. All rights reserved.
  5. */
  6. #include <linux/kernel.h>
  7. #include <linux/export.h>
  8. #include <linux/clk-provider.h>
  9. #include <linux/regmap.h>
  10. #include <linux/delay.h>
  11. #include <linux/sched/clock.h>
  12. #include "clk-alpha-pll.h"
  13. #include "clk-debug.h"
  14. #include "common.h"
  15. #define PLL_MODE(p) ((p)->offset + 0x0)
  16. # define PLL_OUTCTRL BIT(0)
  17. # define PLL_BYPASSNL BIT(1)
  18. # define PLL_RESET_N BIT(2)
  19. # define PLL_OFFLINE_REQ BIT(7)
  20. # define PLL_LOCK_COUNT_SHIFT 8
  21. # define PLL_LOCK_COUNT_MASK 0x3f
  22. # define PLL_BIAS_COUNT_SHIFT 14
  23. # define PLL_BIAS_COUNT_MASK 0x3f
  24. #define PLL_LATCH_INTERFACE BIT(11)
  25. # define PLL_VOTE_FSM_ENA BIT(20)
  26. # define PLL_FSM_ENA BIT(20)
  27. # define PLL_VOTE_FSM_RESET BIT(21)
  28. # define PLL_UPDATE BIT(22)
  29. # define PLL_UPDATE_BYPASS BIT(23)
  30. # define PLL_FSM_LEGACY_MODE BIT(24)
  31. # define PLL_OFFLINE_ACK BIT(28)
  32. # define ALPHA_PLL_ACK_LATCH BIT(29)
  33. # define PLL_ACTIVE_FLAG BIT(30)
  34. # define PLL_LOCK_DET BIT(31)
  35. #define PLL_L_VAL(p) ((p)->offset + (p)->regs[PLL_OFF_L_VAL])
  36. #define PLL_CAL_L_VAL(p) ((p)->offset + (p)->regs[PLL_OFF_CAL_L_VAL])
  37. #define PLL_ALPHA_VAL(p) ((p)->offset + (p)->regs[PLL_OFF_ALPHA_VAL])
  38. #define PLL_ALPHA_VAL_U(p) ((p)->offset + (p)->regs[PLL_OFF_ALPHA_VAL_U])
  39. #define PLL_USER_CTL(p) ((p)->offset + (p)->regs[PLL_OFF_USER_CTL])
  40. # define PLL_POST_DIV_SHIFT 8
  41. # define PLL_POST_DIV_MASK(p) GENMASK((p)->width - 1, 0)
  42. # define PLL_ALPHA_EN BIT(24)
  43. # define PLL_ALPHA_MODE BIT(25)
  44. # define PLL_VCO_SHIFT 20
  45. # define PLL_VCO_MASK 0x3
  46. #define PLL_USER_CTL_U(p) ((p)->offset + (p)->regs[PLL_OFF_USER_CTL_U])
  47. #define PLL_USER_CTL_U1(p) ((p)->offset + (p)->regs[PLL_OFF_USER_CTL_U1])
  48. #define PLL_CONFIG_CTL(p) ((p)->offset + (p)->regs[PLL_OFF_CONFIG_CTL])
  49. #define PLL_CONFIG_CTL_U(p) ((p)->offset + (p)->regs[PLL_OFF_CONFIG_CTL_U])
  50. #define PLL_CONFIG_CTL_U1(p) ((p)->offset + (p)->regs[PLL_OFF_CONFIG_CTL_U1])
  51. #define PLL_TEST_CTL(p) ((p)->offset + (p)->regs[PLL_OFF_TEST_CTL])
  52. #define PLL_TEST_CTL_U(p) ((p)->offset + (p)->regs[PLL_OFF_TEST_CTL_U])
  53. #define PLL_TEST_CTL_U1(p) ((p)->offset + (p)->regs[PLL_OFF_TEST_CTL_U1])
  54. #define PLL_TEST_CTL_U2(p) ((p)->offset + (p)->regs[PLL_OFF_TEST_CTL_U2])
  55. #define PLL_STATUS(p) ((p)->offset + (p)->regs[PLL_OFF_STATUS])
  56. #define PLL_OPMODE(p) ((p)->offset + (p)->regs[PLL_OFF_OPMODE])
  57. #define PLL_FRAC(p) ((p)->offset + (p)->regs[PLL_OFF_FRAC])
  58. const u8 clk_alpha_pll_regs[][PLL_OFF_MAX_REGS] = {
  59. [CLK_ALPHA_PLL_TYPE_DEFAULT] = {
  60. [PLL_OFF_L_VAL] = 0x04,
  61. [PLL_OFF_ALPHA_VAL] = 0x08,
  62. [PLL_OFF_ALPHA_VAL_U] = 0x0c,
  63. [PLL_OFF_USER_CTL] = 0x10,
  64. [PLL_OFF_USER_CTL_U] = 0x14,
  65. [PLL_OFF_CONFIG_CTL] = 0x18,
  66. [PLL_OFF_TEST_CTL] = 0x1c,
  67. [PLL_OFF_TEST_CTL_U] = 0x20,
  68. [PLL_OFF_STATUS] = 0x24,
  69. },
  70. [CLK_ALPHA_PLL_TYPE_HUAYRA] = {
  71. [PLL_OFF_L_VAL] = 0x04,
  72. [PLL_OFF_ALPHA_VAL] = 0x08,
  73. [PLL_OFF_USER_CTL] = 0x10,
  74. [PLL_OFF_CONFIG_CTL] = 0x14,
  75. [PLL_OFF_CONFIG_CTL_U] = 0x18,
  76. [PLL_OFF_TEST_CTL] = 0x1c,
  77. [PLL_OFF_TEST_CTL_U] = 0x20,
  78. [PLL_OFF_STATUS] = 0x24,
  79. },
  80. [CLK_ALPHA_PLL_TYPE_BRAMMO] = {
  81. [PLL_OFF_L_VAL] = 0x04,
  82. [PLL_OFF_ALPHA_VAL] = 0x08,
  83. [PLL_OFF_ALPHA_VAL_U] = 0x0c,
  84. [PLL_OFF_USER_CTL] = 0x10,
  85. [PLL_OFF_CONFIG_CTL] = 0x18,
  86. [PLL_OFF_TEST_CTL] = 0x1c,
  87. [PLL_OFF_STATUS] = 0x24,
  88. },
  89. [CLK_ALPHA_PLL_TYPE_FABIA] = {
  90. [PLL_OFF_L_VAL] = 0x04,
  91. [PLL_OFF_USER_CTL] = 0x0c,
  92. [PLL_OFF_USER_CTL_U] = 0x10,
  93. [PLL_OFF_CONFIG_CTL] = 0x14,
  94. [PLL_OFF_CONFIG_CTL_U] = 0x18,
  95. [PLL_OFF_TEST_CTL] = 0x1c,
  96. [PLL_OFF_TEST_CTL_U] = 0x20,
  97. [PLL_OFF_STATUS] = 0x24,
  98. [PLL_OFF_OPMODE] = 0x2c,
  99. [PLL_OFF_FRAC] = 0x38,
  100. },
  101. [CLK_ALPHA_PLL_TYPE_TRION] = {
  102. [PLL_OFF_L_VAL] = 0x04,
  103. [PLL_OFF_CAL_L_VAL] = 0x08,
  104. [PLL_OFF_USER_CTL] = 0x0c,
  105. [PLL_OFF_USER_CTL_U] = 0x10,
  106. [PLL_OFF_USER_CTL_U1] = 0x14,
  107. [PLL_OFF_CONFIG_CTL] = 0x18,
  108. [PLL_OFF_CONFIG_CTL_U] = 0x1c,
  109. [PLL_OFF_CONFIG_CTL_U1] = 0x20,
  110. [PLL_OFF_TEST_CTL] = 0x24,
  111. [PLL_OFF_TEST_CTL_U] = 0x28,
  112. [PLL_OFF_TEST_CTL_U1] = 0x2c,
  113. [PLL_OFF_STATUS] = 0x30,
  114. [PLL_OFF_OPMODE] = 0x38,
  115. [PLL_OFF_ALPHA_VAL] = 0x40,
  116. [PLL_OFF_SSC_DELTA_ALPHA] = 0x48,
  117. [PLL_OFF_SSC_NUM_STEPS] = 0x4C,
  118. [PLL_OFF_SSC_UPDATE_RATE] = 0x50,
  119. },
  120. [CLK_ALPHA_PLL_TYPE_AGERA] = {
  121. [PLL_OFF_L_VAL] = 0x04,
  122. [PLL_OFF_ALPHA_VAL] = 0x08,
  123. [PLL_OFF_USER_CTL] = 0x0c,
  124. [PLL_OFF_CONFIG_CTL] = 0x10,
  125. [PLL_OFF_CONFIG_CTL_U] = 0x14,
  126. [PLL_OFF_TEST_CTL] = 0x18,
  127. [PLL_OFF_TEST_CTL_U] = 0x1c,
  128. [PLL_OFF_STATUS] = 0x2c,
  129. },
  130. [CLK_ALPHA_PLL_TYPE_ZONDA] = {
  131. [PLL_OFF_L_VAL] = 0x04,
  132. [PLL_OFF_ALPHA_VAL] = 0x08,
  133. [PLL_OFF_USER_CTL] = 0x0c,
  134. [PLL_OFF_CONFIG_CTL] = 0x10,
  135. [PLL_OFF_CONFIG_CTL_U] = 0x14,
  136. [PLL_OFF_CONFIG_CTL_U1] = 0x18,
  137. [PLL_OFF_TEST_CTL] = 0x1c,
  138. [PLL_OFF_TEST_CTL_U] = 0x20,
  139. [PLL_OFF_TEST_CTL_U1] = 0x24,
  140. [PLL_OFF_OPMODE] = 0x28,
  141. [PLL_OFF_STATUS] = 0x38,
  142. },
  143. [CLK_ALPHA_PLL_TYPE_ZONDA_EVO] = {
  144. [PLL_OFF_L_VAL] = 0x04,
  145. [PLL_OFF_ALPHA_VAL] = 0x08,
  146. [PLL_OFF_USER_CTL] = 0x0c,
  147. [PLL_OFF_USER_CTL_U] = 0x10,
  148. [PLL_OFF_CONFIG_CTL] = 0x14,
  149. [PLL_OFF_CONFIG_CTL_U] = 0x18,
  150. [PLL_OFF_CONFIG_CTL_U1] = 0x1c,
  151. [PLL_OFF_TEST_CTL] = 0x20,
  152. [PLL_OFF_TEST_CTL_U] = 0x24,
  153. [PLL_OFF_TEST_CTL_U1] = 0x28,
  154. [PLL_OFF_OPMODE] = 0x2c,
  155. },
  156. [CLK_ALPHA_PLL_TYPE_ZONDA_5LPE] = {
  157. [PLL_OFF_L_VAL] = 0x04,
  158. [PLL_OFF_ALPHA_VAL] = 0x08,
  159. [PLL_OFF_USER_CTL] = 0x0c,
  160. [PLL_OFF_CONFIG_CTL] = 0x10,
  161. [PLL_OFF_CONFIG_CTL_U] = 0x14,
  162. [PLL_OFF_CONFIG_CTL_U1] = 0x18,
  163. [PLL_OFF_TEST_CTL] = 0x1c,
  164. [PLL_OFF_TEST_CTL_U] = 0x20,
  165. [PLL_OFF_TEST_CTL_U1] = 0x24,
  166. [PLL_OFF_OPMODE] = 0x28,
  167. [PLL_OFF_STATUS] = 0x38,
  168. },
  169. [CLK_ALPHA_PLL_TYPE_REGERA] = {
  170. [PLL_OFF_L_VAL] = 0x04,
  171. [PLL_OFF_ALPHA_VAL] = 0x08,
  172. [PLL_OFF_USER_CTL] = 0x0c,
  173. [PLL_OFF_CONFIG_CTL] = 0x10,
  174. [PLL_OFF_CONFIG_CTL_U] = 0x14,
  175. [PLL_OFF_CONFIG_CTL_U1] = 0x18,
  176. [PLL_OFF_TEST_CTL] = 0x1c,
  177. [PLL_OFF_TEST_CTL_U] = 0x20,
  178. [PLL_OFF_TEST_CTL_U1] = 0x24,
  179. [PLL_OFF_OPMODE] = 0x28,
  180. [PLL_OFF_STATUS] = 0x38,
  181. },
  182. [CLK_ALPHA_PLL_TYPE_LUCID_EVO] = {
  183. [PLL_OFF_OPMODE] = 0x04,
  184. [PLL_OFF_STATUS] = 0x0c,
  185. [PLL_OFF_L_VAL] = 0x10,
  186. [PLL_OFF_ALPHA_VAL] = 0x14,
  187. [PLL_OFF_USER_CTL] = 0x18,
  188. [PLL_OFF_USER_CTL_U] = 0x1c,
  189. [PLL_OFF_CONFIG_CTL] = 0x20,
  190. [PLL_OFF_CONFIG_CTL_U] = 0x24,
  191. [PLL_OFF_CONFIG_CTL_U1] = 0x28,
  192. [PLL_OFF_TEST_CTL] = 0x2c,
  193. [PLL_OFF_TEST_CTL_U] = 0x30,
  194. [PLL_OFF_TEST_CTL_U1] = 0x34,
  195. },
  196. [CLK_ALPHA_PLL_TYPE_RIVIAN_EVO] = {
  197. [PLL_OFF_OPMODE] = 0x04,
  198. [PLL_OFF_STATUS] = 0x0c,
  199. [PLL_OFF_L_VAL] = 0x10,
  200. [PLL_OFF_USER_CTL] = 0x14,
  201. [PLL_OFF_USER_CTL_U] = 0x18,
  202. [PLL_OFF_CONFIG_CTL] = 0x1c,
  203. [PLL_OFF_CONFIG_CTL_U] = 0x20,
  204. [PLL_OFF_CONFIG_CTL_U1] = 0x24,
  205. [PLL_OFF_TEST_CTL] = 0x28,
  206. [PLL_OFF_TEST_CTL_U] = 0x2c,
  207. },
  208. [CLK_ALPHA_PLL_TYPE_LUCID_OLE] = {
  209. [PLL_OFF_OPMODE] = 0x04,
  210. [PLL_OFF_STATE] = 0x08,
  211. [PLL_OFF_STATUS] = 0x0c,
  212. [PLL_OFF_L_VAL] = 0x10,
  213. [PLL_OFF_ALPHA_VAL] = 0x14,
  214. [PLL_OFF_USER_CTL] = 0x18,
  215. [PLL_OFF_USER_CTL_U] = 0x1c,
  216. [PLL_OFF_CONFIG_CTL] = 0x20,
  217. [PLL_OFF_CONFIG_CTL_U] = 0x24,
  218. [PLL_OFF_CONFIG_CTL_U1] = 0x28,
  219. [PLL_OFF_TEST_CTL] = 0x2c,
  220. [PLL_OFF_TEST_CTL_U] = 0x30,
  221. [PLL_OFF_TEST_CTL_U1] = 0x34,
  222. [PLL_OFF_TEST_CTL_U2] = 0x38,
  223. },
  224. [CLK_ALPHA_PLL_TYPE_DEFAULT_EVO] = {
  225. [PLL_OFF_L_VAL] = 0x04,
  226. [PLL_OFF_ALPHA_VAL] = 0x08,
  227. [PLL_OFF_ALPHA_VAL_U] = 0x0c,
  228. [PLL_OFF_TEST_CTL] = 0x10,
  229. [PLL_OFF_TEST_CTL_U] = 0x14,
  230. [PLL_OFF_USER_CTL] = 0x18,
  231. [PLL_OFF_USER_CTL_U] = 0x1c,
  232. [PLL_OFF_CONFIG_CTL] = 0x20,
  233. [PLL_OFF_STATUS] = 0x24,
  234. },
  235. [CLK_ALPHA_PLL_TYPE_BRAMMO_EVO] = {
  236. [PLL_OFF_L_VAL] = 0x04,
  237. [PLL_OFF_ALPHA_VAL] = 0x08,
  238. [PLL_OFF_ALPHA_VAL_U] = 0x0c,
  239. [PLL_OFF_TEST_CTL] = 0x10,
  240. [PLL_OFF_TEST_CTL_U] = 0x14,
  241. [PLL_OFF_USER_CTL] = 0x18,
  242. [PLL_OFF_CONFIG_CTL] = 0x1C,
  243. [PLL_OFF_STATUS] = 0x20,
  244. },
  245. [CLK_ALPHA_PLL_TYPE_LUCID_5LPE] = {
  246. [PLL_OFF_L_VAL] = 0x04,
  247. [PLL_OFF_CAL_L_VAL] = 0x08,
  248. [PLL_OFF_USER_CTL] = 0x0c,
  249. [PLL_OFF_USER_CTL_U] = 0x10,
  250. [PLL_OFF_USER_CTL_U1] = 0x14,
  251. [PLL_OFF_CONFIG_CTL] = 0x18,
  252. [PLL_OFF_CONFIG_CTL_U] = 0x1c,
  253. [PLL_OFF_CONFIG_CTL_U1] = 0x20,
  254. [PLL_OFF_TEST_CTL] = 0x24,
  255. [PLL_OFF_TEST_CTL_U] = 0x28,
  256. [PLL_OFF_TEST_CTL_U1] = 0x2c,
  257. [PLL_OFF_STATUS] = 0x30,
  258. [PLL_OFF_OPMODE] = 0x38,
  259. [PLL_OFF_ALPHA_VAL] = 0x40,
  260. },
  261. };
  262. EXPORT_SYMBOL_GPL(clk_alpha_pll_regs);
  263. /*
  264. * Even though 40 bits are present, use only 32 for ease of calculation.
  265. */
  266. #define ALPHA_REG_BITWIDTH 40
  267. #define ALPHA_REG_16BIT_WIDTH 16
  268. #define ALPHA_BITWIDTH 32U
  269. #define ALPHA_SHIFT(w) min(w, ALPHA_BITWIDTH)
  270. #define PLL_HUAYRA_M_WIDTH 8
  271. #define PLL_HUAYRA_M_SHIFT 8
  272. #define PLL_HUAYRA_M_MASK 0xff
  273. #define PLL_HUAYRA_N_SHIFT 0
  274. #define PLL_HUAYRA_N_MASK 0xff
  275. #define PLL_HUAYRA_ALPHA_WIDTH 16
  276. #define PLL_STANDBY 0x0
  277. #define PLL_RUN 0x1
  278. #define PLL_OUT_MASK 0x7
  279. #define PLL_RATE_MARGIN 500
  280. /* TRION PLL specific settings and offsets */
  281. #define TRION_PLL_CAL_VAL 0x44
  282. #define TRION_PCAL_DONE BIT(26)
  283. /* LUCID PLL specific settings and offsets */
  284. #define LUCID_PLL_CAL_VAL 0x44
  285. #define LUCID_PCAL_DONE BIT(27)
  286. /* LUCID 5LPE PLL specific settings and offsets */
  287. #define LUCID_5LPE_PCAL_DONE BIT(11)
  288. #define LUCID_5LPE_ALPHA_PLL_ACK_LATCH BIT(13)
  289. #define LUCID_5LPE_BYPASS_LATCH BIT(10)
  290. #define LUCID_5LPE_PLL_LATCH_INPUT BIT(14)
  291. #define LUCID_5LPE_ENABLE_VOTE_RUN BIT(21)
  292. #define LUCID_EVO_PCAL_NOT_DONE BIT(8)
  293. #define LUCID_EVO_ENABLE_VOTE_RUN BIT(25)
  294. #define LUCID_EVO_PLL_L_VAL_MASK GENMASK(15, 0)
  295. #define LUCID_EVO_PLL_CAL_L_VAL_MASK GENMASK(31, 16)
  296. #define LUCID_EVO_PLL_CAL_L_VAL_SHIFT 16
  297. #define LUCID_OLE_PROCESS_CAL_L_VAL_MASK GENMASK(23, 16)
  298. #define LUCID_OLE_PROCESS_CAL_L_VAL_SHIFT 16
  299. #define LUCID_OLE_RINGOSC_CAL_L_VAL_MASK GENMASK(31, 24)
  300. #define LUCID_OLE_RINGOSC_CAL_L_VAL_SHIFT 24
  301. /* LUCID EVO PLL specific settings and offsets */
  302. #define LUCID_EVO_PCAL_NOT_DONE BIT(8)
  303. #define LUCID_EVO_PLL_L_VAL_MASK GENMASK(15, 0)
  304. #define LUCID_EVO_PLL_CAL_L_VAL_SHIFT 16
  305. /* ZONDA PLL specific */
  306. #define ZONDA_PLL_OUT_MASK 0xf
  307. #define ZONDA_STAY_IN_CFA BIT(16)
  308. #define ZONDA_PLL_FREQ_LOCK_DET BIT(29)
  309. #define ZONDA_5LPE_ENABLE_VOTE_RUN BIT(21)
  310. #define pll_alpha_width(p) \
  311. ((PLL_ALPHA_VAL_U(p) - PLL_ALPHA_VAL(p) == 4) ? \
  312. ALPHA_REG_BITWIDTH : ALPHA_REG_16BIT_WIDTH)
  313. #define pll_has_64bit_config(p) ((PLL_CONFIG_CTL_U(p) - PLL_CONFIG_CTL(p)) == 4)
  314. #define to_clk_alpha_pll(_hw) container_of(to_clk_regmap(_hw), \
  315. struct clk_alpha_pll, clkr)
  316. #define to_clk_alpha_pll_postdiv(_hw) container_of(to_clk_regmap(_hw), \
  317. struct clk_alpha_pll_postdiv, clkr)
  318. static int wait_for_pll(struct clk_alpha_pll *pll, u32 mask, bool inverse,
  319. const char *action)
  320. {
  321. u32 val;
  322. int count;
  323. int ret;
  324. u64 time;
  325. ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
  326. if (ret)
  327. return ret;
  328. time = sched_clock();
  329. for (count = 200; count > 0; count--) {
  330. ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
  331. if (ret)
  332. return ret;
  333. if (inverse && !(val & mask))
  334. return 0;
  335. else if ((val & mask) == mask)
  336. return 0;
  337. udelay(1);
  338. }
  339. time = sched_clock() - time;
  340. pr_err("PLL lock bit detection total wait time: %lld ns\n", time);
  341. WARN_CLK(&pll->clkr.hw, 1, "pll failed to %s!\n", action);
  342. return -ETIMEDOUT;
  343. }
  344. #define wait_for_pll_enable_active(pll) \
  345. wait_for_pll(pll, PLL_ACTIVE_FLAG, 0, "enable")
  346. #define wait_for_pll_enable_lock(pll) \
  347. wait_for_pll(pll, PLL_LOCK_DET, 0, "enable")
  348. #define wait_for_zonda_pll_freq_lock(pll) \
  349. wait_for_pll(pll, ZONDA_PLL_FREQ_LOCK_DET, 0, "freq enable")
  350. #define wait_for_pll_disable(pll) \
  351. wait_for_pll(pll, PLL_ACTIVE_FLAG, 1, "disable")
  352. #define wait_for_pll_offline(pll) \
  353. wait_for_pll(pll, PLL_OFFLINE_ACK, 0, "offline")
  354. #define wait_for_pll_update(pll) \
  355. wait_for_pll(pll, PLL_UPDATE, 1, "update")
  356. #define wait_for_pll_update_ack_set(pll) \
  357. wait_for_pll(pll, ALPHA_PLL_ACK_LATCH, 0, "update_ack_set")
  358. #define wait_for_pll_update_ack_clear(pll) \
  359. wait_for_pll(pll, ALPHA_PLL_ACK_LATCH, 1, "update_ack_clear")
  360. static void clk_alpha_pll_write_config(struct regmap *regmap, unsigned int reg,
  361. unsigned int val)
  362. {
  363. if (val)
  364. regmap_write(regmap, reg, val);
  365. }
  366. void clk_alpha_pll_configure(struct clk_alpha_pll *pll, struct regmap *regmap,
  367. const struct alpha_pll_config *config)
  368. {
  369. u32 val, mask;
  370. if (config->l)
  371. regmap_write(regmap, PLL_L_VAL(pll), config->l);
  372. if (config->alpha)
  373. regmap_write(regmap, PLL_ALPHA_VAL(pll), config->alpha);
  374. if (config->config_ctl_val)
  375. regmap_write(regmap, PLL_CONFIG_CTL(pll),
  376. config->config_ctl_val);
  377. if (pll_has_64bit_config(pll))
  378. regmap_write(regmap, PLL_CONFIG_CTL_U(pll),
  379. config->config_ctl_hi_val);
  380. if (pll_alpha_width(pll) > 32)
  381. regmap_write(regmap, PLL_ALPHA_VAL_U(pll), config->alpha_hi);
  382. if (config->main_output_mask || config->aux_output_mask ||
  383. config->aux2_output_mask || config->early_output_mask ||
  384. config->pre_div_val || config->vco_val ||
  385. config->alpha_en_mask) {
  386. val = config->main_output_mask;
  387. val |= config->aux_output_mask;
  388. val |= config->aux2_output_mask;
  389. val |= config->early_output_mask;
  390. val |= config->pre_div_val;
  391. val |= config->vco_val;
  392. val |= config->alpha_en_mask;
  393. mask = config->main_output_mask;
  394. mask |= config->aux_output_mask;
  395. mask |= config->aux2_output_mask;
  396. mask |= config->early_output_mask;
  397. mask |= config->pre_div_mask;
  398. mask |= config->vco_mask;
  399. mask |= config->alpha_en_mask;
  400. regmap_update_bits(regmap, PLL_USER_CTL(pll), mask, val);
  401. }
  402. if (config->post_div_mask) {
  403. mask = config->post_div_mask;
  404. val = config->post_div_val;
  405. regmap_update_bits(regmap, PLL_USER_CTL(pll), mask, val);
  406. }
  407. /* Do not bypass the latch interface */
  408. if (pll->flags & SUPPORTS_SLEW)
  409. regmap_update_bits(regmap, PLL_USER_CTL_U(pll),
  410. PLL_LATCH_INTERFACE, (u32)~PLL_LATCH_INTERFACE);
  411. if (pll->flags & SUPPORTS_DYNAMIC_UPDATE) {
  412. regmap_update_bits(regmap, PLL_MODE(pll),
  413. PLL_UPDATE_BYPASS,
  414. PLL_UPDATE_BYPASS);
  415. }
  416. if (config->test_ctl_mask) {
  417. mask = config->test_ctl_mask;
  418. val = config->test_ctl_val;
  419. regmap_update_bits(regmap, PLL_TEST_CTL(pll), mask, val);
  420. }
  421. if (config->test_ctl_hi_mask) {
  422. mask = config->test_ctl_hi_mask;
  423. val = config->test_ctl_hi_val;
  424. regmap_update_bits(regmap, PLL_TEST_CTL_U(pll), mask, val);
  425. }
  426. if (pll->flags & SUPPORTS_DYNAMIC_UPDATE)
  427. regmap_update_bits(regmap, PLL_MODE(pll), PLL_UPDATE_BYPASS,
  428. PLL_UPDATE_BYPASS);
  429. if (pll->flags & SUPPORTS_FSM_MODE)
  430. qcom_pll_set_fsm_mode(regmap, PLL_MODE(pll), 6, 0);
  431. }
  432. EXPORT_SYMBOL_GPL(clk_alpha_pll_configure);
  433. static int clk_alpha_pll_hwfsm_enable(struct clk_hw *hw)
  434. {
  435. int ret;
  436. struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
  437. u32 val;
  438. ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
  439. if (ret)
  440. return ret;
  441. val |= PLL_FSM_ENA;
  442. if (pll->flags & SUPPORTS_OFFLINE_REQ)
  443. val &= ~PLL_OFFLINE_REQ;
  444. ret = regmap_write(pll->clkr.regmap, PLL_MODE(pll), val);
  445. if (ret)
  446. return ret;
  447. /* Make sure enable request goes through before waiting for update */
  448. mb();
  449. return wait_for_pll_enable_active(pll);
  450. }
  451. static void clk_alpha_pll_hwfsm_disable(struct clk_hw *hw)
  452. {
  453. int ret;
  454. struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
  455. u32 val;
  456. ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
  457. if (ret)
  458. return;
  459. if (pll->flags & SUPPORTS_OFFLINE_REQ) {
  460. ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll),
  461. PLL_OFFLINE_REQ, PLL_OFFLINE_REQ);
  462. if (ret)
  463. return;
  464. ret = wait_for_pll_offline(pll);
  465. if (ret)
  466. return;
  467. }
  468. /* Disable hwfsm */
  469. ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll),
  470. PLL_FSM_ENA, 0);
  471. if (ret)
  472. return;
  473. wait_for_pll_disable(pll);
  474. }
  475. static int pll_is_enabled(struct clk_hw *hw, u32 mask)
  476. {
  477. int ret;
  478. struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
  479. u32 val;
  480. ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
  481. if (ret)
  482. return ret;
  483. return !!(val & mask);
  484. }
  485. static int clk_alpha_pll_hwfsm_is_enabled(struct clk_hw *hw)
  486. {
  487. return pll_is_enabled(hw, PLL_ACTIVE_FLAG);
  488. }
  489. static int clk_alpha_pll_is_enabled(struct clk_hw *hw)
  490. {
  491. return pll_is_enabled(hw, PLL_LOCK_DET);
  492. }
  493. static int clk_alpha_pll_enable(struct clk_hw *hw)
  494. {
  495. int ret;
  496. struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
  497. u32 val, mask;
  498. mask = PLL_OUTCTRL | PLL_RESET_N | PLL_BYPASSNL;
  499. ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
  500. if (ret)
  501. return ret;
  502. /* If in FSM mode, just vote for it */
  503. if (val & PLL_VOTE_FSM_ENA) {
  504. ret = clk_enable_regmap(hw);
  505. if (ret)
  506. return ret;
  507. ret = wait_for_pll_enable_active(pll);
  508. if (ret == 0)
  509. if (pll->flags & SUPPORTS_FSM_MODE)
  510. *pll->soft_vote |= (pll->soft_vote_mask);
  511. return ret;
  512. }
  513. /* Skip if already enabled */
  514. if ((val & mask) == mask)
  515. return 0;
  516. ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll),
  517. PLL_BYPASSNL, PLL_BYPASSNL);
  518. if (ret)
  519. return ret;
  520. /*
  521. * H/W requires a 5us delay between disabling the bypass and
  522. * de-asserting the reset.
  523. */
  524. mb();
  525. udelay(5);
  526. ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll),
  527. PLL_RESET_N, PLL_RESET_N);
  528. if (ret)
  529. return ret;
  530. ret = wait_for_pll_enable_lock(pll);
  531. if (ret)
  532. return ret;
  533. ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll),
  534. PLL_OUTCTRL, PLL_OUTCTRL);
  535. /* Ensure that the write above goes through before returning. */
  536. mb();
  537. return ret;
  538. }
  539. static void clk_alpha_pll_disable(struct clk_hw *hw)
  540. {
  541. int ret;
  542. struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
  543. u32 val, mask;
  544. ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
  545. if (ret)
  546. return;
  547. /* If in FSM mode, just unvote it */
  548. if (val & PLL_VOTE_FSM_ENA) {
  549. if (pll->flags & SUPPORTS_FSM_MODE) {
  550. *pll->soft_vote &= ~(pll->soft_vote_mask);
  551. if (!*pll->soft_vote)
  552. clk_disable_regmap(hw);
  553. } else
  554. clk_disable_regmap(hw);
  555. return;
  556. }
  557. mask = PLL_OUTCTRL;
  558. regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), mask, 0);
  559. /* Delay of 2 output clock ticks required until output is disabled */
  560. mb();
  561. udelay(1);
  562. mask = PLL_RESET_N | PLL_BYPASSNL;
  563. regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), mask, 0);
  564. }
  565. static unsigned long
  566. alpha_pll_calc_rate(u64 prate, u32 l, u32 a, u32 alpha_width)
  567. {
  568. unsigned long rate;
  569. rate = (prate * l) + ((prate * a) >> ALPHA_SHIFT(alpha_width));
  570. /*
  571. * PLLs with narrow ALPHA (e.g. 16 bits) aren't able to hit all
  572. * frequencies precisely and may be under by a few hundred Hz. Round to
  573. * the nearest KHz to avoid reporting strange, slightly lower than
  574. * requested frequencies. The small delta has no functional impact.
  575. */
  576. return roundup(rate, 1000);
  577. }
  578. static void zonda_pll_adjust_l_val(unsigned long rate, unsigned long prate, u32 *l)
  579. {
  580. u64 remainder, quotient;
  581. quotient = rate;
  582. remainder = do_div(quotient, prate);
  583. *l = quotient;
  584. if ((remainder * 2) / prate)
  585. *l = *l + 1;
  586. }
  587. static unsigned long
  588. alpha_pll_round_rate(unsigned long rate, unsigned long prate, u32 *l, u64 *a, u32 alpha_width)
  589. {
  590. u64 remainder;
  591. u64 quotient;
  592. quotient = rate;
  593. remainder = do_div(quotient, prate);
  594. *l = quotient;
  595. if (!remainder) {
  596. *a = 0;
  597. return rate;
  598. }
  599. /* Upper ALPHA_BITWIDTH bits of Alpha */
  600. quotient = remainder << ALPHA_SHIFT(alpha_width);
  601. do_div(quotient, prate);
  602. *a = quotient;
  603. return alpha_pll_calc_rate(prate, *l, *a, alpha_width);
  604. }
  605. static const struct pll_vco *
  606. alpha_pll_find_vco(const struct clk_alpha_pll *pll, unsigned long rate)
  607. {
  608. const struct pll_vco *v = pll->vco_table;
  609. const struct pll_vco *end = v + pll->num_vco;
  610. for (; v < end; v++)
  611. if (rate >= v->min_freq && rate <= v->max_freq)
  612. return v;
  613. return NULL;
  614. }
  615. static unsigned long
  616. clk_alpha_pll_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
  617. {
  618. u32 l, low, high, ctl;
  619. u64 a = 0, prate = parent_rate;
  620. struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
  621. u32 alpha_width = pll_alpha_width(pll);
  622. regmap_read(pll->clkr.regmap, PLL_L_VAL(pll), &l);
  623. regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &ctl);
  624. if (ctl & PLL_ALPHA_EN) {
  625. regmap_read(pll->clkr.regmap, PLL_ALPHA_VAL(pll), &low);
  626. if (alpha_width > 32) {
  627. regmap_read(pll->clkr.regmap, PLL_ALPHA_VAL_U(pll),
  628. &high);
  629. a = (u64)high << 32 | low;
  630. } else {
  631. a = low & GENMASK(alpha_width - 1, 0);
  632. }
  633. if (alpha_width > ALPHA_BITWIDTH)
  634. a >>= alpha_width - ALPHA_BITWIDTH;
  635. }
  636. return alpha_pll_calc_rate(prate, l, a, alpha_width);
  637. }
  638. static int clk_alpha_pll_dynamic_update(struct clk_alpha_pll *pll)
  639. {
  640. int ret;
  641. /* Latch the input to the PLL */
  642. regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll),
  643. PLL_UPDATE, PLL_UPDATE);
  644. /* Wait for 2 reference cycle before checking ACK bit */
  645. udelay(1);
  646. ret = wait_for_pll_update_ack_set(pll);
  647. if (ret)
  648. return ret;
  649. /* Return latch input to 0 */
  650. regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll),
  651. PLL_UPDATE, (u32)~PLL_UPDATE);
  652. ret = wait_for_pll_enable_lock(pll);
  653. if (ret)
  654. return ret;
  655. return 0;
  656. }
  657. static const struct pll_vco_data
  658. *find_vco_data(const struct pll_vco_data *data,
  659. unsigned long rate, size_t size)
  660. {
  661. int i;
  662. if (!data)
  663. return NULL;
  664. for (i = 0; i < size; i++) {
  665. if (rate == data[i].freq)
  666. return &data[i];
  667. }
  668. return &data[i - 1];
  669. }
  670. static int __clk_alpha_pll_update_latch(struct clk_alpha_pll *pll)
  671. {
  672. int ret;
  673. u32 mode;
  674. regmap_read(pll->clkr.regmap, PLL_MODE(pll), &mode);
  675. /* Latch the input to the PLL */
  676. regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), PLL_UPDATE,
  677. PLL_UPDATE);
  678. /* Wait for 2 reference cycle before checking ACK bit */
  679. udelay(1);
  680. /*
  681. * PLL will latch the new L, Alpha and freq control word.
  682. * PLL will respond by raising PLL_ACK_LATCH output when new programming
  683. * has been latched in and PLL is being updated. When
  684. * UPDATE_LOGIC_BYPASS bit is not set, PLL_UPDATE will be cleared
  685. * automatically by hardware when PLL_ACK_LATCH is asserted by PLL.
  686. */
  687. if (mode & PLL_UPDATE_BYPASS) {
  688. ret = wait_for_pll_update_ack_set(pll);
  689. if (ret)
  690. return ret;
  691. regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), PLL_UPDATE, 0);
  692. } else {
  693. ret = wait_for_pll_update(pll);
  694. if (ret)
  695. return ret;
  696. }
  697. if (pll->flags & SUPPORTS_DYNAMIC_UPDATE)
  698. ret = wait_for_pll_enable_lock(pll);
  699. else
  700. ret = wait_for_pll_update_ack_clear(pll);
  701. if (ret)
  702. return ret;
  703. /* Wait for PLL output to stabilize */
  704. udelay(10);
  705. return 0;
  706. }
  707. static int clk_alpha_pll_update_latch(struct clk_alpha_pll *pll,
  708. int (*is_enabled)(struct clk_hw *))
  709. {
  710. if (!is_enabled(&pll->clkr.hw) ||
  711. !(pll->flags & SUPPORTS_DYNAMIC_UPDATE))
  712. return 0;
  713. return __clk_alpha_pll_update_latch(pll);
  714. }
  715. static int __clk_alpha_pll_set_rate(struct clk_hw *hw, unsigned long rate,
  716. unsigned long prate,
  717. int (*is_enabled)(struct clk_hw *))
  718. {
  719. struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
  720. struct clk_alpha_pll_postdiv *pll_postdiv =
  721. to_clk_alpha_pll_postdiv(hw);
  722. const struct pll_vco *vco;
  723. const struct pll_vco_data *data;
  724. u32 l, alpha_width = pll_alpha_width(pll);
  725. u64 a;
  726. unsigned long rrate;
  727. rrate = alpha_pll_round_rate(rate, prate, &l, &a, alpha_width);
  728. if (rrate != rate) {
  729. pr_err("alpha_pll: Call clk_set_rate with rounded rates!\n");
  730. return -EINVAL;
  731. }
  732. vco = alpha_pll_find_vco(pll, rate);
  733. if (pll->vco_table && !vco) {
  734. pr_err("%s: alpha pll not in a valid vco range\n",
  735. clk_hw_get_name(hw));
  736. return -EINVAL;
  737. }
  738. /*
  739. * For PLLs that do not support dynamic programming (dynamic_update
  740. * is not set), ensure PLL is off before changing rate. For
  741. * optimization reasons, assume no downstream clock is actively
  742. * using it.
  743. */
  744. if (is_enabled(&pll->clkr.hw) &&
  745. !(pll->flags & SUPPORTS_DYNAMIC_UPDATE))
  746. clk_alpha_pll_disable(hw);
  747. regmap_write(pll->clkr.regmap, PLL_L_VAL(pll), l);
  748. if (alpha_width > ALPHA_BITWIDTH)
  749. a <<= alpha_width - ALPHA_BITWIDTH;
  750. if (alpha_width > 32)
  751. regmap_write(pll->clkr.regmap, PLL_ALPHA_VAL_U(pll), a >> 32);
  752. regmap_write(pll->clkr.regmap, PLL_ALPHA_VAL(pll), a);
  753. if (vco) {
  754. regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll),
  755. PLL_VCO_MASK << PLL_VCO_SHIFT,
  756. vco->val << PLL_VCO_SHIFT);
  757. }
  758. data = find_vco_data(pll->vco_data, rate, pll->num_vco_data);
  759. if (data) {
  760. if (data->freq == rate)
  761. regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll),
  762. PLL_POST_DIV_MASK(pll_postdiv)
  763. << PLL_POST_DIV_SHIFT,
  764. data->post_div_val << PLL_POST_DIV_SHIFT);
  765. else
  766. regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll),
  767. PLL_POST_DIV_MASK(pll_postdiv)
  768. << PLL_POST_DIV_SHIFT,
  769. 0x0 << PLL_VCO_SHIFT);
  770. }
  771. regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll),
  772. PLL_ALPHA_EN, PLL_ALPHA_EN);
  773. if (is_enabled(&pll->clkr.hw) &&
  774. (pll->flags & SUPPORTS_DYNAMIC_UPDATE))
  775. clk_alpha_pll_dynamic_update(pll);
  776. if (!is_enabled(&pll->clkr.hw) &&
  777. !(pll->flags & SUPPORTS_DYNAMIC_UPDATE))
  778. clk_alpha_pll_enable(hw);
  779. return clk_alpha_pll_update_latch(pll, is_enabled);
  780. }
  781. static int clk_alpha_pll_set_rate(struct clk_hw *hw, unsigned long rate,
  782. unsigned long prate)
  783. {
  784. return __clk_alpha_pll_set_rate(hw, rate, prate,
  785. clk_alpha_pll_is_enabled);
  786. }
  787. static int clk_alpha_pll_hwfsm_set_rate(struct clk_hw *hw, unsigned long rate,
  788. unsigned long prate)
  789. {
  790. return __clk_alpha_pll_set_rate(hw, rate, prate,
  791. clk_alpha_pll_hwfsm_is_enabled);
  792. }
  793. static long clk_alpha_pll_round_rate(struct clk_hw *hw, unsigned long rate,
  794. unsigned long *prate)
  795. {
  796. struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
  797. u32 l, alpha_width = pll_alpha_width(pll);
  798. u64 a;
  799. unsigned long min_freq, max_freq;
  800. if (rate < pll->min_supported_freq)
  801. return pll->min_supported_freq;
  802. rate = alpha_pll_round_rate(rate, *prate, &l, &a, alpha_width);
  803. if (!pll->vco_table || alpha_pll_find_vco(pll, rate))
  804. return rate;
  805. min_freq = pll->vco_table[0].min_freq;
  806. max_freq = pll->vco_table[pll->num_vco - 1].max_freq;
  807. return clamp(rate, min_freq, max_freq);
  808. }
  809. static unsigned long
  810. alpha_huayra_pll_calc_rate(u64 prate, u32 l, u32 a)
  811. {
  812. /*
  813. * a contains 16 bit alpha_val in two’s complement number in the range
  814. * of [-0.5, 0.5).
  815. */
  816. if (a >= BIT(PLL_HUAYRA_ALPHA_WIDTH - 1))
  817. l -= 1;
  818. return alpha_pll_calc_rate(prate, l, a, PLL_HUAYRA_ALPHA_WIDTH);
  819. }
  820. static unsigned long
  821. alpha_huayra_pll_round_rate(unsigned long rate, unsigned long prate,
  822. u32 *l, u32 *a)
  823. {
  824. u64 remainder;
  825. u64 quotient;
  826. quotient = rate;
  827. remainder = do_div(quotient, prate);
  828. *l = quotient;
  829. if (!remainder) {
  830. *a = 0;
  831. return rate;
  832. }
  833. quotient = remainder << PLL_HUAYRA_ALPHA_WIDTH;
  834. do_div(quotient, prate);
  835. /*
  836. * alpha_val should be in two’s complement number in the range
  837. * of [-0.5, 0.5) so if quotient >= 0.5 then increment the l value
  838. * since alpha value will be subtracted in this case.
  839. */
  840. if (quotient >= BIT(PLL_HUAYRA_ALPHA_WIDTH - 1))
  841. *l += 1;
  842. *a = quotient;
  843. return alpha_huayra_pll_calc_rate(prate, *l, *a);
  844. }
  845. static unsigned long
  846. alpha_pll_huayra_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
  847. {
  848. u64 rate = parent_rate, tmp;
  849. struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
  850. u32 l, alpha = 0, ctl, alpha_m, alpha_n;
  851. regmap_read(pll->clkr.regmap, PLL_L_VAL(pll), &l);
  852. regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &ctl);
  853. if (ctl & PLL_ALPHA_EN) {
  854. regmap_read(pll->clkr.regmap, PLL_ALPHA_VAL(pll), &alpha);
  855. /*
  856. * Depending upon alpha_mode, it can be treated as M/N value or
  857. * as a two’s complement number. When alpha_mode=1,
  858. * pll_alpha_val<15:8>=M and pll_apla_val<7:0>=N
  859. *
  860. * Fout=FIN*(L+(M/N))
  861. *
  862. * M is a signed number (-128 to 127) and N is unsigned
  863. * (0 to 255). M/N has to be within +/-0.5.
  864. *
  865. * When alpha_mode=0, it is a two’s complement number in the
  866. * range [-0.5, 0.5).
  867. *
  868. * Fout=FIN*(L+(alpha_val)/2^16)
  869. *
  870. * where alpha_val is two’s complement number.
  871. */
  872. if (!(ctl & PLL_ALPHA_MODE))
  873. return alpha_huayra_pll_calc_rate(rate, l, alpha);
  874. alpha_m = alpha >> PLL_HUAYRA_M_SHIFT & PLL_HUAYRA_M_MASK;
  875. alpha_n = alpha >> PLL_HUAYRA_N_SHIFT & PLL_HUAYRA_N_MASK;
  876. rate *= l;
  877. tmp = parent_rate;
  878. if (alpha_m >= BIT(PLL_HUAYRA_M_WIDTH - 1)) {
  879. alpha_m = BIT(PLL_HUAYRA_M_WIDTH) - alpha_m;
  880. tmp *= alpha_m;
  881. do_div(tmp, alpha_n);
  882. rate -= tmp;
  883. } else {
  884. tmp *= alpha_m;
  885. do_div(tmp, alpha_n);
  886. rate += tmp;
  887. }
  888. return rate;
  889. }
  890. return alpha_huayra_pll_calc_rate(rate, l, alpha);
  891. }
  892. static int alpha_pll_huayra_set_rate(struct clk_hw *hw, unsigned long rate,
  893. unsigned long prate)
  894. {
  895. struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
  896. u32 l, a, ctl, cur_alpha = 0;
  897. rate = alpha_huayra_pll_round_rate(rate, prate, &l, &a);
  898. regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &ctl);
  899. if (ctl & PLL_ALPHA_EN)
  900. regmap_read(pll->clkr.regmap, PLL_ALPHA_VAL(pll), &cur_alpha);
  901. /*
  902. * Huayra PLL supports PLL dynamic programming. User can change L_VAL,
  903. * without having to go through the power on sequence.
  904. */
  905. if (clk_alpha_pll_is_enabled(hw)) {
  906. if (cur_alpha != a) {
  907. pr_err("%s: clock needs to be gated\n",
  908. clk_hw_get_name(hw));
  909. return -EBUSY;
  910. }
  911. regmap_write(pll->clkr.regmap, PLL_L_VAL(pll), l);
  912. /* Ensure that the write above goes to detect L val change. */
  913. mb();
  914. return wait_for_pll_enable_lock(pll);
  915. }
  916. regmap_write(pll->clkr.regmap, PLL_L_VAL(pll), l);
  917. regmap_write(pll->clkr.regmap, PLL_ALPHA_VAL(pll), a);
  918. if (a == 0)
  919. regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll),
  920. PLL_ALPHA_EN, 0x0);
  921. else
  922. regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll),
  923. PLL_ALPHA_EN | PLL_ALPHA_MODE, PLL_ALPHA_EN);
  924. return 0;
  925. }
  926. static long alpha_pll_huayra_round_rate(struct clk_hw *hw, unsigned long rate,
  927. unsigned long *prate)
  928. {
  929. u32 l, a;
  930. return alpha_huayra_pll_round_rate(rate, *prate, &l, &a);
  931. }
  932. static int trion_pll_is_enabled(struct clk_alpha_pll *pll,
  933. struct regmap *regmap)
  934. {
  935. u32 mode_val, opmode_val;
  936. int ret;
  937. ret = regmap_read(regmap, PLL_MODE(pll), &mode_val);
  938. ret |= regmap_read(regmap, PLL_OPMODE(pll), &opmode_val);
  939. if (ret)
  940. return 0;
  941. return ((opmode_val & PLL_RUN) && (mode_val & PLL_OUTCTRL));
  942. }
  943. static int clk_trion_pll_is_enabled(struct clk_hw *hw)
  944. {
  945. struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
  946. return trion_pll_is_enabled(pll, pll->clkr.regmap);
  947. }
  948. static int clk_trion_pll_enable(struct clk_hw *hw)
  949. {
  950. struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
  951. struct regmap *regmap = pll->clkr.regmap;
  952. u32 val;
  953. int ret;
  954. ret = regmap_read(regmap, PLL_MODE(pll), &val);
  955. if (ret)
  956. return ret;
  957. /* If in FSM mode, just vote for it */
  958. if (val & PLL_VOTE_FSM_ENA) {
  959. ret = clk_enable_regmap(hw);
  960. if (ret)
  961. return ret;
  962. return wait_for_pll_enable_active(pll);
  963. }
  964. /* Set operation mode to RUN */
  965. regmap_write(regmap, PLL_OPMODE(pll), PLL_RUN);
  966. ret = wait_for_pll_enable_lock(pll);
  967. if (ret)
  968. return ret;
  969. /* Enable the PLL outputs */
  970. ret = regmap_update_bits(regmap, PLL_USER_CTL(pll),
  971. PLL_OUT_MASK, PLL_OUT_MASK);
  972. if (ret)
  973. return ret;
  974. /* Enable the global PLL outputs */
  975. return regmap_update_bits(regmap, PLL_MODE(pll),
  976. PLL_OUTCTRL, PLL_OUTCTRL);
  977. }
  978. static void clk_trion_pll_disable(struct clk_hw *hw)
  979. {
  980. struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
  981. struct regmap *regmap = pll->clkr.regmap;
  982. u32 val;
  983. int ret;
  984. ret = regmap_read(regmap, PLL_MODE(pll), &val);
  985. if (ret)
  986. return;
  987. /* If in FSM mode, just unvote it */
  988. if (val & PLL_VOTE_FSM_ENA) {
  989. clk_disable_regmap(hw);
  990. return;
  991. }
  992. /* Disable the global PLL output */
  993. ret = regmap_update_bits(regmap, PLL_MODE(pll), PLL_OUTCTRL, 0);
  994. if (ret)
  995. return;
  996. /* Disable the PLL outputs */
  997. ret = regmap_update_bits(regmap, PLL_USER_CTL(pll),
  998. PLL_OUT_MASK, 0);
  999. if (ret)
  1000. return;
  1001. /* Place the PLL mode in STANDBY */
  1002. regmap_write(regmap, PLL_OPMODE(pll), PLL_STANDBY);
  1003. regmap_update_bits(regmap, PLL_MODE(pll), PLL_RESET_N, PLL_RESET_N);
  1004. }
  1005. static unsigned long
  1006. clk_trion_pll_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
  1007. {
  1008. struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
  1009. u32 l, frac, alpha_width = pll_alpha_width(pll);
  1010. regmap_read(pll->clkr.regmap, PLL_L_VAL(pll), &l);
  1011. regmap_read(pll->clkr.regmap, PLL_ALPHA_VAL(pll), &frac);
  1012. return alpha_pll_calc_rate(parent_rate, l, frac, alpha_width);
  1013. }
  1014. static void clk_alpha_pll_list_registers(struct seq_file *f, struct clk_hw *hw)
  1015. {
  1016. struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
  1017. int size, i, val;
  1018. static struct clk_register_data data[] = {
  1019. {"PLL_MODE", PLL_OFF_MODE},
  1020. {"PLL_L_VAL", PLL_OFF_L_VAL},
  1021. {"PLL_ALPHA_VAL", PLL_OFF_ALPHA_VAL},
  1022. {"PLL_ALPHA_VAL_U", PLL_OFF_ALPHA_VAL_U},
  1023. {"PLL_TEST_CTL", PLL_OFF_TEST_CTL},
  1024. {"PLL_TEST_CTL_U", PLL_OFF_TEST_CTL_U},
  1025. {"PLL_USER_CTL", PLL_OFF_USER_CTL},
  1026. {"PLL_USER_CTL_U", PLL_OFF_USER_CTL_U},
  1027. {"PLL_CONFIG_CTL", PLL_OFF_CONFIG_CTL},
  1028. {"PLL_STATUS", PLL_OFF_STATUS},
  1029. };
  1030. static struct clk_register_data data1[] = {
  1031. {"APSS_PLL_VOTE", 0x0},
  1032. };
  1033. size = ARRAY_SIZE(data);
  1034. for (i = 0; i < size; i++) {
  1035. regmap_read(pll->clkr.regmap, pll->offset +
  1036. pll->regs[data[i].offset], &val);
  1037. clock_debug_output(f, "%20s: 0x%.8x\n", data[i].name, val);
  1038. }
  1039. regmap_read(pll->clkr.regmap, pll->offset +
  1040. pll->regs[data[0].offset], &val);
  1041. if (val & PLL_FSM_ENA) {
  1042. regmap_read(pll->clkr.regmap, pll->clkr.enable_reg +
  1043. data1[0].offset, &val);
  1044. clock_debug_output(f, "%20s: 0x%.8x\n", data1[0].name, val);
  1045. }
  1046. }
  1047. static struct clk_regmap_ops clk_alpha_pll_regmap_ops = {
  1048. .list_registers = clk_alpha_pll_list_registers,
  1049. };
  1050. static int clk_alpha_pll_init(struct clk_hw *hw)
  1051. {
  1052. struct clk_regmap *rclk = to_clk_regmap(hw);
  1053. if (!rclk->ops)
  1054. rclk->ops = &clk_alpha_pll_regmap_ops;
  1055. return 0;
  1056. }
  1057. static int get_pll_type(struct clk_alpha_pll *pll,
  1058. const u8 clk_alpha_pll_regs[][PLL_OFF_MAX_REGS])
  1059. {
  1060. if (pll->regs)
  1061. return (pll->regs - clk_alpha_pll_regs[0]) / (PLL_OFF_MAX_REGS);
  1062. pr_debug("pll->regs not defined\n");
  1063. return -EINVAL;
  1064. }
  1065. static void clk_pll_restore_context(struct clk_hw *hw)
  1066. {
  1067. struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
  1068. int type = get_pll_type(pll, clk_alpha_pll_regs);
  1069. if (!pll->config)
  1070. return;
  1071. switch (type) {
  1072. case CLK_ALPHA_PLL_TYPE_DEFAULT:
  1073. case CLK_ALPHA_PLL_TYPE_HUAYRA:
  1074. clk_alpha_pll_configure(pll, pll->clkr.regmap,
  1075. pll->config);
  1076. break;
  1077. case CLK_ALPHA_PLL_TYPE_FABIA:
  1078. clk_fabia_pll_configure(pll, pll->clkr.regmap,
  1079. pll->config);
  1080. break;
  1081. case CLK_ALPHA_PLL_TYPE_TRION:
  1082. clk_trion_pll_configure(pll, pll->clkr.regmap,
  1083. pll->config);
  1084. break;
  1085. case CLK_ALPHA_PLL_TYPE_ZONDA:
  1086. clk_zonda_pll_configure(pll, pll->clkr.regmap,
  1087. pll->config);
  1088. break;
  1089. case CLK_ALPHA_PLL_TYPE_ZONDA_5LPE:
  1090. clk_zonda_5lpe_pll_configure(pll, pll->clkr.regmap,
  1091. pll->config);
  1092. break;
  1093. case CLK_ALPHA_PLL_TYPE_REGERA:
  1094. clk_regera_pll_configure(pll, pll->clkr.regmap,
  1095. pll->config);
  1096. break;
  1097. case CLK_ALPHA_PLL_TYPE_AGERA:
  1098. clk_agera_pll_configure(pll, pll->clkr.regmap,
  1099. pll->config);
  1100. break;
  1101. case CLK_ALPHA_PLL_TYPE_LUCID_EVO:
  1102. clk_lucid_evo_pll_configure(pll, pll->clkr.regmap,
  1103. pll->config);
  1104. break;
  1105. case CLK_ALPHA_PLL_TYPE_RIVIAN_EVO:
  1106. clk_rivian_evo_pll_configure(pll, pll->clkr.regmap,
  1107. pll->config);
  1108. break;
  1109. case CLK_ALPHA_PLL_TYPE_LUCID_5LPE:
  1110. clk_lucid_5lpe_pll_configure(pll, pll->clkr.regmap,
  1111. pll->config);
  1112. break;
  1113. default:
  1114. pr_err("Invalid pll type!\n");
  1115. }
  1116. }
  1117. const struct clk_ops clk_alpha_pll_fixed_ops = {
  1118. .prepare = clk_prepare_regmap,
  1119. .unprepare = clk_unprepare_regmap,
  1120. .pre_rate_change = clk_pre_change_regmap,
  1121. .post_rate_change = clk_post_change_regmap,
  1122. .enable = clk_alpha_pll_enable,
  1123. .disable = clk_alpha_pll_disable,
  1124. .is_enabled = clk_alpha_pll_is_enabled,
  1125. .recalc_rate = clk_alpha_pll_recalc_rate,
  1126. .init = clk_alpha_pll_init,
  1127. .debug_init = clk_common_debug_init,
  1128. .restore_context = clk_pll_restore_context,
  1129. };
  1130. EXPORT_SYMBOL_GPL(clk_alpha_pll_fixed_ops);
  1131. const struct clk_ops clk_alpha_pll_ops = {
  1132. .prepare = clk_prepare_regmap,
  1133. .unprepare = clk_unprepare_regmap,
  1134. .pre_rate_change = clk_pre_change_regmap,
  1135. .post_rate_change = clk_post_change_regmap,
  1136. .enable = clk_alpha_pll_enable,
  1137. .disable = clk_alpha_pll_disable,
  1138. .is_enabled = clk_alpha_pll_is_enabled,
  1139. .recalc_rate = clk_alpha_pll_recalc_rate,
  1140. .round_rate = clk_alpha_pll_round_rate,
  1141. .set_rate = clk_alpha_pll_set_rate,
  1142. .init = clk_alpha_pll_init,
  1143. .debug_init = clk_common_debug_init,
  1144. .restore_context = clk_pll_restore_context,
  1145. };
  1146. EXPORT_SYMBOL_GPL(clk_alpha_pll_ops);
  1147. static void clk_alpha_pll_huayra_list_registers(struct seq_file *f,
  1148. struct clk_hw *hw)
  1149. {
  1150. struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
  1151. int size, i, val;
  1152. static struct clk_register_data data[] = {
  1153. {"PLL_MODE", PLL_OFF_MODE},
  1154. {"PLL_L_VAL", PLL_OFF_L_VAL},
  1155. {"PLL_ALPHA_VAL", PLL_OFF_ALPHA_VAL},
  1156. {"PLL_USER_CTL", PLL_OFF_USER_CTL},
  1157. {"PLL_CONFIG_CTL", PLL_OFF_CONFIG_CTL},
  1158. {"PLL_CONFIG_CTL_U", PLL_OFF_CONFIG_CTL_U},
  1159. {"PLL_CONFIG_CTL_U1", PLL_OFF_CONFIG_CTL_U1},
  1160. {"PLL_TEST_CTL", PLL_OFF_TEST_CTL},
  1161. {"PLL_TEST_CTL_U", PLL_OFF_TEST_CTL_U},
  1162. {"PLL_TEST_CTL_U1", PLL_OFF_TEST_CTL_U1},
  1163. {"PLL_OPMODE", PLL_OFF_OPMODE},
  1164. {"PLL_STATUS", PLL_OFF_STATUS},
  1165. };
  1166. static struct clk_register_data data1[] = {
  1167. {"APSS_PLL_VOTE", 0x0},
  1168. };
  1169. size = ARRAY_SIZE(data);
  1170. for (i = 0; i < size; i++) {
  1171. regmap_read(pll->clkr.regmap, pll->offset +
  1172. pll->regs[data[i].offset], &val);
  1173. clock_debug_output(f, "%20s: 0x%.8x\n", data[i].name, val);
  1174. }
  1175. regmap_read(pll->clkr.regmap, pll->offset + pll->regs[data[0].offset],
  1176. &val);
  1177. if (val & PLL_FSM_ENA) {
  1178. regmap_read(pll->clkr.regmap, pll->clkr.enable_reg +
  1179. data1[0].offset, &val);
  1180. clock_debug_output(f, "%20s: 0x%.8x\n", data1[0].name, val);
  1181. }
  1182. }
  1183. static struct clk_regmap_ops clk_alpha_pll_huayra_regmap_ops = {
  1184. .list_registers = clk_alpha_pll_huayra_list_registers,
  1185. };
  1186. static int clk_alpha_pll_huayra_init(struct clk_hw *hw)
  1187. {
  1188. struct clk_regmap *rclk = to_clk_regmap(hw);
  1189. if (!rclk->ops)
  1190. rclk->ops = &clk_alpha_pll_huayra_regmap_ops;
  1191. return 0;
  1192. }
  1193. const struct clk_ops clk_alpha_pll_huayra_ops = {
  1194. .prepare = clk_prepare_regmap,
  1195. .unprepare = clk_unprepare_regmap,
  1196. .pre_rate_change = clk_pre_change_regmap,
  1197. .post_rate_change = clk_post_change_regmap,
  1198. .enable = clk_alpha_pll_enable,
  1199. .disable = clk_alpha_pll_disable,
  1200. .is_enabled = clk_alpha_pll_is_enabled,
  1201. .recalc_rate = alpha_pll_huayra_recalc_rate,
  1202. .round_rate = alpha_pll_huayra_round_rate,
  1203. .set_rate = alpha_pll_huayra_set_rate,
  1204. .init = clk_alpha_pll_huayra_init,
  1205. .debug_init = clk_common_debug_init,
  1206. .restore_context = clk_pll_restore_context,
  1207. };
  1208. EXPORT_SYMBOL_GPL(clk_alpha_pll_huayra_ops);
  1209. const struct clk_ops clk_alpha_pll_hwfsm_ops = {
  1210. .prepare = clk_prepare_regmap,
  1211. .unprepare = clk_unprepare_regmap,
  1212. .pre_rate_change = clk_pre_change_regmap,
  1213. .post_rate_change = clk_post_change_regmap,
  1214. .enable = clk_alpha_pll_hwfsm_enable,
  1215. .disable = clk_alpha_pll_hwfsm_disable,
  1216. .is_enabled = clk_alpha_pll_hwfsm_is_enabled,
  1217. .recalc_rate = clk_alpha_pll_recalc_rate,
  1218. .round_rate = clk_alpha_pll_round_rate,
  1219. .set_rate = clk_alpha_pll_hwfsm_set_rate,
  1220. .init = clk_alpha_pll_init,
  1221. .debug_init = clk_common_debug_init,
  1222. .restore_context = clk_pll_restore_context,
  1223. };
  1224. EXPORT_SYMBOL_GPL(clk_alpha_pll_hwfsm_ops);
  1225. static void clk_trion_pll_list_registers(struct seq_file *f, struct clk_hw *hw)
  1226. {
  1227. struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
  1228. int size, i, val;
  1229. static struct clk_register_data data[] = {
  1230. {"PLL_MODE", PLL_OFF_MODE},
  1231. {"PLL_L_VAL", PLL_OFF_L_VAL},
  1232. {"PLL_CAL_L_VAL", PLL_OFF_CAL_L_VAL},
  1233. {"PLL_USER_CTL", PLL_OFF_USER_CTL},
  1234. {"PLL_USER_CTL_U", PLL_OFF_USER_CTL_U},
  1235. {"PLL_USER_CTL_U1", PLL_OFF_USER_CTL_U1},
  1236. {"PLL_CONFIG_CTL", PLL_OFF_CONFIG_CTL},
  1237. {"PLL_CONFIG_CTL_U", PLL_OFF_CONFIG_CTL_U},
  1238. {"PLL_CONFIG_CTL_U1", PLL_OFF_CONFIG_CTL_U1},
  1239. {"PLL_TEST_CTL", PLL_OFF_TEST_CTL},
  1240. {"PLL_TEST_CTL_U", PLL_OFF_TEST_CTL_U},
  1241. {"PLL_TEST_CTL_U1", PLL_OFF_TEST_CTL_U1},
  1242. {"PLL_STATUS", PLL_OFF_STATUS},
  1243. {"PLL_OPMODE", PLL_OFF_OPMODE},
  1244. {"PLL_ALPHA_VAL", PLL_OFF_ALPHA_VAL},
  1245. };
  1246. static struct clk_register_data data1[] = {
  1247. {"APSS_PLL_VOTE", 0x0},
  1248. };
  1249. size = ARRAY_SIZE(data);
  1250. for (i = 0; i < size; i++) {
  1251. regmap_read(pll->clkr.regmap, pll->offset +
  1252. pll->regs[data[i].offset], &val);
  1253. clock_debug_output(f, "%20s: 0x%.8x\n", data[i].name, val);
  1254. }
  1255. regmap_read(pll->clkr.regmap, pll->offset + pll->regs[data[0].offset],
  1256. &val);
  1257. if (val & PLL_FSM_ENA) {
  1258. regmap_read(pll->clkr.regmap, pll->clkr.enable_reg +
  1259. data1[0].offset, &val);
  1260. clock_debug_output(f, "%20s: 0x%.8x\n", data1[0].name, val);
  1261. }
  1262. }
  1263. static struct clk_regmap_ops clk_trion_pll_regmap_ops = {
  1264. .list_registers = &clk_trion_pll_list_registers,
  1265. };
  1266. static int clk_trion_pll_init(struct clk_hw *hw)
  1267. {
  1268. struct clk_regmap *rclk = to_clk_regmap(hw);
  1269. if (!rclk->ops)
  1270. rclk->ops = &clk_trion_pll_regmap_ops;
  1271. return 0;
  1272. }
  1273. const struct clk_ops clk_alpha_pll_fixed_trion_ops = {
  1274. .prepare = clk_prepare_regmap,
  1275. .unprepare = clk_unprepare_regmap,
  1276. .pre_rate_change = clk_pre_change_regmap,
  1277. .post_rate_change = clk_post_change_regmap,
  1278. .enable = clk_trion_pll_enable,
  1279. .disable = clk_trion_pll_disable,
  1280. .is_enabled = clk_trion_pll_is_enabled,
  1281. .recalc_rate = clk_trion_pll_recalc_rate,
  1282. .round_rate = clk_alpha_pll_round_rate,
  1283. .debug_init = clk_common_debug_init,
  1284. .init = clk_trion_pll_init,
  1285. .restore_context = clk_pll_restore_context,
  1286. };
  1287. EXPORT_SYMBOL_GPL(clk_alpha_pll_fixed_trion_ops);
  1288. static unsigned long
  1289. clk_alpha_pll_postdiv_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
  1290. {
  1291. struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
  1292. u32 ctl;
  1293. regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &ctl);
  1294. ctl >>= PLL_POST_DIV_SHIFT;
  1295. ctl &= PLL_POST_DIV_MASK(pll);
  1296. return parent_rate >> fls(ctl);
  1297. }
  1298. static const struct clk_div_table clk_alpha_div_table[] = {
  1299. { 0x0, 1 },
  1300. { 0x1, 2 },
  1301. { 0x3, 4 },
  1302. { 0x7, 8 },
  1303. { 0xf, 16 },
  1304. { }
  1305. };
  1306. static const struct clk_div_table clk_alpha_2bit_div_table[] = {
  1307. { 0x0, 1 },
  1308. { 0x1, 2 },
  1309. { 0x3, 4 },
  1310. { }
  1311. };
  1312. static long
  1313. clk_alpha_pll_postdiv_round_rate(struct clk_hw *hw, unsigned long rate,
  1314. unsigned long *prate)
  1315. {
  1316. struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
  1317. const struct clk_div_table *table;
  1318. if (pll->width == 2)
  1319. table = clk_alpha_2bit_div_table;
  1320. else
  1321. table = clk_alpha_div_table;
  1322. return divider_round_rate(hw, rate, prate, table,
  1323. pll->width, CLK_DIVIDER_POWER_OF_TWO);
  1324. }
  1325. static long
  1326. clk_alpha_pll_postdiv_round_ro_rate(struct clk_hw *hw, unsigned long rate,
  1327. unsigned long *prate)
  1328. {
  1329. struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
  1330. struct clk_hw *parent_hw;
  1331. u32 ctl, div;
  1332. regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &ctl);
  1333. ctl >>= PLL_POST_DIV_SHIFT;
  1334. ctl &= BIT(pll->width) - 1;
  1335. div = 1 << fls(ctl);
  1336. if (clk_hw_get_flags(hw) & CLK_SET_RATE_PARENT) {
  1337. parent_hw = clk_hw_get_parent(hw);
  1338. if (!parent_hw)
  1339. return -EINVAL;
  1340. *prate = clk_hw_round_rate(parent_hw, div * rate);
  1341. }
  1342. return DIV_ROUND_UP_ULL((u64)*prate, div);
  1343. }
  1344. static int clk_alpha_pll_postdiv_set_rate(struct clk_hw *hw, unsigned long rate,
  1345. unsigned long parent_rate)
  1346. {
  1347. struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
  1348. int div;
  1349. /* 16 -> 0xf, 8 -> 0x7, 4 -> 0x3, 2 -> 0x1, 1 -> 0x0 */
  1350. div = DIV_ROUND_UP_ULL(parent_rate, rate) - 1;
  1351. return regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll),
  1352. PLL_POST_DIV_MASK(pll) << PLL_POST_DIV_SHIFT,
  1353. div << PLL_POST_DIV_SHIFT);
  1354. }
  1355. const struct clk_ops clk_alpha_pll_postdiv_ops = {
  1356. .recalc_rate = clk_alpha_pll_postdiv_recalc_rate,
  1357. .round_rate = clk_alpha_pll_postdiv_round_rate,
  1358. .set_rate = clk_alpha_pll_postdiv_set_rate,
  1359. };
  1360. EXPORT_SYMBOL_GPL(clk_alpha_pll_postdiv_ops);
  1361. const struct clk_ops clk_alpha_pll_postdiv_ro_ops = {
  1362. .round_rate = clk_alpha_pll_postdiv_round_ro_rate,
  1363. .recalc_rate = clk_alpha_pll_postdiv_recalc_rate,
  1364. };
  1365. EXPORT_SYMBOL_GPL(clk_alpha_pll_postdiv_ro_ops);
  1366. void clk_fabia_pll_configure(struct clk_alpha_pll *pll, struct regmap *regmap,
  1367. const struct alpha_pll_config *config)
  1368. {
  1369. u32 val, mask;
  1370. clk_alpha_pll_write_config(regmap, PLL_L_VAL(pll), config->l);
  1371. clk_alpha_pll_write_config(regmap, PLL_FRAC(pll), config->alpha);
  1372. clk_alpha_pll_write_config(regmap, PLL_CONFIG_CTL(pll),
  1373. config->config_ctl_val);
  1374. clk_alpha_pll_write_config(regmap, PLL_CONFIG_CTL_U(pll),
  1375. config->config_ctl_hi_val);
  1376. clk_alpha_pll_write_config(regmap, PLL_USER_CTL(pll),
  1377. config->user_ctl_val);
  1378. clk_alpha_pll_write_config(regmap, PLL_USER_CTL_U(pll),
  1379. config->user_ctl_hi_val);
  1380. clk_alpha_pll_write_config(regmap, PLL_TEST_CTL(pll),
  1381. config->test_ctl_val);
  1382. clk_alpha_pll_write_config(regmap, PLL_TEST_CTL_U(pll),
  1383. config->test_ctl_hi_val);
  1384. if (config->post_div_mask) {
  1385. mask = config->post_div_mask;
  1386. val = config->post_div_val;
  1387. regmap_update_bits(regmap, PLL_USER_CTL(pll), mask, val);
  1388. }
  1389. if (pll->flags & SUPPORTS_FSM_LEGACY_MODE)
  1390. regmap_update_bits(regmap, PLL_MODE(pll), PLL_FSM_LEGACY_MODE,
  1391. PLL_FSM_LEGACY_MODE);
  1392. regmap_update_bits(regmap, PLL_MODE(pll), PLL_UPDATE_BYPASS,
  1393. PLL_UPDATE_BYPASS);
  1394. regmap_update_bits(regmap, PLL_MODE(pll), PLL_RESET_N, PLL_RESET_N);
  1395. }
  1396. EXPORT_SYMBOL_GPL(clk_fabia_pll_configure);
  1397. static int alpha_pll_fabia_enable(struct clk_hw *hw)
  1398. {
  1399. int ret;
  1400. struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
  1401. u32 val, opmode_val;
  1402. struct regmap *regmap = pll->clkr.regmap;
  1403. ret = regmap_read(regmap, PLL_MODE(pll), &val);
  1404. if (ret)
  1405. return ret;
  1406. /* If in FSM mode, just vote for it */
  1407. if (val & PLL_VOTE_FSM_ENA) {
  1408. ret = clk_enable_regmap(hw);
  1409. if (ret)
  1410. return ret;
  1411. return wait_for_pll_enable_active(pll);
  1412. }
  1413. ret = regmap_read(regmap, PLL_OPMODE(pll), &opmode_val);
  1414. if (ret)
  1415. return ret;
  1416. /* Skip If PLL is already running */
  1417. if ((opmode_val & PLL_RUN) && (val & PLL_OUTCTRL))
  1418. return 0;
  1419. ret = regmap_update_bits(regmap, PLL_MODE(pll), PLL_OUTCTRL, 0);
  1420. if (ret)
  1421. return ret;
  1422. ret = regmap_write(regmap, PLL_OPMODE(pll), PLL_STANDBY);
  1423. if (ret)
  1424. return ret;
  1425. ret = regmap_update_bits(regmap, PLL_MODE(pll), PLL_RESET_N,
  1426. PLL_RESET_N);
  1427. if (ret)
  1428. return ret;
  1429. ret = regmap_write(regmap, PLL_OPMODE(pll), PLL_RUN);
  1430. if (ret)
  1431. return ret;
  1432. ret = wait_for_pll_enable_lock(pll);
  1433. if (ret)
  1434. return ret;
  1435. ret = regmap_update_bits(regmap, PLL_USER_CTL(pll),
  1436. PLL_OUT_MASK, PLL_OUT_MASK);
  1437. if (ret)
  1438. return ret;
  1439. return regmap_update_bits(regmap, PLL_MODE(pll), PLL_OUTCTRL,
  1440. PLL_OUTCTRL);
  1441. }
  1442. static void alpha_pll_fabia_disable(struct clk_hw *hw)
  1443. {
  1444. int ret;
  1445. struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
  1446. u32 val;
  1447. struct regmap *regmap = pll->clkr.regmap;
  1448. ret = regmap_read(regmap, PLL_MODE(pll), &val);
  1449. if (ret)
  1450. return;
  1451. /* If in FSM mode, just unvote it */
  1452. if (val & PLL_FSM_ENA) {
  1453. clk_disable_regmap(hw);
  1454. return;
  1455. }
  1456. ret = regmap_update_bits(regmap, PLL_MODE(pll), PLL_OUTCTRL, 0);
  1457. if (ret)
  1458. return;
  1459. /* Disable main outputs */
  1460. ret = regmap_update_bits(regmap, PLL_USER_CTL(pll), PLL_OUT_MASK, 0);
  1461. if (ret)
  1462. return;
  1463. /* Place the PLL in STANDBY */
  1464. regmap_write(regmap, PLL_OPMODE(pll), PLL_STANDBY);
  1465. }
  1466. static unsigned long alpha_pll_fabia_recalc_rate(struct clk_hw *hw,
  1467. unsigned long parent_rate)
  1468. {
  1469. struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
  1470. u32 l, frac, alpha_width = pll_alpha_width(pll);
  1471. regmap_read(pll->clkr.regmap, PLL_L_VAL(pll), &l);
  1472. regmap_read(pll->clkr.regmap, PLL_FRAC(pll), &frac);
  1473. return alpha_pll_calc_rate(parent_rate, l, frac, alpha_width);
  1474. }
  1475. /*
  1476. * Due to limited number of bits for fractional rate programming, the
  1477. * rounded up rate could be marginally higher than the requested rate.
  1478. */
  1479. static int alpha_pll_check_rate_margin(struct clk_hw *hw,
  1480. unsigned long rrate, unsigned long rate)
  1481. {
  1482. unsigned long rate_margin = rate + PLL_RATE_MARGIN;
  1483. if (rrate > rate_margin || rrate < rate) {
  1484. pr_err("%s: Rounded rate %lu not within range [%lu, %lu)\n",
  1485. clk_hw_get_name(hw), rrate, rate, rate_margin);
  1486. return -EINVAL;
  1487. }
  1488. return 0;
  1489. }
  1490. static int alpha_pll_fabia_set_rate(struct clk_hw *hw, unsigned long rate,
  1491. unsigned long prate)
  1492. {
  1493. struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
  1494. u32 l, alpha_width = pll_alpha_width(pll);
  1495. unsigned long rrate;
  1496. int ret;
  1497. u64 a;
  1498. rrate = alpha_pll_round_rate(rate, prate, &l, &a, alpha_width);
  1499. ret = alpha_pll_check_rate_margin(hw, rrate, rate);
  1500. if (ret < 0)
  1501. return ret;
  1502. regmap_write(pll->clkr.regmap, PLL_L_VAL(pll), l);
  1503. regmap_write(pll->clkr.regmap, PLL_FRAC(pll), a);
  1504. return __clk_alpha_pll_update_latch(pll);
  1505. }
  1506. static int alpha_pll_fabia_prepare(struct clk_hw *hw)
  1507. {
  1508. struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
  1509. const struct pll_vco *vco;
  1510. struct clk_hw *parent_hw;
  1511. unsigned long cal_freq, rrate;
  1512. u32 cal_l, val, alpha_width = pll_alpha_width(pll);
  1513. const char *name = clk_hw_get_name(hw);
  1514. u64 a;
  1515. int ret;
  1516. ret = clk_prepare_regmap(hw);
  1517. if (ret)
  1518. return ret;
  1519. /* Check if calibration needs to be done i.e. PLL is in reset */
  1520. ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
  1521. if (ret)
  1522. return ret;
  1523. /* Return early if calibration is not needed. */
  1524. if (val & PLL_RESET_N)
  1525. return 0;
  1526. vco = alpha_pll_find_vco(pll, clk_hw_get_rate(hw));
  1527. if (!vco) {
  1528. pr_err("%s: alpha pll not in a valid vco range\n", name);
  1529. return -EINVAL;
  1530. }
  1531. cal_freq = DIV_ROUND_CLOSEST((pll->vco_table[0].min_freq +
  1532. pll->vco_table[0].max_freq) * 54, 100);
  1533. parent_hw = clk_hw_get_parent(hw);
  1534. if (!parent_hw)
  1535. return -EINVAL;
  1536. rrate = alpha_pll_round_rate(cal_freq, clk_hw_get_rate(parent_hw),
  1537. &cal_l, &a, alpha_width);
  1538. ret = alpha_pll_check_rate_margin(hw, rrate, cal_freq);
  1539. if (ret < 0)
  1540. return ret;
  1541. /* Setup PLL for calibration frequency */
  1542. regmap_write(pll->clkr.regmap, PLL_CAL_L_VAL(pll), cal_l);
  1543. /* Bringup the PLL at calibration frequency */
  1544. ret = clk_alpha_pll_enable(hw);
  1545. if (ret) {
  1546. pr_err("%s: alpha pll calibration failed\n", name);
  1547. return ret;
  1548. }
  1549. clk_alpha_pll_disable(hw);
  1550. return 0;
  1551. }
  1552. static void clk_fabia_pll_list_registers(struct seq_file *f, struct clk_hw *hw)
  1553. {
  1554. struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
  1555. int size, i, val;
  1556. static struct clk_register_data data[] = {
  1557. {"PLL_MODE", PLL_OFF_MODE},
  1558. {"PLL_L_VAL", PLL_OFF_L_VAL},
  1559. {"PLL_CAL_L_VAL", PLL_OFF_CAL_L_VAL},
  1560. {"PLL_USER_CTL", PLL_OFF_USER_CTL},
  1561. {"PLL_USER_CTL_U", PLL_OFF_USER_CTL_U},
  1562. {"PLL_CONFIG_CTL", PLL_OFF_CONFIG_CTL},
  1563. {"PLL_CONFIG_CTL_U", PLL_OFF_CONFIG_CTL_U},
  1564. {"PLL_TEST_CTL", PLL_OFF_TEST_CTL},
  1565. {"PLL_TEST_CTL_U", PLL_OFF_TEST_CTL_U},
  1566. {"PLL_STATUS", PLL_OFF_STATUS},
  1567. {"PLL_OPMODE", PLL_OFF_OPMODE},
  1568. {"PLL_FRAC", PLL_OFF_FRAC},
  1569. };
  1570. static struct clk_register_data data1[] = {
  1571. {"APSS_PLL_VOTE", 0x0},
  1572. };
  1573. size = ARRAY_SIZE(data);
  1574. for (i = 0; i < size; i++) {
  1575. regmap_read(pll->clkr.regmap, pll->offset +
  1576. pll->regs[data[i].offset], &val);
  1577. clock_debug_output(f, "%20s: 0x%.8x\n", data[i].name, val);
  1578. }
  1579. regmap_read(pll->clkr.regmap, pll->offset + pll->regs[data[0].offset],
  1580. &val);
  1581. if (val & PLL_FSM_ENA) {
  1582. regmap_read(pll->clkr.regmap, pll->clkr.enable_reg +
  1583. data1[0].offset, &val);
  1584. clock_debug_output(f, "%20s: 0x%.8x\n", data1[0].name, val);
  1585. }
  1586. }
  1587. static struct clk_regmap_ops clk_fabia_pll_regmap_ops = {
  1588. .list_registers = &clk_fabia_pll_list_registers,
  1589. };
  1590. static int clk_fabia_pll_init(struct clk_hw *hw)
  1591. {
  1592. struct clk_regmap *rclk = to_clk_regmap(hw);
  1593. if (!rclk->ops)
  1594. rclk->ops = &clk_fabia_pll_regmap_ops;
  1595. return 0;
  1596. }
  1597. const struct clk_ops clk_alpha_pll_fabia_ops = {
  1598. .prepare = alpha_pll_fabia_prepare,
  1599. .unprepare = clk_unprepare_regmap,
  1600. .pre_rate_change = clk_pre_change_regmap,
  1601. .post_rate_change = clk_post_change_regmap,
  1602. .enable = alpha_pll_fabia_enable,
  1603. .disable = alpha_pll_fabia_disable,
  1604. .is_enabled = clk_alpha_pll_is_enabled,
  1605. .set_rate = alpha_pll_fabia_set_rate,
  1606. .recalc_rate = alpha_pll_fabia_recalc_rate,
  1607. .round_rate = clk_alpha_pll_round_rate,
  1608. .debug_init = clk_common_debug_init,
  1609. .init = clk_fabia_pll_init,
  1610. .restore_context = clk_pll_restore_context,
  1611. };
  1612. EXPORT_SYMBOL_GPL(clk_alpha_pll_fabia_ops);
  1613. const struct clk_ops clk_alpha_pll_fixed_fabia_ops = {
  1614. .prepare = clk_prepare_regmap,
  1615. .unprepare = clk_unprepare_regmap,
  1616. .pre_rate_change = clk_pre_change_regmap,
  1617. .post_rate_change = clk_post_change_regmap,
  1618. .enable = alpha_pll_fabia_enable,
  1619. .disable = alpha_pll_fabia_disable,
  1620. .is_enabled = clk_alpha_pll_is_enabled,
  1621. .recalc_rate = alpha_pll_fabia_recalc_rate,
  1622. .round_rate = clk_alpha_pll_round_rate,
  1623. .debug_init = clk_common_debug_init,
  1624. .init = clk_fabia_pll_init,
  1625. .restore_context = clk_pll_restore_context,
  1626. };
  1627. EXPORT_SYMBOL_GPL(clk_alpha_pll_fixed_fabia_ops);
  1628. static unsigned long clk_alpha_pll_postdiv_fabia_recalc_rate(struct clk_hw *hw,
  1629. unsigned long parent_rate)
  1630. {
  1631. struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
  1632. u32 i, div = 1, val;
  1633. int ret;
  1634. ret = regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &val);
  1635. if (ret)
  1636. return ret;
  1637. val >>= pll->post_div_shift;
  1638. val &= BIT(pll->width) - 1;
  1639. for (i = 0; i < pll->num_post_div; i++) {
  1640. if (pll->post_div_table[i].val == val) {
  1641. div = pll->post_div_table[i].div;
  1642. break;
  1643. }
  1644. }
  1645. return (parent_rate / div);
  1646. }
  1647. static unsigned long
  1648. clk_trion_pll_postdiv_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
  1649. {
  1650. struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
  1651. struct regmap *regmap = pll->clkr.regmap;
  1652. u32 i, div = 1, val;
  1653. if (!pll->post_div_table) {
  1654. pr_err("Missing the post_div_table for the PLL\n");
  1655. return -EINVAL;
  1656. }
  1657. regmap_read(regmap, PLL_USER_CTL(pll), &val);
  1658. val >>= pll->post_div_shift;
  1659. val &= PLL_POST_DIV_MASK(pll);
  1660. for (i = 0; i < pll->num_post_div; i++) {
  1661. if (pll->post_div_table[i].val == val) {
  1662. div = pll->post_div_table[i].div;
  1663. break;
  1664. }
  1665. }
  1666. return (parent_rate / div);
  1667. }
  1668. static long
  1669. clk_trion_pll_postdiv_round_rate(struct clk_hw *hw, unsigned long rate,
  1670. unsigned long *prate)
  1671. {
  1672. struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
  1673. return divider_round_rate(hw, rate, prate, pll->post_div_table,
  1674. pll->width, CLK_DIVIDER_ROUND_CLOSEST);
  1675. };
  1676. static int
  1677. clk_trion_pll_postdiv_set_rate(struct clk_hw *hw, unsigned long rate,
  1678. unsigned long parent_rate)
  1679. {
  1680. struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
  1681. struct regmap *regmap = pll->clkr.regmap;
  1682. int i, val = 0, div;
  1683. if (!pll->post_div_table) {
  1684. pr_err("Missing the post_div_table for the PLL\n");
  1685. return -EINVAL;
  1686. }
  1687. div = DIV_ROUND_UP_ULL(parent_rate, rate);
  1688. for (i = 0; i < pll->num_post_div; i++) {
  1689. if (pll->post_div_table[i].div == div) {
  1690. val = pll->post_div_table[i].val;
  1691. break;
  1692. }
  1693. }
  1694. return regmap_update_bits(regmap, PLL_USER_CTL(pll),
  1695. PLL_POST_DIV_MASK(pll) << pll->post_div_shift,
  1696. val << pll->post_div_shift);
  1697. }
  1698. const struct clk_ops clk_alpha_pll_postdiv_trion_ops = {
  1699. .recalc_rate = clk_trion_pll_postdiv_recalc_rate,
  1700. .round_rate = clk_trion_pll_postdiv_round_rate,
  1701. .set_rate = clk_trion_pll_postdiv_set_rate,
  1702. };
  1703. EXPORT_SYMBOL_GPL(clk_alpha_pll_postdiv_trion_ops);
  1704. static long clk_alpha_pll_postdiv_fabia_round_rate(struct clk_hw *hw,
  1705. unsigned long rate, unsigned long *prate)
  1706. {
  1707. struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
  1708. return divider_round_rate(hw, rate, prate, pll->post_div_table,
  1709. pll->width, CLK_DIVIDER_ROUND_CLOSEST);
  1710. }
  1711. static int clk_alpha_pll_postdiv_fabia_set_rate(struct clk_hw *hw,
  1712. unsigned long rate, unsigned long parent_rate)
  1713. {
  1714. struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
  1715. int i, val = 0, div, ret;
  1716. /*
  1717. * If the PLL is in FSM mode, then treat set_rate callback as a
  1718. * no-operation.
  1719. */
  1720. ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
  1721. if (ret)
  1722. return ret;
  1723. if (val & PLL_VOTE_FSM_ENA)
  1724. return 0;
  1725. div = DIV_ROUND_UP_ULL(parent_rate, rate);
  1726. for (i = 0; i < pll->num_post_div; i++) {
  1727. if (pll->post_div_table[i].div == div) {
  1728. val = pll->post_div_table[i].val;
  1729. break;
  1730. }
  1731. }
  1732. return regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll),
  1733. (BIT(pll->width) - 1) << pll->post_div_shift,
  1734. val << pll->post_div_shift);
  1735. }
  1736. const struct clk_ops clk_alpha_pll_postdiv_fabia_ops = {
  1737. .recalc_rate = clk_alpha_pll_postdiv_fabia_recalc_rate,
  1738. .round_rate = clk_alpha_pll_postdiv_fabia_round_rate,
  1739. .set_rate = clk_alpha_pll_postdiv_fabia_set_rate,
  1740. };
  1741. EXPORT_SYMBOL_GPL(clk_alpha_pll_postdiv_fabia_ops);
  1742. int clk_lucid_5lpe_pll_configure(struct clk_alpha_pll *pll,
  1743. struct regmap *regmap, const struct alpha_pll_config *config)
  1744. {
  1745. int ret;
  1746. ret = trion_pll_is_enabled(pll, regmap);
  1747. if (ret < 0)
  1748. return ret;
  1749. else if (ret) {
  1750. pr_warn("%s PLL is already enabled\n",
  1751. clk_hw_get_name(&pll->clkr.hw));
  1752. return 0;
  1753. }
  1754. if (config->l)
  1755. ret |= regmap_write(regmap, PLL_L_VAL(pll), config->l);
  1756. if (config->cal_l)
  1757. ret |= regmap_write(regmap, PLL_CAL_L_VAL(pll), config->cal_l);
  1758. else
  1759. ret |= regmap_write(regmap, PLL_CAL_L_VAL(pll),
  1760. LUCID_PLL_CAL_VAL);
  1761. if (config->alpha)
  1762. ret |= regmap_write(regmap, PLL_ALPHA_VAL(pll), config->alpha);
  1763. if (config->config_ctl_val)
  1764. ret |= regmap_write(regmap, PLL_CONFIG_CTL(pll),
  1765. config->config_ctl_val);
  1766. if (config->config_ctl_hi_val)
  1767. ret |= regmap_write(regmap, PLL_CONFIG_CTL_U(pll),
  1768. config->config_ctl_hi_val);
  1769. if (config->config_ctl_hi1_val)
  1770. ret |= regmap_write(regmap, PLL_CONFIG_CTL_U1(pll),
  1771. config->config_ctl_hi1_val);
  1772. if (config->user_ctl_val)
  1773. ret |= regmap_write(regmap, PLL_USER_CTL(pll),
  1774. config->user_ctl_val);
  1775. if (config->user_ctl_hi_val)
  1776. ret |= regmap_write(regmap, PLL_USER_CTL_U(pll),
  1777. config->user_ctl_hi_val);
  1778. if (config->user_ctl_hi1_val)
  1779. ret |= regmap_write(regmap, PLL_USER_CTL_U1(pll),
  1780. config->user_ctl_hi1_val);
  1781. if (config->test_ctl_val)
  1782. ret |= regmap_write(regmap, PLL_TEST_CTL(pll),
  1783. config->test_ctl_val);
  1784. if (config->test_ctl_hi_val)
  1785. ret |= regmap_write(regmap, PLL_TEST_CTL_U(pll),
  1786. config->test_ctl_hi_val);
  1787. if (config->test_ctl_hi1_val)
  1788. ret |= regmap_write(regmap, PLL_TEST_CTL_U1(pll),
  1789. config->test_ctl_hi1_val);
  1790. /* Disable PLL output */
  1791. ret |= regmap_update_bits(regmap, PLL_MODE(pll),
  1792. PLL_OUTCTRL, 0);
  1793. /* Set operation mode to STANDBY */
  1794. ret |= regmap_write(regmap, PLL_OPMODE(pll), PLL_STANDBY);
  1795. /* PLL should be in OFF mode before continuing */
  1796. wmb();
  1797. /* Place the PLL in STANDBY mode */
  1798. ret |= regmap_update_bits(regmap, PLL_MODE(pll),
  1799. PLL_RESET_N, PLL_RESET_N);
  1800. return ret ? -EIO : 0;
  1801. }
  1802. EXPORT_SYMBOL_GPL(clk_lucid_5lpe_pll_configure);
  1803. /**
  1804. * clk_trion_pll_configure - configure the trion pll
  1805. *
  1806. * @pll: clk alpha pll
  1807. * @regmap: register map
  1808. * @config: configuration to apply for pll
  1809. */
  1810. void clk_trion_pll_configure(struct clk_alpha_pll *pll, struct regmap *regmap,
  1811. const struct alpha_pll_config *config)
  1812. {
  1813. /*
  1814. * If the bootloader left the PLL enabled it's likely that there are
  1815. * RCGs that will lock up if we disable the PLL below.
  1816. */
  1817. if (trion_pll_is_enabled(pll, regmap)) {
  1818. pr_debug("Trion PLL is already enabled, skipping configuration\n");
  1819. return;
  1820. }
  1821. clk_alpha_pll_write_config(regmap, PLL_L_VAL(pll), config->l);
  1822. if (config->cal_l)
  1823. regmap_write(regmap, PLL_CAL_L_VAL(pll), config->cal_l);
  1824. else
  1825. regmap_write(regmap, PLL_CAL_L_VAL(pll), TRION_PLL_CAL_VAL);
  1826. clk_alpha_pll_write_config(regmap, PLL_ALPHA_VAL(pll), config->alpha);
  1827. clk_alpha_pll_write_config(regmap, PLL_CONFIG_CTL(pll),
  1828. config->config_ctl_val);
  1829. clk_alpha_pll_write_config(regmap, PLL_CONFIG_CTL_U(pll),
  1830. config->config_ctl_hi_val);
  1831. clk_alpha_pll_write_config(regmap, PLL_CONFIG_CTL_U1(pll),
  1832. config->config_ctl_hi1_val);
  1833. clk_alpha_pll_write_config(regmap, PLL_USER_CTL(pll),
  1834. config->user_ctl_val);
  1835. clk_alpha_pll_write_config(regmap, PLL_USER_CTL_U(pll),
  1836. config->user_ctl_hi_val);
  1837. clk_alpha_pll_write_config(regmap, PLL_USER_CTL_U1(pll),
  1838. config->user_ctl_hi1_val);
  1839. clk_alpha_pll_write_config(regmap, PLL_TEST_CTL(pll),
  1840. config->test_ctl_val);
  1841. clk_alpha_pll_write_config(regmap, PLL_TEST_CTL_U(pll),
  1842. config->test_ctl_hi_val);
  1843. clk_alpha_pll_write_config(regmap, PLL_TEST_CTL_U1(pll),
  1844. config->test_ctl_hi1_val);
  1845. regmap_update_bits(regmap, PLL_MODE(pll), PLL_UPDATE_BYPASS,
  1846. PLL_UPDATE_BYPASS);
  1847. if (pll->flags & SUPPORTS_FSM_LEGACY_MODE)
  1848. regmap_update_bits(regmap, PLL_MODE(pll), PLL_FSM_LEGACY_MODE,
  1849. PLL_FSM_LEGACY_MODE);
  1850. /* Disable PLL output */
  1851. regmap_update_bits(regmap, PLL_MODE(pll), PLL_OUTCTRL, 0);
  1852. /* Set operation mode to OFF */
  1853. regmap_write(regmap, PLL_OPMODE(pll), PLL_STANDBY);
  1854. /* Place the PLL in STANDBY mode */
  1855. regmap_update_bits(regmap, PLL_MODE(pll), PLL_RESET_N, PLL_RESET_N);
  1856. }
  1857. EXPORT_SYMBOL_GPL(clk_trion_pll_configure);
  1858. /*
  1859. * The TRION PLL requires a power-on self-calibration which happens when the
  1860. * PLL comes out of reset. Calibrate in case it is not completed.
  1861. */
  1862. static int __alpha_pll_trion_prepare(struct clk_hw *hw, u32 pcal_done)
  1863. {
  1864. struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
  1865. u32 val;
  1866. int ret;
  1867. ret = clk_prepare_regmap(hw);
  1868. if (ret)
  1869. return ret;
  1870. /* Return early if calibration is not needed. */
  1871. regmap_read(pll->clkr.regmap, PLL_STATUS(pll), &val);
  1872. if (val & pcal_done)
  1873. return 0;
  1874. /* On/off to calibrate */
  1875. ret = clk_trion_pll_enable(hw);
  1876. if (!ret)
  1877. clk_trion_pll_disable(hw);
  1878. return ret;
  1879. }
  1880. static int alpha_pll_trion_prepare(struct clk_hw *hw)
  1881. {
  1882. return __alpha_pll_trion_prepare(hw, TRION_PCAL_DONE);
  1883. }
  1884. static int alpha_pll_lucid_prepare(struct clk_hw *hw)
  1885. {
  1886. struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
  1887. u32 val;
  1888. int ret;
  1889. ret = clk_prepare_regmap(hw);
  1890. if (ret)
  1891. return ret;
  1892. /* Return early if calibration is not needed. */
  1893. regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
  1894. if (val & LUCID_PCAL_DONE)
  1895. return 0;
  1896. /* On/off to calibrate */
  1897. ret = clk_trion_pll_enable(hw);
  1898. if (!ret)
  1899. clk_trion_pll_disable(hw);
  1900. return ret;
  1901. }
  1902. static int __alpha_pll_trion_set_rate(struct clk_hw *hw, unsigned long rate,
  1903. unsigned long prate, u32 latch_bit, u32 latch_ack)
  1904. {
  1905. struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
  1906. unsigned long rrate;
  1907. u32 val, l, alpha_width = pll_alpha_width(pll);
  1908. u64 a;
  1909. int ret;
  1910. rrate = alpha_pll_round_rate(rate, prate, &l, &a, alpha_width);
  1911. ret = alpha_pll_check_rate_margin(hw, rrate, rate);
  1912. if (ret < 0)
  1913. return ret;
  1914. regmap_write(pll->clkr.regmap, PLL_L_VAL(pll), l);
  1915. regmap_write(pll->clkr.regmap, PLL_ALPHA_VAL(pll), a);
  1916. if (pll->flags & BYPASS_LATCH) {
  1917. regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL_U(pll),
  1918. LUCID_5LPE_BYPASS_LATCH, LUCID_5LPE_BYPASS_LATCH);
  1919. } else {
  1920. /* Latch the PLL input */
  1921. ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), latch_bit, latch_bit);
  1922. if (ret)
  1923. return ret;
  1924. /* Wait for 2 reference cycles before checking the ACK bit. */
  1925. udelay(1);
  1926. regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
  1927. if (!(val & PLL_UPDATE_BYPASS)) {
  1928. ret = wait_for_pll_update(pll);
  1929. if (ret)
  1930. WARN_CLK(&pll->clkr.hw, 1, "PLL Update clear failed\n");
  1931. return ret;
  1932. } else if (!(val & latch_ack)) {
  1933. WARN_CLK(&pll->clkr.hw, 1,
  1934. "Lucid PLL latch failed. Output may be unstable!\n");
  1935. return -EINVAL;
  1936. }
  1937. /* Return the latch input to 0 */
  1938. ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), latch_bit, 0);
  1939. if (ret)
  1940. return ret;
  1941. }
  1942. if (clk_hw_is_enabled(hw)) {
  1943. ret = wait_for_pll_enable_lock(pll);
  1944. if (ret)
  1945. return ret;
  1946. }
  1947. /* Wait for PLL output to stabilize */
  1948. udelay(100);
  1949. return 0;
  1950. }
  1951. static int alpha_pll_trion_set_rate(struct clk_hw *hw, unsigned long rate,
  1952. unsigned long prate)
  1953. {
  1954. return __alpha_pll_trion_set_rate(hw, rate, prate, PLL_UPDATE, ALPHA_PLL_ACK_LATCH);
  1955. }
  1956. const struct clk_ops clk_alpha_pll_trion_ops = {
  1957. .prepare = alpha_pll_trion_prepare,
  1958. .unprepare = clk_unprepare_regmap,
  1959. .pre_rate_change = clk_pre_change_regmap,
  1960. .post_rate_change = clk_post_change_regmap,
  1961. .enable = clk_trion_pll_enable,
  1962. .disable = clk_trion_pll_disable,
  1963. .is_enabled = clk_trion_pll_is_enabled,
  1964. .recalc_rate = clk_trion_pll_recalc_rate,
  1965. .round_rate = clk_alpha_pll_round_rate,
  1966. .set_rate = alpha_pll_trion_set_rate,
  1967. .debug_init = clk_common_debug_init,
  1968. .init = clk_trion_pll_init,
  1969. .restore_context = clk_pll_restore_context,
  1970. };
  1971. EXPORT_SYMBOL_GPL(clk_alpha_pll_trion_ops);
  1972. static void lucid_pll_list_registers(struct seq_file *f,
  1973. struct clk_hw *hw)
  1974. {
  1975. struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
  1976. int size, i, val;
  1977. static struct clk_register_data data[] = {
  1978. {"PLL_MODE", PLL_OFF_MODE},
  1979. {"PLL_L_VAL", PLL_OFF_L_VAL},
  1980. {"PLL_CAL_L_VAL", PLL_OFF_CAL_L_VAL},
  1981. {"PLL_USER_CTL", PLL_OFF_USER_CTL},
  1982. {"PLL_USER_CTL_U", PLL_OFF_USER_CTL_U},
  1983. {"PLL_USER_CTL_U1", PLL_OFF_USER_CTL_U1},
  1984. {"PLL_CONFIG_CTL", PLL_OFF_CONFIG_CTL},
  1985. {"PLL_CONFIG_CTL_U", PLL_OFF_CONFIG_CTL_U},
  1986. {"PLL_CONFIG_CTL_U1", PLL_OFF_CONFIG_CTL_U1},
  1987. {"PLL_TEST_CTL", PLL_OFF_TEST_CTL},
  1988. {"PLL_TEST_CTL_U", PLL_OFF_TEST_CTL_U},
  1989. {"PLL_TEST_CTL_U1", PLL_OFF_TEST_CTL_U1},
  1990. {"PLL_STATUS", PLL_OFF_STATUS},
  1991. {"PLL_OPMODE", PLL_OFF_OPMODE},
  1992. {"PLL_ALPHA_VAL", PLL_OFF_ALPHA_VAL},
  1993. {"PLL_SSC_DELTA_ALPHA", PLL_OFF_SSC_DELTA_ALPHA},
  1994. {"PLL_SSC_NUM_STEPS", PLL_OFF_SSC_NUM_STEPS},
  1995. {"PLL_SSC_UPDATE_RATE", PLL_OFF_SSC_UPDATE_RATE},
  1996. };
  1997. static struct clk_register_data data1[] = {
  1998. {"APSS_PLL_VOTE", 0x0},
  1999. };
  2000. size = ARRAY_SIZE(data);
  2001. for (i = 0; i < size; i++) {
  2002. regmap_read(pll->clkr.regmap, pll->offset +
  2003. pll->regs[data[i].offset], &val);
  2004. clock_debug_output(f, "%20s: 0x%.8x\n", data[i].name, val);
  2005. }
  2006. regmap_read(pll->clkr.regmap, pll->offset +
  2007. pll->regs[data[0].offset], &val);
  2008. if (val & PLL_FSM_ENA) {
  2009. regmap_read(pll->clkr.regmap, pll->clkr.enable_reg +
  2010. data1[0].offset, &val);
  2011. clock_debug_output(f, "%20s: 0x%.8x\n", data1[0].name, val);
  2012. }
  2013. }
  2014. static struct clk_regmap_ops clk_lucid_pll_regmap_ops = {
  2015. .list_registers = &lucid_pll_list_registers,
  2016. };
  2017. static int clk_lucid_pll_init(struct clk_hw *hw)
  2018. {
  2019. struct clk_regmap *rclk = to_clk_regmap(hw);
  2020. if (!rclk->ops)
  2021. rclk->ops = &clk_lucid_pll_regmap_ops;
  2022. return 0;
  2023. }
  2024. const struct clk_ops clk_alpha_pll_lucid_ops = {
  2025. .prepare = alpha_pll_lucid_prepare,
  2026. .unprepare = clk_unprepare_regmap,
  2027. .pre_rate_change = clk_pre_change_regmap,
  2028. .post_rate_change = clk_post_change_regmap,
  2029. .enable = clk_trion_pll_enable,
  2030. .disable = clk_trion_pll_disable,
  2031. .is_enabled = clk_trion_pll_is_enabled,
  2032. .recalc_rate = clk_trion_pll_recalc_rate,
  2033. .round_rate = clk_alpha_pll_round_rate,
  2034. .set_rate = alpha_pll_trion_set_rate,
  2035. .debug_init = clk_common_debug_init,
  2036. .init = clk_lucid_pll_init,
  2037. .restore_context = clk_pll_restore_context,
  2038. };
  2039. EXPORT_SYMBOL_GPL(clk_alpha_pll_lucid_ops);
  2040. const struct clk_ops clk_alpha_pll_postdiv_lucid_ops = {
  2041. .recalc_rate = clk_alpha_pll_postdiv_fabia_recalc_rate,
  2042. .round_rate = clk_alpha_pll_postdiv_fabia_round_rate,
  2043. .set_rate = clk_alpha_pll_postdiv_fabia_set_rate,
  2044. };
  2045. EXPORT_SYMBOL_GPL(clk_alpha_pll_postdiv_lucid_ops);
  2046. void clk_agera_pll_configure(struct clk_alpha_pll *pll, struct regmap *regmap,
  2047. const struct alpha_pll_config *config)
  2048. {
  2049. clk_alpha_pll_write_config(regmap, PLL_L_VAL(pll), config->l);
  2050. clk_alpha_pll_write_config(regmap, PLL_ALPHA_VAL(pll), config->alpha);
  2051. clk_alpha_pll_write_config(regmap, PLL_USER_CTL(pll),
  2052. config->user_ctl_val);
  2053. clk_alpha_pll_write_config(regmap, PLL_CONFIG_CTL(pll),
  2054. config->config_ctl_val);
  2055. clk_alpha_pll_write_config(regmap, PLL_CONFIG_CTL_U(pll),
  2056. config->config_ctl_hi_val);
  2057. clk_alpha_pll_write_config(regmap, PLL_TEST_CTL(pll),
  2058. config->test_ctl_val);
  2059. clk_alpha_pll_write_config(regmap, PLL_TEST_CTL_U(pll),
  2060. config->test_ctl_hi_val);
  2061. }
  2062. EXPORT_SYMBOL_GPL(clk_agera_pll_configure);
  2063. static int clk_alpha_pll_agera_set_rate(struct clk_hw *hw, unsigned long rate,
  2064. unsigned long prate)
  2065. {
  2066. struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
  2067. u32 l, alpha_width = pll_alpha_width(pll);
  2068. int ret;
  2069. unsigned long rrate;
  2070. u64 a;
  2071. rrate = alpha_pll_round_rate(rate, prate, &l, &a, alpha_width);
  2072. ret = alpha_pll_check_rate_margin(hw, rrate, rate);
  2073. if (ret < 0)
  2074. return ret;
  2075. /* change L_VAL without having to go through the power on sequence */
  2076. regmap_write(pll->clkr.regmap, PLL_L_VAL(pll), l);
  2077. regmap_write(pll->clkr.regmap, PLL_ALPHA_VAL(pll), a);
  2078. if (clk_hw_is_enabled(hw))
  2079. return wait_for_pll_enable_lock(pll);
  2080. return 0;
  2081. }
  2082. static void clk_agera_pll_list_registers(struct seq_file *f, struct clk_hw *hw)
  2083. {
  2084. struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
  2085. int size, i, val;
  2086. static struct clk_register_data data[] = {
  2087. {"PLL_MODE", PLL_OFF_MODE},
  2088. {"PLL_L_VAL", PLL_OFF_L_VAL},
  2089. {"PLL_ALPHA_VAL", PLL_OFF_ALPHA_VAL},
  2090. {"PLL_USER_CTL", PLL_OFF_USER_CTL},
  2091. {"PLL_CONFIG_CTL", PLL_OFF_CONFIG_CTL},
  2092. {"PLL_CONFIG_CTL_U", PLL_OFF_CONFIG_CTL_U},
  2093. {"PLL_TEST_CTL", PLL_OFF_TEST_CTL},
  2094. {"PLL_TEST_CTL_U", PLL_OFF_TEST_CTL_U},
  2095. {"PLL_STATUS", PLL_OFF_STATUS},
  2096. };
  2097. static struct clk_register_data data1[] = {
  2098. {"APSS_PLL_VOTE", 0x0},
  2099. };
  2100. size = ARRAY_SIZE(data);
  2101. for (i = 0; i < size; i++) {
  2102. regmap_read(pll->clkr.regmap, pll->offset +
  2103. pll->regs[data[i].offset], &val);
  2104. clock_debug_output(f, "%20s: 0x%.8x\n", data[i].name, val);
  2105. }
  2106. regmap_read(pll->clkr.regmap, pll->offset + pll->regs[data[0].offset],
  2107. &val);
  2108. if (val & PLL_FSM_ENA) {
  2109. regmap_read(pll->clkr.regmap, pll->clkr.enable_reg +
  2110. data1[0].offset, &val);
  2111. clock_debug_output(f, "%20s: 0x%.8x\n", data1[0].name, val);
  2112. }
  2113. }
  2114. static struct clk_regmap_ops clk_agera_pll_regmap_ops = {
  2115. .list_registers = clk_agera_pll_list_registers,
  2116. };
  2117. static int clk_agera_pll_init(struct clk_hw *hw)
  2118. {
  2119. struct clk_regmap *rclk = to_clk_regmap(hw);
  2120. if (!rclk->ops)
  2121. rclk->ops = &clk_agera_pll_regmap_ops;
  2122. return 0;
  2123. }
  2124. const struct clk_ops clk_alpha_pll_agera_ops = {
  2125. .prepare = clk_prepare_regmap,
  2126. .unprepare = clk_unprepare_regmap,
  2127. .pre_rate_change = clk_pre_change_regmap,
  2128. .post_rate_change = clk_post_change_regmap,
  2129. .enable = clk_alpha_pll_enable,
  2130. .disable = clk_alpha_pll_disable,
  2131. .is_enabled = clk_alpha_pll_is_enabled,
  2132. .recalc_rate = alpha_pll_fabia_recalc_rate,
  2133. .round_rate = clk_alpha_pll_round_rate,
  2134. .set_rate = clk_alpha_pll_agera_set_rate,
  2135. .debug_init = clk_common_debug_init,
  2136. .init = clk_agera_pll_init,
  2137. .restore_context = clk_pll_restore_context,
  2138. };
  2139. EXPORT_SYMBOL_GPL(clk_alpha_pll_agera_ops);
  2140. static int alpha_pll_lucid_5lpe_enable(struct clk_hw *hw)
  2141. {
  2142. struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
  2143. u32 val;
  2144. int ret;
  2145. ret = regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &val);
  2146. if (ret)
  2147. return ret;
  2148. /* If in FSM mode, just vote for it */
  2149. if (val & LUCID_5LPE_ENABLE_VOTE_RUN) {
  2150. ret = clk_enable_regmap(hw);
  2151. if (ret)
  2152. return ret;
  2153. return wait_for_pll_enable_lock(pll);
  2154. }
  2155. /* Check if PLL is already enabled, return if enabled */
  2156. ret = trion_pll_is_enabled(pll, pll->clkr.regmap);
  2157. if (ret < 0)
  2158. return ret;
  2159. ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), PLL_RESET_N, PLL_RESET_N);
  2160. if (ret)
  2161. return ret;
  2162. regmap_write(pll->clkr.regmap, PLL_OPMODE(pll), PLL_RUN);
  2163. ret = wait_for_pll_enable_lock(pll);
  2164. if (ret)
  2165. return ret;
  2166. /* Enable the PLL outputs */
  2167. ret = regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll), PLL_OUT_MASK, PLL_OUT_MASK);
  2168. if (ret)
  2169. return ret;
  2170. /* Enable the global PLL outputs */
  2171. return regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), PLL_OUTCTRL, PLL_OUTCTRL);
  2172. }
  2173. static void alpha_pll_lucid_5lpe_disable(struct clk_hw *hw)
  2174. {
  2175. struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
  2176. u32 val;
  2177. int ret;
  2178. ret = regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &val);
  2179. if (ret)
  2180. return;
  2181. /* If in FSM mode, just unvote it */
  2182. if (val & LUCID_5LPE_ENABLE_VOTE_RUN) {
  2183. clk_disable_regmap(hw);
  2184. return;
  2185. }
  2186. /* Disable the global PLL output */
  2187. ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), PLL_OUTCTRL, 0);
  2188. if (ret)
  2189. return;
  2190. /* Disable the PLL outputs */
  2191. ret = regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll), PLL_OUT_MASK, 0);
  2192. if (ret)
  2193. return;
  2194. /* Place the PLL mode in STANDBY */
  2195. regmap_write(pll->clkr.regmap, PLL_OPMODE(pll), PLL_STANDBY);
  2196. }
  2197. /*
  2198. * The Lucid 5LPE PLL requires a power-on self-calibration which happens
  2199. * when the PLL comes out of reset. Calibrate in case it is not completed.
  2200. */
  2201. static int alpha_pll_lucid_5lpe_prepare(struct clk_hw *hw)
  2202. {
  2203. struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
  2204. struct clk_hw *p;
  2205. u32 val = 0;
  2206. int ret;
  2207. ret = clk_prepare_regmap(hw);
  2208. if (ret)
  2209. return ret;
  2210. /* Return early if calibration is not needed. */
  2211. regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
  2212. if (val & LUCID_5LPE_PCAL_DONE)
  2213. return 0;
  2214. p = clk_hw_get_parent(hw);
  2215. if (!p)
  2216. return -EINVAL;
  2217. ret = alpha_pll_lucid_5lpe_enable(hw);
  2218. if (ret)
  2219. return ret;
  2220. alpha_pll_lucid_5lpe_disable(hw);
  2221. return 0;
  2222. }
  2223. static int alpha_pll_lucid_5lpe_set_rate(struct clk_hw *hw, unsigned long rate,
  2224. unsigned long prate)
  2225. {
  2226. return __alpha_pll_trion_set_rate(hw, rate, prate,
  2227. LUCID_5LPE_PLL_LATCH_INPUT,
  2228. LUCID_5LPE_ALPHA_PLL_ACK_LATCH);
  2229. }
  2230. static int __clk_lucid_pll_postdiv_set_rate(struct clk_hw *hw, unsigned long rate,
  2231. unsigned long parent_rate,
  2232. unsigned long enable_vote_run)
  2233. {
  2234. struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw);
  2235. struct regmap *regmap = pll->clkr.regmap;
  2236. int i, val, div, ret;
  2237. u32 mask;
  2238. /*
  2239. * If the PLL is in FSM mode, then treat set_rate callback as a
  2240. * no-operation.
  2241. */
  2242. ret = regmap_read(regmap, PLL_USER_CTL(pll), &val);
  2243. if (ret)
  2244. return ret;
  2245. if (val & enable_vote_run)
  2246. return 0;
  2247. if (!pll->post_div_table) {
  2248. pr_err("Missing the post_div_table for the %s PLL\n",
  2249. clk_hw_get_name(&pll->clkr.hw));
  2250. return -EINVAL;
  2251. }
  2252. div = DIV_ROUND_UP_ULL((u64)parent_rate, rate);
  2253. for (i = 0; i < pll->num_post_div; i++) {
  2254. if (pll->post_div_table[i].div == div) {
  2255. val = pll->post_div_table[i].val;
  2256. break;
  2257. }
  2258. }
  2259. mask = GENMASK(pll->width + pll->post_div_shift - 1, pll->post_div_shift);
  2260. return regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll),
  2261. mask, val << pll->post_div_shift);
  2262. }
  2263. static int clk_lucid_5lpe_pll_postdiv_set_rate(struct clk_hw *hw, unsigned long rate,
  2264. unsigned long parent_rate)
  2265. {
  2266. return __clk_lucid_pll_postdiv_set_rate(hw, rate, parent_rate, LUCID_5LPE_ENABLE_VOTE_RUN);
  2267. }
  2268. const struct clk_ops clk_alpha_pll_lucid_5lpe_ops = {
  2269. .prepare = alpha_pll_lucid_5lpe_prepare,
  2270. .unprepare = clk_unprepare_regmap,
  2271. .pre_rate_change = clk_pre_change_regmap,
  2272. .post_rate_change = clk_post_change_regmap,
  2273. .enable = alpha_pll_lucid_5lpe_enable,
  2274. .disable = alpha_pll_lucid_5lpe_disable,
  2275. .is_enabled = clk_trion_pll_is_enabled,
  2276. .recalc_rate = clk_trion_pll_recalc_rate,
  2277. .round_rate = clk_alpha_pll_round_rate,
  2278. .set_rate = alpha_pll_lucid_5lpe_set_rate,
  2279. .debug_init = clk_common_debug_init,
  2280. .init = clk_lucid_pll_init,
  2281. .restore_context = clk_pll_restore_context,
  2282. };
  2283. EXPORT_SYMBOL_GPL(clk_alpha_pll_lucid_5lpe_ops);
  2284. const struct clk_ops clk_alpha_pll_fixed_lucid_5lpe_ops = {
  2285. .prepare = clk_prepare_regmap,
  2286. .unprepare = clk_unprepare_regmap,
  2287. .pre_rate_change = clk_pre_change_regmap,
  2288. .post_rate_change = clk_post_change_regmap,
  2289. .enable = alpha_pll_lucid_5lpe_enable,
  2290. .disable = alpha_pll_lucid_5lpe_disable,
  2291. .is_enabled = clk_trion_pll_is_enabled,
  2292. .recalc_rate = clk_trion_pll_recalc_rate,
  2293. .round_rate = clk_alpha_pll_round_rate,
  2294. .debug_init = clk_common_debug_init,
  2295. .init = clk_lucid_pll_init,
  2296. .restore_context = clk_pll_restore_context,
  2297. };
  2298. EXPORT_SYMBOL_GPL(clk_alpha_pll_fixed_lucid_5lpe_ops);
  2299. const struct clk_ops clk_alpha_pll_postdiv_lucid_5lpe_ops = {
  2300. .recalc_rate = clk_alpha_pll_postdiv_fabia_recalc_rate,
  2301. .round_rate = clk_alpha_pll_postdiv_fabia_round_rate,
  2302. .set_rate = clk_lucid_5lpe_pll_postdiv_set_rate,
  2303. };
  2304. EXPORT_SYMBOL_GPL(clk_alpha_pll_postdiv_lucid_5lpe_ops);
  2305. void clk_zonda_pll_configure(struct clk_alpha_pll *pll, struct regmap *regmap,
  2306. const struct alpha_pll_config *config)
  2307. {
  2308. clk_alpha_pll_write_config(regmap, PLL_L_VAL(pll), config->l);
  2309. clk_alpha_pll_write_config(regmap, PLL_ALPHA_VAL(pll), config->alpha);
  2310. clk_alpha_pll_write_config(regmap, PLL_CONFIG_CTL(pll), config->config_ctl_val);
  2311. clk_alpha_pll_write_config(regmap, PLL_CONFIG_CTL_U(pll), config->config_ctl_hi_val);
  2312. clk_alpha_pll_write_config(regmap, PLL_CONFIG_CTL_U1(pll), config->config_ctl_hi1_val);
  2313. clk_alpha_pll_write_config(regmap, PLL_USER_CTL(pll), config->user_ctl_val);
  2314. clk_alpha_pll_write_config(regmap, PLL_USER_CTL_U(pll), config->user_ctl_hi_val);
  2315. clk_alpha_pll_write_config(regmap, PLL_USER_CTL_U1(pll), config->user_ctl_hi1_val);
  2316. clk_alpha_pll_write_config(regmap, PLL_TEST_CTL(pll), config->test_ctl_val);
  2317. clk_alpha_pll_write_config(regmap, PLL_TEST_CTL_U(pll), config->test_ctl_hi_val);
  2318. clk_alpha_pll_write_config(regmap, PLL_TEST_CTL_U1(pll), config->test_ctl_hi1_val);
  2319. regmap_update_bits(regmap, PLL_MODE(pll), PLL_BYPASSNL, 0);
  2320. /* Disable PLL output */
  2321. regmap_update_bits(regmap, PLL_MODE(pll), PLL_OUTCTRL, 0);
  2322. /* Set operation mode to OFF */
  2323. regmap_write(regmap, PLL_OPMODE(pll), PLL_STANDBY);
  2324. /* Place the PLL in STANDBY mode */
  2325. regmap_update_bits(regmap, PLL_MODE(pll), PLL_RESET_N, PLL_RESET_N);
  2326. }
  2327. EXPORT_SYMBOL_GPL(clk_zonda_pll_configure);
  2328. static int clk_zonda_pll_enable(struct clk_hw *hw)
  2329. {
  2330. struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
  2331. struct regmap *regmap = pll->clkr.regmap;
  2332. u32 val;
  2333. int ret;
  2334. regmap_read(regmap, PLL_MODE(pll), &val);
  2335. /* If in FSM mode, just vote for it */
  2336. if (val & PLL_VOTE_FSM_ENA) {
  2337. ret = clk_enable_regmap(hw);
  2338. if (ret)
  2339. return ret;
  2340. return wait_for_pll_enable_active(pll);
  2341. }
  2342. /* Get the PLL out of bypass mode */
  2343. regmap_update_bits(regmap, PLL_MODE(pll), PLL_BYPASSNL, PLL_BYPASSNL);
  2344. /*
  2345. * H/W requires a 1us delay between disabling the bypass and
  2346. * de-asserting the reset.
  2347. */
  2348. udelay(1);
  2349. regmap_update_bits(regmap, PLL_MODE(pll), PLL_RESET_N, PLL_RESET_N);
  2350. /* Set operation mode to RUN */
  2351. regmap_write(regmap, PLL_OPMODE(pll), PLL_RUN);
  2352. regmap_read(regmap, PLL_TEST_CTL(pll), &val);
  2353. /* If cfa mode then poll for freq lock */
  2354. if (val & ZONDA_STAY_IN_CFA)
  2355. ret = wait_for_zonda_pll_freq_lock(pll);
  2356. else
  2357. ret = wait_for_pll_enable_lock(pll);
  2358. if (ret)
  2359. return ret;
  2360. /* Enable the PLL outputs */
  2361. regmap_update_bits(regmap, PLL_USER_CTL(pll), ZONDA_PLL_OUT_MASK, ZONDA_PLL_OUT_MASK);
  2362. /* Enable the global PLL outputs */
  2363. regmap_update_bits(regmap, PLL_MODE(pll), PLL_OUTCTRL, PLL_OUTCTRL);
  2364. return 0;
  2365. }
  2366. static void clk_zonda_pll_disable(struct clk_hw *hw)
  2367. {
  2368. struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
  2369. struct regmap *regmap = pll->clkr.regmap;
  2370. u32 val;
  2371. regmap_read(regmap, PLL_MODE(pll), &val);
  2372. /* If in FSM mode, just unvote it */
  2373. if (val & PLL_VOTE_FSM_ENA) {
  2374. clk_disable_regmap(hw);
  2375. return;
  2376. }
  2377. /* Disable the global PLL output */
  2378. regmap_update_bits(regmap, PLL_MODE(pll), PLL_OUTCTRL, 0);
  2379. /* Disable the PLL outputs */
  2380. regmap_update_bits(regmap, PLL_USER_CTL(pll), ZONDA_PLL_OUT_MASK, 0);
  2381. /* Put the PLL in bypass and reset */
  2382. regmap_update_bits(regmap, PLL_MODE(pll), PLL_RESET_N | PLL_BYPASSNL, 0);
  2383. /* Place the PLL mode in OFF state */
  2384. regmap_write(regmap, PLL_OPMODE(pll), 0x0);
  2385. }
  2386. static int clk_zonda_pll_set_rate(struct clk_hw *hw, unsigned long rate,
  2387. unsigned long prate)
  2388. {
  2389. struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
  2390. unsigned long rrate;
  2391. u32 test_ctl_val;
  2392. u32 l, alpha_width = pll_alpha_width(pll);
  2393. u64 a;
  2394. int ret;
  2395. rrate = alpha_pll_round_rate(rate, prate, &l, &a, alpha_width);
  2396. ret = alpha_pll_check_rate_margin(hw, rrate, rate);
  2397. if (ret < 0)
  2398. return ret;
  2399. if (a && (a & BIT(15)))
  2400. zonda_pll_adjust_l_val(rate, prate, &l);
  2401. regmap_write(pll->clkr.regmap, PLL_ALPHA_VAL(pll), a);
  2402. regmap_write(pll->clkr.regmap, PLL_L_VAL(pll), l);
  2403. if (!clk_hw_is_enabled(hw))
  2404. return 0;
  2405. /* Wait before polling for the frequency latch */
  2406. udelay(5);
  2407. /* Read stay in cfa mode */
  2408. regmap_read(pll->clkr.regmap, PLL_TEST_CTL(pll), &test_ctl_val);
  2409. /* If cfa mode then poll for freq lock */
  2410. if (test_ctl_val & ZONDA_STAY_IN_CFA)
  2411. ret = wait_for_zonda_pll_freq_lock(pll);
  2412. else
  2413. ret = wait_for_pll_enable_lock(pll);
  2414. if (ret)
  2415. return ret;
  2416. /* Wait for PLL output to stabilize */
  2417. udelay(100);
  2418. return 0;
  2419. }
  2420. static unsigned long alpha_pll_adjust_calc_rate(u64 prate, u32 l, u32 frac, u32 alpha_width)
  2421. {
  2422. uint64_t tmp;
  2423. frac = 100 - DIV_ROUND_UP_ULL((frac * 100), BIT(alpha_width));
  2424. tmp = frac * prate;
  2425. do_div(tmp, 100);
  2426. return (l * prate) - tmp;
  2427. }
  2428. static unsigned long
  2429. clk_zonda_pll_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
  2430. {
  2431. struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
  2432. u32 l, frac;
  2433. regmap_read(pll->clkr.regmap, PLL_L_VAL(pll), &l);
  2434. regmap_read(pll->clkr.regmap, PLL_ALPHA_VAL(pll), &frac);
  2435. if (frac & BIT(15))
  2436. return alpha_pll_adjust_calc_rate(parent_rate, l, frac, pll_alpha_width(pll));
  2437. else
  2438. return alpha_pll_calc_rate(parent_rate, l, frac, pll_alpha_width(pll));
  2439. }
  2440. static void clk_alpha_pll_zonda_list_registers(struct seq_file *f,
  2441. struct clk_hw *hw)
  2442. {
  2443. struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
  2444. int size, i, val;
  2445. static struct clk_register_data data[] = {
  2446. {"PLL_MODE", PLL_OFF_MODE},
  2447. {"PLL_L_VAL", PLL_OFF_L_VAL},
  2448. {"PLL_ALPHA_VAL", PLL_OFF_ALPHA_VAL},
  2449. {"PLL_USER_CTL", PLL_OFF_USER_CTL},
  2450. {"PLL_CONFIG_CTL", PLL_OFF_CONFIG_CTL},
  2451. {"PLL_CONFIG_CTL_U", PLL_OFF_CONFIG_CTL_U},
  2452. {"PLL_CONFIG_CTL_U1", PLL_OFF_CONFIG_CTL_U1},
  2453. {"PLL_TEST_CTL", PLL_OFF_TEST_CTL},
  2454. {"PLL_TEST_CTL_U", PLL_OFF_TEST_CTL_U},
  2455. {"PLL_TEST_CTL_U1", PLL_OFF_TEST_CTL_U1},
  2456. {"PLL_OPMODE", PLL_OFF_OPMODE},
  2457. {"PLL_STATUS", PLL_OFF_STATUS},
  2458. {"PLL_SSC_DELTA_ALPHA", PLL_OFF_SSC_DELTA_ALPHA},
  2459. {"PLL_SSC_UPDATE_RATE", PLL_OFF_SSC_UPDATE_RATE},
  2460. };
  2461. static struct clk_register_data data1[] = {
  2462. {"APSS_PLL_VOTE", 0x0},
  2463. };
  2464. size = ARRAY_SIZE(data);
  2465. for (i = 0; i < size; i++) {
  2466. regmap_read(pll->clkr.regmap, pll->offset +
  2467. pll->regs[data[i].offset], &val);
  2468. clock_debug_output(f, "%20s: 0x%.8x\n", data[i].name, val);
  2469. }
  2470. regmap_read(pll->clkr.regmap, pll->offset + pll->regs[data[0].offset],
  2471. &val);
  2472. if (val & PLL_FSM_ENA) {
  2473. regmap_read(pll->clkr.regmap, pll->clkr.enable_reg +
  2474. data1[0].offset, &val);
  2475. clock_debug_output(f, "%20s: 0x%.8x\n", data1[0].name, val);
  2476. }
  2477. }
  2478. static struct clk_regmap_ops clk_alpha_pll_zonda_regmap_ops = {
  2479. .list_registers = clk_alpha_pll_zonda_list_registers,
  2480. };
  2481. static int clk_alpha_pll_zonda_init(struct clk_hw *hw)
  2482. {
  2483. struct clk_regmap *rclk = to_clk_regmap(hw);
  2484. if (!rclk->ops)
  2485. rclk->ops = &clk_alpha_pll_zonda_regmap_ops;
  2486. return 0;
  2487. }
  2488. const struct clk_ops clk_alpha_pll_zonda_ops = {
  2489. .prepare = clk_prepare_regmap,
  2490. .unprepare = clk_unprepare_regmap,
  2491. .pre_rate_change = clk_pre_change_regmap,
  2492. .post_rate_change = clk_post_change_regmap,
  2493. .enable = clk_zonda_pll_enable,
  2494. .disable = clk_zonda_pll_disable,
  2495. .is_enabled = clk_trion_pll_is_enabled,
  2496. .recalc_rate = clk_trion_pll_recalc_rate,
  2497. .round_rate = clk_alpha_pll_round_rate,
  2498. .set_rate = clk_zonda_pll_set_rate,
  2499. .debug_init = clk_common_debug_init,
  2500. .init = clk_alpha_pll_zonda_init,
  2501. .restore_context = clk_pll_restore_context,
  2502. };
  2503. EXPORT_SYMBOL_GPL(clk_alpha_pll_zonda_ops);
  2504. static int clk_zonda_5lpe_pll_enable(struct clk_hw *hw)
  2505. {
  2506. struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
  2507. u32 val, test_ctl_val;
  2508. int ret;
  2509. ret = regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &val);
  2510. if (ret)
  2511. return ret;
  2512. /* If in FSM mode, just vote for it */
  2513. if (val & ZONDA_5LPE_ENABLE_VOTE_RUN) {
  2514. ret = clk_enable_regmap(hw);
  2515. if (ret)
  2516. return ret;
  2517. return wait_for_pll_enable_active(pll);
  2518. }
  2519. /* Check if PLL is already enabled */
  2520. ret = trion_pll_is_enabled(pll, pll->clkr.regmap);
  2521. if (ret < 0)
  2522. return ret;
  2523. else if (ret) {
  2524. pr_warn("%s PLL is already enabled\n",
  2525. clk_hw_get_name(&pll->clkr.hw));
  2526. return 0;
  2527. }
  2528. ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll),
  2529. PLL_RESET_N | PLL_BYPASSNL,
  2530. PLL_RESET_N | PLL_BYPASSNL);
  2531. if (ret)
  2532. return ret;
  2533. /* Set operation mode to RUN */
  2534. regmap_write(pll->clkr.regmap, PLL_OPMODE(pll), PLL_RUN);
  2535. ret = regmap_read(pll->clkr.regmap, PLL_TEST_CTL(pll), &test_ctl_val);
  2536. if (ret)
  2537. return ret;
  2538. /* If cfa mode then poll for freq lock */
  2539. if (test_ctl_val & ZONDA_STAY_IN_CFA)
  2540. ret = wait_for_zonda_pll_freq_lock(pll);
  2541. else
  2542. ret = wait_for_pll_enable_lock(pll);
  2543. if (ret)
  2544. return ret;
  2545. /* Enable the PLL outputs */
  2546. ret = regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll),
  2547. ZONDA_PLL_OUT_MASK, ZONDA_PLL_OUT_MASK);
  2548. if (ret)
  2549. return ret;
  2550. /* Enable the global PLL outputs */
  2551. ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll),
  2552. PLL_OUTCTRL, PLL_OUTCTRL);
  2553. if (ret)
  2554. return ret;
  2555. /* Ensure that the write above goes through before returning. */
  2556. mb();
  2557. return ret;
  2558. }
  2559. static void clk_zonda_5lpe_pll_disable(struct clk_hw *hw)
  2560. {
  2561. struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
  2562. u32 val, mask;
  2563. int ret;
  2564. ret = regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &val);
  2565. if (ret)
  2566. return;
  2567. /* If in FSM mode, just unvote it */
  2568. if (val & ZONDA_5LPE_ENABLE_VOTE_RUN) {
  2569. clk_disable_regmap(hw);
  2570. return;
  2571. }
  2572. /* Disable the global PLL output */
  2573. ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll),
  2574. PLL_OUTCTRL, 0);
  2575. if (ret)
  2576. return;
  2577. /* Disable the PLL outputs */
  2578. ret = regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll),
  2579. PLL_OUT_MASK, 0);
  2580. if (ret)
  2581. return;
  2582. /* Place the PLL mode in STANDBY */
  2583. regmap_write(pll->clkr.regmap, PLL_OPMODE(pll),
  2584. PLL_STANDBY);
  2585. mask = PLL_RESET_N | PLL_BYPASSNL;
  2586. ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), mask, 0);
  2587. if (ret)
  2588. return;
  2589. }
  2590. const struct clk_ops clk_alpha_pll_zonda_5lpe_ops = {
  2591. .prepare = clk_prepare_regmap,
  2592. .unprepare = clk_unprepare_regmap,
  2593. .pre_rate_change = clk_pre_change_regmap,
  2594. .post_rate_change = clk_post_change_regmap,
  2595. .enable = clk_zonda_5lpe_pll_enable,
  2596. .disable = clk_zonda_5lpe_pll_disable,
  2597. .is_enabled = clk_trion_pll_is_enabled,
  2598. .recalc_rate = clk_trion_pll_recalc_rate,
  2599. .round_rate = clk_alpha_pll_round_rate,
  2600. .set_rate = clk_zonda_pll_set_rate,
  2601. .debug_init = clk_common_debug_init,
  2602. .init = clk_alpha_pll_zonda_init,
  2603. .restore_context = clk_pll_restore_context,
  2604. };
  2605. EXPORT_SYMBOL(clk_alpha_pll_zonda_5lpe_ops);
  2606. int clk_regera_pll_configure(struct clk_alpha_pll *pll, struct regmap *regmap,
  2607. const struct alpha_pll_config *config)
  2608. {
  2609. u32 mode_regval;
  2610. int ret;
  2611. if (!config) {
  2612. pr_err("PLL configuration missing.\n");
  2613. return -EINVAL;
  2614. }
  2615. ret = regmap_read(regmap, PLL_MODE(pll), &mode_regval);
  2616. if (ret)
  2617. return ret;
  2618. if (mode_regval & PLL_LOCK_DET) {
  2619. pr_warn("PLL is already enabled. Skipping configuration.\n");
  2620. return 0;
  2621. }
  2622. if (config->alpha)
  2623. regmap_write(regmap, PLL_ALPHA_VAL(pll), config->alpha);
  2624. if (config->l)
  2625. regmap_write(regmap, PLL_L_VAL(pll), config->l);
  2626. if (config->config_ctl_val)
  2627. regmap_write(regmap, PLL_CONFIG_CTL(pll),
  2628. config->config_ctl_val);
  2629. if (config->config_ctl_hi_val)
  2630. regmap_write(regmap, PLL_CONFIG_CTL_U(pll),
  2631. config->config_ctl_hi_val);
  2632. if (config->config_ctl_hi1_val)
  2633. regmap_write(regmap, PLL_CONFIG_CTL_U1(pll),
  2634. config->config_ctl_hi1_val);
  2635. if (config->user_ctl_val)
  2636. regmap_write(regmap, PLL_USER_CTL(pll), config->user_ctl_val);
  2637. if (config->test_ctl_val)
  2638. regmap_write(regmap, PLL_TEST_CTL(pll), config->test_ctl_val);
  2639. if (config->test_ctl_hi_val)
  2640. regmap_write(regmap, PLL_TEST_CTL_U(pll),
  2641. config->test_ctl_hi_val);
  2642. if (config->test_ctl_hi1_val)
  2643. regmap_write(regmap, PLL_TEST_CTL_U1(pll),
  2644. config->test_ctl_hi1_val);
  2645. /* Set operation mode to OFF */
  2646. regmap_write(regmap, PLL_OPMODE(pll), PLL_STANDBY);
  2647. return 0;
  2648. }
  2649. EXPORT_SYMBOL(clk_regera_pll_configure);
  2650. static int clk_regera_pll_enable(struct clk_hw *hw)
  2651. {
  2652. struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
  2653. u32 val, l_val;
  2654. int ret;
  2655. ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
  2656. if (ret)
  2657. return ret;
  2658. /* If in FSM mode, just vote for it */
  2659. if (val & PLL_VOTE_FSM_ENA) {
  2660. ret = clk_enable_regmap(hw);
  2661. if (ret)
  2662. return ret;
  2663. return wait_for_pll_enable_active(pll);
  2664. }
  2665. ret = regmap_read(pll->clkr.regmap, PLL_L_VAL(pll), &l_val);
  2666. if (ret)
  2667. return ret;
  2668. /* PLL has lost it's L value, needs reconfiguration */
  2669. if (!l_val) {
  2670. ret = clk_regera_pll_configure(pll, pll->clkr.regmap,
  2671. pll->config);
  2672. if (ret) {
  2673. pr_err("Failed to configure %s\n", clk_hw_get_name(hw));
  2674. return ret;
  2675. }
  2676. pr_warn("%s: PLL configuration lost, reconfiguration of PLL done.\n",
  2677. clk_hw_get_name(hw));
  2678. }
  2679. /* Get the PLL out of bypass mode */
  2680. ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll),
  2681. PLL_BYPASSNL, PLL_BYPASSNL);
  2682. if (ret)
  2683. return ret;
  2684. /*
  2685. * H/W requires a 1us delay between disabling the bypass and
  2686. * de-asserting the reset.
  2687. */
  2688. mb();
  2689. udelay(1);
  2690. ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll),
  2691. PLL_RESET_N, PLL_RESET_N);
  2692. if (ret)
  2693. return ret;
  2694. /* Set operation mode to RUN */
  2695. regmap_write(pll->clkr.regmap, PLL_OPMODE(pll), PLL_RUN);
  2696. ret = wait_for_pll_enable_lock(pll);
  2697. if (ret)
  2698. return ret;
  2699. /* Enable the PLL outputs */
  2700. ret = regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll),
  2701. ZONDA_PLL_OUT_MASK, ZONDA_PLL_OUT_MASK);
  2702. if (ret)
  2703. return ret;
  2704. /* Enable the global PLL outputs */
  2705. ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll),
  2706. PLL_OUTCTRL, PLL_OUTCTRL);
  2707. if (ret)
  2708. return ret;
  2709. /* Ensure that the write above goes through before returning. */
  2710. mb();
  2711. return ret;
  2712. }
  2713. static void clk_regera_pll_disable(struct clk_hw *hw)
  2714. {
  2715. int ret;
  2716. struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
  2717. u32 val, mask;
  2718. ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
  2719. if (ret)
  2720. return;
  2721. /* If in FSM mode, just unvote it */
  2722. if (val & PLL_VOTE_FSM_ENA) {
  2723. clk_disable_regmap(hw);
  2724. return;
  2725. }
  2726. /* Disable the global PLL output */
  2727. ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll),
  2728. PLL_OUTCTRL, 0);
  2729. if (ret)
  2730. return;
  2731. /* Disable the PLL outputs */
  2732. ret = regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll),
  2733. ZONDA_PLL_OUT_MASK, 0);
  2734. /* Put the PLL in bypass and reset */
  2735. mask = PLL_RESET_N | PLL_BYPASSNL;
  2736. ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), mask, 0);
  2737. if (ret)
  2738. return;
  2739. /* Place the PLL mode in OFF state */
  2740. regmap_write(pll->clkr.regmap, PLL_OPMODE(pll), PLL_STANDBY);
  2741. }
  2742. static int clk_regera_pll_set_rate(struct clk_hw *hw, unsigned long rate,
  2743. unsigned long prate)
  2744. {
  2745. struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
  2746. unsigned long rrate;
  2747. u32 l, regval, alpha_width = pll_alpha_width(pll);
  2748. u64 a;
  2749. int ret;
  2750. ret = regmap_read(pll->clkr.regmap, PLL_L_VAL(pll), &l);
  2751. if (ret)
  2752. return ret;
  2753. /* PLL has lost it's L value, needs reconfiguration */
  2754. if (!l) {
  2755. ret = clk_regera_pll_configure(pll, pll->clkr.regmap,
  2756. pll->config);
  2757. if (ret) {
  2758. pr_err("Failed to configure %s\n", clk_hw_get_name(hw));
  2759. return ret;
  2760. }
  2761. pr_warn("%s: PLL configuration lost, reconfiguration of PLL done.\n",
  2762. clk_hw_get_name(hw));
  2763. }
  2764. rrate = alpha_pll_round_rate(rate, prate, &l, &a, alpha_width);
  2765. /*
  2766. * Due to a limited number of bits for fractional rate programming, the
  2767. * rounded up rate could be marginally higher than the requested rate.
  2768. */
  2769. if (rrate > (rate + PLL_RATE_MARGIN) || rrate < rate) {
  2770. pr_err("Call set rate on the PLL with rounded rates!\n");
  2771. return -EINVAL;
  2772. }
  2773. if (a && (a & BIT(15)))
  2774. zonda_pll_adjust_l_val(rate, prate, &l);
  2775. regmap_write(pll->clkr.regmap, PLL_ALPHA_VAL(pll), a);
  2776. regmap_write(pll->clkr.regmap, PLL_L_VAL(pll), l);
  2777. /* Return early if the PLL is disabled */
  2778. ret = regmap_read(pll->clkr.regmap, PLL_OPMODE(pll), &regval);
  2779. if (ret)
  2780. return ret;
  2781. if (regval == PLL_STANDBY)
  2782. return 0;
  2783. /* Wait before polling for the frequency latch */
  2784. udelay(5);
  2785. ret = wait_for_pll_enable_lock(pll);
  2786. if (ret)
  2787. return ret;
  2788. /* Wait for PLL output to stabilize */
  2789. udelay(100);
  2790. return 0;
  2791. }
  2792. static unsigned long
  2793. clk_regera_pll_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
  2794. {
  2795. struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
  2796. u32 l, frac, alpha_width = pll_alpha_width(pll);
  2797. regmap_read(pll->clkr.regmap, PLL_L_VAL(pll), &l);
  2798. regmap_read(pll->clkr.regmap, PLL_ALPHA_VAL(pll), &frac);
  2799. return alpha_pll_calc_rate(parent_rate, l, frac, alpha_width);
  2800. }
  2801. static void clk_regera_pll_list_registers(struct seq_file *f, struct clk_hw *hw)
  2802. {
  2803. struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
  2804. int size, i, val;
  2805. static struct clk_register_data data[] = {
  2806. {"PLL_MODE", PLL_OFF_MODE},
  2807. {"PLL_L_VAL", PLL_OFF_L_VAL},
  2808. {"PLL_ALPHA_VAL", PLL_OFF_ALPHA_VAL},
  2809. {"PLL_USER_CTL", PLL_OFF_USER_CTL},
  2810. {"PLL_CONFIG_CTL", PLL_OFF_CONFIG_CTL},
  2811. {"PLL_CONFIG_CTL_U", PLL_OFF_CONFIG_CTL_U},
  2812. {"PLL_CONFIG_CTL_U1", PLL_OFF_CONFIG_CTL_U1},
  2813. {"PLL_TEST_CTL", PLL_OFF_TEST_CTL},
  2814. {"PLL_TEST_CTL_U", PLL_OFF_TEST_CTL_U},
  2815. {"PLL_TEST_CTL_U1", PLL_OFF_TEST_CTL_U1},
  2816. {"PLL_OPMODE", PLL_OFF_OPMODE},
  2817. {"PLL_STATUS", PLL_OFF_STATUS},
  2818. };
  2819. static struct clk_register_data data1[] = {
  2820. {"APSS_PLL_VOTE", 0x0},
  2821. };
  2822. size = ARRAY_SIZE(data);
  2823. for (i = 0; i < size; i++) {
  2824. regmap_read(pll->clkr.regmap, pll->offset +
  2825. pll->regs[data[i].offset], &val);
  2826. clock_debug_output(f, "%20s: 0x%.8x\n", data[i].name, val);
  2827. }
  2828. regmap_read(pll->clkr.regmap, pll->offset + pll->regs[data[0].offset],
  2829. &val);
  2830. if (val & PLL_FSM_ENA) {
  2831. regmap_read(pll->clkr.regmap, pll->clkr.enable_reg +
  2832. data1[0].offset, &val);
  2833. clock_debug_output(f, "%20s: 0x%.8x\n", data1[0].name, val);
  2834. }
  2835. }
  2836. static struct clk_regmap_ops clk_regera_pll_regmap_ops = {
  2837. .list_registers = clk_regera_pll_list_registers,
  2838. };
  2839. static int clk_regera_pll_init(struct clk_hw *hw)
  2840. {
  2841. struct clk_regmap *rclk = to_clk_regmap(hw);
  2842. if (!rclk->ops)
  2843. rclk->ops = &clk_regera_pll_regmap_ops;
  2844. return 0;
  2845. }
  2846. const struct clk_ops clk_regera_pll_ops = {
  2847. .prepare = clk_prepare_regmap,
  2848. .unprepare = clk_unprepare_regmap,
  2849. .pre_rate_change = clk_pre_change_regmap,
  2850. .post_rate_change = clk_post_change_regmap,
  2851. .enable = clk_regera_pll_enable,
  2852. .disable = clk_regera_pll_disable,
  2853. .is_enabled = clk_alpha_pll_is_enabled,
  2854. .recalc_rate = clk_regera_pll_recalc_rate,
  2855. .round_rate = clk_alpha_pll_round_rate,
  2856. .set_rate = clk_regera_pll_set_rate,
  2857. .debug_init = clk_common_debug_init,
  2858. .init = clk_regera_pll_init,
  2859. .restore_context = clk_pll_restore_context,
  2860. };
  2861. EXPORT_SYMBOL(clk_regera_pll_ops);
  2862. int clk_lucid_evo_pll_configure(struct clk_alpha_pll *pll,
  2863. struct regmap *regmap, const struct alpha_pll_config *config)
  2864. {
  2865. int ret;
  2866. u32 regval;
  2867. ret = regmap_update_bits(regmap, PLL_USER_CTL(pll), PLL_OUT_MASK, PLL_OUT_MASK);
  2868. if (ret)
  2869. return ret;
  2870. ret = trion_pll_is_enabled(pll, regmap);
  2871. if (ret)
  2872. return ret;
  2873. regmap_read(regmap, PLL_L_VAL(pll), &regval);
  2874. regval &= LUCID_EVO_PLL_L_VAL_MASK;
  2875. if (regval)
  2876. return 0;
  2877. if (config->l)
  2878. ret |= regmap_update_bits(regmap, PLL_L_VAL(pll),
  2879. LUCID_EVO_PLL_L_VAL_MASK, config->l);
  2880. if (config->cal_l_ringosc) {
  2881. ret |= regmap_update_bits(regmap, PLL_L_VAL(pll),
  2882. LUCID_OLE_PROCESS_CAL_L_VAL_MASK,
  2883. config->cal_l << LUCID_OLE_PROCESS_CAL_L_VAL_SHIFT);
  2884. ret |= regmap_update_bits(regmap, PLL_L_VAL(pll),
  2885. LUCID_OLE_RINGOSC_CAL_L_VAL_MASK,
  2886. config->cal_l_ringosc <<
  2887. LUCID_OLE_RINGOSC_CAL_L_VAL_SHIFT);
  2888. } else if (config->cal_l) {
  2889. ret |= regmap_update_bits(regmap, PLL_L_VAL(pll),
  2890. LUCID_EVO_PLL_CAL_L_VAL_MASK,
  2891. config->cal_l << LUCID_EVO_PLL_CAL_L_VAL_SHIFT);
  2892. } else {
  2893. ret |= regmap_write(regmap, PLL_CAL_L_VAL(pll),
  2894. TRION_PLL_CAL_VAL << LUCID_EVO_PLL_CAL_L_VAL_SHIFT);
  2895. }
  2896. if (config->alpha)
  2897. ret |= regmap_write(regmap, PLL_ALPHA_VAL(pll), config->alpha);
  2898. if (config->config_ctl_val)
  2899. ret |= regmap_write(regmap, PLL_CONFIG_CTL(pll),
  2900. config->config_ctl_val);
  2901. if (config->config_ctl_hi_val)
  2902. ret |= regmap_write(regmap, PLL_CONFIG_CTL_U(pll),
  2903. config->config_ctl_hi_val);
  2904. if (config->config_ctl_hi1_val)
  2905. ret |= regmap_write(regmap, PLL_CONFIG_CTL_U1(pll),
  2906. config->config_ctl_hi1_val);
  2907. if (config->user_ctl_val)
  2908. ret |= regmap_write(regmap, PLL_USER_CTL(pll),
  2909. config->user_ctl_val | PLL_OUT_MASK);
  2910. if (config->user_ctl_hi_val)
  2911. ret |= regmap_write(regmap, PLL_USER_CTL_U(pll),
  2912. config->user_ctl_hi_val);
  2913. if (config->test_ctl_val)
  2914. ret |= regmap_write(regmap, PLL_TEST_CTL(pll),
  2915. config->test_ctl_val);
  2916. if (config->test_ctl_hi_val)
  2917. ret |= regmap_write(regmap, PLL_TEST_CTL_U(pll),
  2918. config->test_ctl_hi_val);
  2919. if (config->test_ctl_hi1_val)
  2920. ret |= regmap_write(regmap, PLL_TEST_CTL_U1(pll),
  2921. config->test_ctl_hi1_val);
  2922. if (config->test_ctl_hi2_val)
  2923. ret |= regmap_write(regmap, PLL_TEST_CTL_U2(pll),
  2924. config->test_ctl_hi2_val);
  2925. /* Disable PLL output */
  2926. ret |= regmap_update_bits(regmap, PLL_MODE(pll),
  2927. PLL_OUTCTRL, 0);
  2928. /* Set operation mode to STANDBY */
  2929. ret |= regmap_write(regmap, PLL_OPMODE(pll), PLL_STANDBY);
  2930. /* PLL should be in OFF mode before continuing */
  2931. wmb();
  2932. /* Place the PLL in STANDBY mode */
  2933. ret |= regmap_update_bits(regmap, PLL_MODE(pll),
  2934. PLL_RESET_N, PLL_RESET_N);
  2935. return ret ? -EIO : 0;
  2936. }
  2937. EXPORT_SYMBOL(clk_lucid_evo_pll_configure);
  2938. static int _alpha_pll_lucid_evo_enable(struct clk_hw *hw)
  2939. {
  2940. struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
  2941. struct regmap *regmap = pll->clkr.regmap;
  2942. u32 val;
  2943. int ret;
  2944. ret = regmap_read(regmap, PLL_USER_CTL(pll), &val);
  2945. if (ret)
  2946. return ret;
  2947. /* If in FSM mode, just vote for it */
  2948. if (val & LUCID_EVO_ENABLE_VOTE_RUN) {
  2949. ret = clk_enable_regmap(hw);
  2950. if (ret)
  2951. return ret;
  2952. return wait_for_pll_enable_lock(pll);
  2953. }
  2954. /* Check if PLL is already enabled */
  2955. ret = trion_pll_is_enabled(pll, regmap);
  2956. if (ret < 0) {
  2957. return ret;
  2958. } else if (ret) {
  2959. pr_warn("%s PLL is already enabled\n", clk_hw_get_name(&pll->clkr.hw));
  2960. return 0;
  2961. }
  2962. ret = regmap_update_bits(regmap, PLL_MODE(pll), PLL_RESET_N, PLL_RESET_N);
  2963. if (ret)
  2964. return ret;
  2965. /* Set operation mode to RUN */
  2966. regmap_write(regmap, PLL_OPMODE(pll), PLL_RUN);
  2967. ret = wait_for_pll_enable_lock(pll);
  2968. if (ret)
  2969. return ret;
  2970. /* Enable the global PLL outputs */
  2971. ret = regmap_update_bits(regmap, PLL_MODE(pll), PLL_OUTCTRL, PLL_OUTCTRL);
  2972. if (ret)
  2973. return ret;
  2974. /* Ensure that the write above goes through before returning. */
  2975. mb();
  2976. return ret;
  2977. }
  2978. static int alpha_pll_lucid_evo_enable(struct clk_hw *hw)
  2979. {
  2980. struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
  2981. if (!(pll->flags & ENABLE_IN_PREPARE))
  2982. return _alpha_pll_lucid_evo_enable(hw);
  2983. return 0;
  2984. }
  2985. static void _alpha_pll_lucid_evo_disable(struct clk_hw *hw, bool reset)
  2986. {
  2987. struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
  2988. struct regmap *regmap = pll->clkr.regmap;
  2989. u32 val;
  2990. int ret;
  2991. ret = regmap_read(regmap, PLL_USER_CTL(pll), &val);
  2992. if (ret)
  2993. return;
  2994. /* If in FSM mode, just unvote it */
  2995. if (val & LUCID_EVO_ENABLE_VOTE_RUN) {
  2996. clk_disable_regmap(hw);
  2997. return;
  2998. }
  2999. /* Disable the global PLL output */
  3000. ret = regmap_update_bits(regmap, PLL_MODE(pll), PLL_OUTCTRL, 0);
  3001. if (ret)
  3002. return;
  3003. /* Place the PLL mode in STANDBY */
  3004. regmap_write(regmap, PLL_OPMODE(pll), PLL_STANDBY);
  3005. if (reset || pll->flags & DISABLE_TO_OFF)
  3006. regmap_update_bits(regmap, PLL_MODE(pll), PLL_RESET_N, 0);
  3007. }
  3008. /*
  3009. * The Lucid PLL requires a power-on self-calibration which happens when the
  3010. * PLL comes out of reset. The calibration is performed at an output frequency
  3011. * of ~1300 MHz which means that SW will have to vote on a voltage that's
  3012. * equal to or greater than SVS_L1 on the corresponding rail. Since this is not
  3013. * feasable to do in the atomic enable path, temporarily bring up the PLL here,
  3014. * let it calibrate, and place it in standby before returning.
  3015. */
  3016. static int _alpha_pll_lucid_evo_prepare(struct clk_hw *hw, bool reset)
  3017. {
  3018. struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
  3019. struct clk_hw *p;
  3020. u32 regval;
  3021. unsigned long prate;
  3022. int ret;
  3023. ret = clk_prepare_regmap(hw);
  3024. if (ret)
  3025. return ret;
  3026. /* Return early if calibration is not needed. */
  3027. regmap_read(pll->clkr.regmap, PLL_MODE(pll), &regval);
  3028. if (!(regval & LUCID_EVO_PCAL_NOT_DONE) && !(pll->flags & ENABLE_IN_PREPARE))
  3029. return 0;
  3030. if (pll->config) {
  3031. /*
  3032. * Reconfigure the PLL if CAL_L_VAL is 0 (which implies that all
  3033. * clock controller registers have been reset).
  3034. */
  3035. regmap_read(pll->clkr.regmap, PLL_L_VAL(pll), &regval);
  3036. regval &= LUCID_EVO_PLL_CAL_L_VAL_MASK;
  3037. if (!regval) {
  3038. pr_debug("reconfiguring %s after it was reset\n",
  3039. clk_hw_get_name(hw));
  3040. ret = clk_lucid_evo_pll_configure(pll,
  3041. pll->clkr.regmap, pll->config);
  3042. if (ret) {
  3043. pr_err("pll configuration failed: %u\n", ret);
  3044. return ret;
  3045. }
  3046. }
  3047. }
  3048. p = clk_hw_get_parent(hw);
  3049. if (!p)
  3050. return -EINVAL;
  3051. prate = clk_hw_get_rate(p);
  3052. if (!prate)
  3053. return -EINVAL;
  3054. ret = _alpha_pll_lucid_evo_enable(hw);
  3055. if (ret)
  3056. return ret;
  3057. /* Do not disable pll if ENABLE_IN_PREPARE*/
  3058. if (!(pll->flags & ENABLE_IN_PREPARE))
  3059. _alpha_pll_lucid_evo_disable(hw, reset);
  3060. return 0;
  3061. }
  3062. static int alpha_pll_lucid_evo_set_rate(struct clk_hw *hw, unsigned long rate,
  3063. unsigned long prate)
  3064. {
  3065. struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
  3066. unsigned long rrate;
  3067. u32 regval, l;
  3068. u64 a;
  3069. int ret;
  3070. rrate = alpha_pll_round_rate(rate, prate, &l, &a,
  3071. ALPHA_REG_16BIT_WIDTH);
  3072. /*
  3073. * Due to a limited number of bits for fractional rate programming, the
  3074. * rounded up rate could be marginally higher than the requested rate.
  3075. */
  3076. if (rrate > (rate + PLL_RATE_MARGIN) || rrate < rate) {
  3077. pr_err("Call set rate on the PLL with rounded rates!\n");
  3078. return -EINVAL;
  3079. }
  3080. regmap_update_bits(pll->clkr.regmap, PLL_L_VAL(pll),
  3081. LUCID_EVO_PLL_L_VAL_MASK, l);
  3082. regmap_write(pll->clkr.regmap, PLL_ALPHA_VAL(pll), a);
  3083. /*
  3084. * Latch the new L and ALPHA values. This is only necessary when the
  3085. * PLL is in RUN or STANDBY. If the PLL is in RESET, then the latch
  3086. * interface is disabled and the ACK won't assert. The PLL will
  3087. * automatically latch the values when transitioning out of RESET.
  3088. */
  3089. regmap_read(pll->clkr.regmap, PLL_MODE(pll), &regval);
  3090. if (regval & PLL_RESET_N) {
  3091. ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll),
  3092. LUCID_5LPE_PLL_LATCH_INPUT, LUCID_5LPE_PLL_LATCH_INPUT);
  3093. if (ret)
  3094. return ret;
  3095. /* Wait for 2 reference cycles before checking the ACK bit. */
  3096. udelay(1);
  3097. regmap_read(pll->clkr.regmap, PLL_MODE(pll), &regval);
  3098. if (!(regval & LUCID_5LPE_ALPHA_PLL_ACK_LATCH)) {
  3099. WARN_CLK(&pll->clkr.hw, 1,
  3100. "PLL latch failed. Output may be unstable!\n");
  3101. return -EINVAL;
  3102. }
  3103. /* Return the latch input to 0 */
  3104. ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll),
  3105. LUCID_5LPE_PLL_LATCH_INPUT, 0);
  3106. if (ret)
  3107. return ret;
  3108. }
  3109. if (clk_hw_is_enabled(hw)) {
  3110. ret = wait_for_pll_enable_lock(pll);
  3111. if (ret)
  3112. return ret;
  3113. }
  3114. return 0;
  3115. }
  3116. static void lucid_evo_pll_list_registers(struct seq_file *f,
  3117. struct clk_hw *hw)
  3118. {
  3119. struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
  3120. int size, i, val;
  3121. static struct clk_register_data data[] = {
  3122. {"PLL_MODE", PLL_OFF_MODE},
  3123. {"PLL_OPMODE", PLL_OFF_OPMODE},
  3124. {"PLL_STATUS", PLL_OFF_STATUS},
  3125. {"PLL_L_VAL", PLL_OFF_L_VAL},
  3126. {"PLL_ALPHA_VAL", PLL_OFF_ALPHA_VAL},
  3127. {"PLL_USER_CTL", PLL_OFF_USER_CTL},
  3128. {"PLL_USER_CTL_U", PLL_OFF_USER_CTL_U},
  3129. {"PLL_CONFIG_CTL", PLL_OFF_CONFIG_CTL},
  3130. {"PLL_CONFIG_CTL_U", PLL_OFF_CONFIG_CTL_U},
  3131. {"PLL_CONFIG_CTL_U1", PLL_OFF_CONFIG_CTL_U1},
  3132. {"PLL_TEST_CTL", PLL_OFF_TEST_CTL},
  3133. {"PLL_TEST_CTL_U", PLL_OFF_TEST_CTL_U},
  3134. {"PLL_TEST_CTL_U1", PLL_OFF_TEST_CTL_U1},
  3135. };
  3136. static struct clk_register_data data1[] = {
  3137. {"APSS_PLL_VOTE", 0x0},
  3138. };
  3139. size = ARRAY_SIZE(data);
  3140. for (i = 0; i < size; i++) {
  3141. regmap_read(pll->clkr.regmap, pll->offset +
  3142. pll->regs[data[i].offset], &val);
  3143. clock_debug_output(f, "%20s: 0x%.8x\n", data[i].name, val);
  3144. }
  3145. regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &val);
  3146. if (val & LUCID_EVO_ENABLE_VOTE_RUN) {
  3147. regmap_read(pll->clkr.regmap, pll->clkr.enable_reg +
  3148. data1[0].offset, &val);
  3149. clock_debug_output(f, "%20s: 0x%.8x\n", data1[0].name, val);
  3150. }
  3151. }
  3152. static struct clk_regmap_ops clk_lucid_evo_pll_regmap_ops = {
  3153. .list_registers = &lucid_evo_pll_list_registers,
  3154. };
  3155. static int clk_lucid_evo_pll_init(struct clk_hw *hw)
  3156. {
  3157. struct clk_regmap *rclk = to_clk_regmap(hw);
  3158. if (!rclk->ops)
  3159. rclk->ops = &clk_lucid_evo_pll_regmap_ops;
  3160. return 0;
  3161. }
  3162. static void alpha_pll_lucid_evo_disable(struct clk_hw *hw)
  3163. {
  3164. struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
  3165. if (!(pll->flags & ENABLE_IN_PREPARE))
  3166. _alpha_pll_lucid_evo_disable(hw, false);
  3167. }
  3168. static int alpha_pll_lucid_evo_prepare(struct clk_hw *hw)
  3169. {
  3170. return _alpha_pll_lucid_evo_prepare(hw, false);
  3171. }
  3172. static void alpha_pll_lucid_evo_unprepare(struct clk_hw *hw)
  3173. {
  3174. struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
  3175. if (pll->flags & ENABLE_IN_PREPARE)
  3176. _alpha_pll_lucid_evo_disable(hw, false);
  3177. clk_unprepare_regmap(hw);
  3178. }
  3179. static void alpha_pll_reset_lucid_evo_disable(struct clk_hw *hw)
  3180. {
  3181. _alpha_pll_lucid_evo_disable(hw, true);
  3182. }
  3183. static int alpha_pll_reset_lucid_evo_prepare(struct clk_hw *hw)
  3184. {
  3185. return _alpha_pll_lucid_evo_prepare(hw, true);
  3186. }
  3187. static unsigned long alpha_pll_lucid_evo_recalc_rate(struct clk_hw *hw,
  3188. unsigned long parent_rate)
  3189. {
  3190. struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
  3191. struct regmap *regmap = pll->clkr.regmap;
  3192. u32 l, frac;
  3193. regmap_read(regmap, PLL_L_VAL(pll), &l);
  3194. l &= LUCID_EVO_PLL_L_VAL_MASK;
  3195. regmap_read(regmap, PLL_ALPHA_VAL(pll), &frac);
  3196. return alpha_pll_calc_rate(parent_rate, l, frac, pll_alpha_width(pll));
  3197. }
  3198. static int clk_lucid_evo_pll_postdiv_set_rate(struct clk_hw *hw, unsigned long rate,
  3199. unsigned long parent_rate)
  3200. {
  3201. return __clk_lucid_pll_postdiv_set_rate(hw, rate, parent_rate, LUCID_EVO_ENABLE_VOTE_RUN);
  3202. }
  3203. const struct clk_ops clk_alpha_pll_fixed_lucid_evo_ops = {
  3204. .prepare = clk_prepare_regmap,
  3205. .unprepare = clk_unprepare_regmap,
  3206. .pre_rate_change = clk_pre_change_regmap,
  3207. .post_rate_change = clk_post_change_regmap,
  3208. .enable = alpha_pll_lucid_evo_enable,
  3209. .disable = alpha_pll_lucid_evo_disable,
  3210. .is_enabled = clk_trion_pll_is_enabled,
  3211. .recalc_rate = alpha_pll_lucid_evo_recalc_rate,
  3212. .round_rate = clk_alpha_pll_round_rate,
  3213. .debug_init = clk_common_debug_init,
  3214. .init = clk_lucid_evo_pll_init,
  3215. .restore_context = clk_pll_restore_context,
  3216. };
  3217. EXPORT_SYMBOL_GPL(clk_alpha_pll_fixed_lucid_evo_ops);
  3218. const struct clk_ops clk_alpha_pll_postdiv_lucid_evo_ops = {
  3219. .recalc_rate = clk_alpha_pll_postdiv_fabia_recalc_rate,
  3220. .round_rate = clk_alpha_pll_postdiv_fabia_round_rate,
  3221. .set_rate = clk_lucid_evo_pll_postdiv_set_rate,
  3222. };
  3223. EXPORT_SYMBOL_GPL(clk_alpha_pll_postdiv_lucid_evo_ops);
  3224. const struct clk_ops clk_alpha_pll_lucid_evo_ops = {
  3225. .prepare = alpha_pll_lucid_evo_prepare,
  3226. .unprepare = alpha_pll_lucid_evo_unprepare,
  3227. .pre_rate_change = clk_pre_change_regmap,
  3228. .post_rate_change = clk_post_change_regmap,
  3229. .enable = alpha_pll_lucid_evo_enable,
  3230. .disable = alpha_pll_lucid_evo_disable,
  3231. .is_enabled = clk_trion_pll_is_enabled,
  3232. .recalc_rate = alpha_pll_lucid_evo_recalc_rate,
  3233. .round_rate = clk_alpha_pll_round_rate,
  3234. .set_rate = alpha_pll_lucid_evo_set_rate,
  3235. .debug_init = clk_common_debug_init,
  3236. .init = clk_lucid_evo_pll_init,
  3237. .restore_context = clk_pll_restore_context,
  3238. };
  3239. EXPORT_SYMBOL(clk_alpha_pll_lucid_evo_ops);
  3240. const struct clk_ops clk_alpha_pll_reset_lucid_evo_ops = {
  3241. .prepare = alpha_pll_reset_lucid_evo_prepare,
  3242. .enable = alpha_pll_lucid_evo_enable,
  3243. .disable = alpha_pll_reset_lucid_evo_disable,
  3244. .is_enabled = clk_trion_pll_is_enabled,
  3245. .recalc_rate = alpha_pll_lucid_evo_recalc_rate,
  3246. .round_rate = clk_alpha_pll_round_rate,
  3247. .set_rate = alpha_pll_lucid_5lpe_set_rate,
  3248. };
  3249. EXPORT_SYMBOL_GPL(clk_alpha_pll_reset_lucid_evo_ops);
  3250. unsigned long lucid_evo_calc_pll(struct clk_hw *hw, u32 l, u64 a)
  3251. {
  3252. struct clk_hw *p;
  3253. unsigned long prate;
  3254. p = clk_hw_get_parent(hw);
  3255. if (!p)
  3256. return 0;
  3257. prate = clk_hw_get_rate(p);
  3258. return alpha_pll_calc_rate(prate, l, a, ALPHA_REG_16BIT_WIDTH);
  3259. }
  3260. static struct clk_regmap_ops clk_lucid_evo_pll_crm_regmap_ops = {
  3261. .list_registers = lucid_evo_pll_list_registers,
  3262. .calc_pll = lucid_evo_calc_pll,
  3263. };
  3264. unsigned long lucid_evo_calc_pll_out(struct clk_hw *hw, u32 l, u64 a)
  3265. {
  3266. struct clk_hw *p;
  3267. unsigned long parent_rate;
  3268. p = clk_hw_get_parent(hw);
  3269. if (!p)
  3270. return 0;
  3271. parent_rate = lucid_evo_calc_pll(p, l, a);
  3272. return clk_alpha_pll_postdiv_fabia_recalc_rate(hw, parent_rate);
  3273. }
  3274. static struct clk_regmap_ops clk_lucid_evo_pll_crm_postdiv_regmap_ops = {
  3275. .calc_pll = lucid_evo_calc_pll_out,
  3276. };
  3277. static int clk_lucid_evo_pll_crm_init(struct clk_hw *hw)
  3278. {
  3279. struct clk_regmap *rclk = to_clk_regmap(hw);
  3280. if (!rclk->ops)
  3281. rclk->ops = &clk_lucid_evo_pll_crm_regmap_ops;
  3282. return 0;
  3283. }
  3284. const struct clk_ops clk_alpha_pll_crm_lucid_evo_ops = {
  3285. .recalc_rate = alpha_pll_lucid_evo_recalc_rate,
  3286. .round_rate = clk_alpha_pll_round_rate,
  3287. .debug_init = clk_common_debug_init,
  3288. .init = clk_lucid_evo_pll_crm_init,
  3289. };
  3290. EXPORT_SYMBOL(clk_alpha_pll_crm_lucid_evo_ops);
  3291. static int clk_lucid_evo_pll_crm_postdiv_init(struct clk_hw *hw)
  3292. {
  3293. struct clk_regmap *rclk = to_clk_regmap(hw);
  3294. if (!rclk->ops)
  3295. rclk->ops = &clk_lucid_evo_pll_crm_postdiv_regmap_ops;
  3296. return 0;
  3297. }
  3298. const struct clk_ops clk_alpha_pll_crm_postdiv_lucid_evo_ops = {
  3299. .recalc_rate = clk_alpha_pll_postdiv_fabia_recalc_rate,
  3300. .round_rate = clk_alpha_pll_postdiv_fabia_round_rate,
  3301. .init = clk_lucid_evo_pll_crm_postdiv_init,
  3302. };
  3303. EXPORT_SYMBOL(clk_alpha_pll_crm_postdiv_lucid_evo_ops);
  3304. static int __zonda_pll_is_enabled(struct clk_alpha_pll *pll,
  3305. struct regmap *regmap)
  3306. {
  3307. u32 mode_regval, opmode_regval;
  3308. int ret;
  3309. ret = regmap_read(regmap, PLL_MODE(pll), &mode_regval);
  3310. ret |= regmap_read(regmap, PLL_OPMODE(pll), &opmode_regval);
  3311. if (ret) {
  3312. pr_err("zonda pll is enabled reg read failed\n");
  3313. return ret;
  3314. }
  3315. return ((opmode_regval & PLL_RUN) &&
  3316. (mode_regval & PLL_OUTCTRL));
  3317. }
  3318. static int clk_zonda_pll_is_enabled(struct clk_hw *hw)
  3319. {
  3320. struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
  3321. return __zonda_pll_is_enabled(pll, pll->clkr.regmap);
  3322. }
  3323. static int clk_zonda_evo_pll_enable(struct clk_hw *hw)
  3324. {
  3325. struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
  3326. u32 val, test_ctl_val;
  3327. int ret;
  3328. ret = regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &val);
  3329. if (ret)
  3330. return ret;
  3331. if (val & LUCID_EVO_ENABLE_VOTE_RUN) {
  3332. ret = clk_enable_regmap(hw);
  3333. if (ret)
  3334. return ret;
  3335. return wait_for_pll_enable_active(pll);
  3336. }
  3337. /* Get the PLL out of bypass mode */
  3338. ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll),
  3339. PLL_BYPASSNL, PLL_BYPASSNL);
  3340. if (ret)
  3341. return ret;
  3342. /*
  3343. * H/W requires a 1us delay between disabling the bypass and
  3344. * de-asserting the reset.
  3345. */
  3346. mb();
  3347. udelay(1);
  3348. ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll),
  3349. PLL_RESET_N, PLL_RESET_N);
  3350. if (ret)
  3351. return ret;
  3352. /* Set operation mode to RUN */
  3353. regmap_write(pll->clkr.regmap, PLL_OPMODE(pll),
  3354. PLL_RUN);
  3355. ret = regmap_read(pll->clkr.regmap, PLL_TEST_CTL(pll), &test_ctl_val);
  3356. if (ret)
  3357. return ret;
  3358. /* If cfa mode then poll for freq lock */
  3359. if (test_ctl_val & ZONDA_STAY_IN_CFA)
  3360. ret = wait_for_zonda_pll_freq_lock(pll);
  3361. else
  3362. ret = wait_for_pll_enable_lock(pll);
  3363. if (ret)
  3364. return ret;
  3365. /* Enable the PLL outputs */
  3366. ret = regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll),
  3367. ZONDA_PLL_OUT_MASK, ZONDA_PLL_OUT_MASK);
  3368. if (ret)
  3369. return ret;
  3370. /* Enable the global PLL outputs */
  3371. ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll),
  3372. PLL_OUTCTRL, PLL_OUTCTRL);
  3373. if (ret)
  3374. return ret;
  3375. /* Ensure that the write above goes through before returning. */
  3376. mb();
  3377. return 0;
  3378. }
  3379. static void clk_zonda_evo_pll_disable(struct clk_hw *hw)
  3380. {
  3381. struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
  3382. u32 val, mask;
  3383. int ret;
  3384. ret = regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &val);
  3385. if (ret)
  3386. return;
  3387. if (val & LUCID_EVO_ENABLE_VOTE_RUN) {
  3388. clk_disable_regmap(hw);
  3389. return;
  3390. }
  3391. /* Disable the global PLL output */
  3392. ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll),
  3393. PLL_OUTCTRL, 0);
  3394. if (ret)
  3395. return;
  3396. /* Disable the PLL outputs */
  3397. ret = regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll),
  3398. ZONDA_PLL_OUT_MASK, 0);
  3399. /* Put the PLL in bypass and reset */
  3400. mask = PLL_RESET_N | PLL_BYPASSNL;
  3401. ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), mask, 0);
  3402. if (ret)
  3403. return;
  3404. /* Place the PLL mode in OFF state */
  3405. regmap_write(pll->clkr.regmap, PLL_OPMODE(pll),
  3406. 0x0);
  3407. }
  3408. static void clk_alpha_pll_zonda_evo_list_registers(struct seq_file *f,
  3409. struct clk_hw *hw)
  3410. {
  3411. struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
  3412. int size, i, val;
  3413. static struct clk_register_data data[] = {
  3414. {"PLL_MODE", PLL_OFF_MODE},
  3415. {"PLL_L_VAL", PLL_OFF_L_VAL},
  3416. {"PLL_ALPHA_VAL", PLL_OFF_ALPHA_VAL},
  3417. {"PLL_USER_CTL", PLL_OFF_USER_CTL},
  3418. {"PLL_USER_CTL_U", PLL_OFF_USER_CTL_U},
  3419. {"PLL_CONFIG_CTL", PLL_OFF_CONFIG_CTL},
  3420. {"PLL_CONFIG_CTL_U", PLL_OFF_CONFIG_CTL_U},
  3421. {"PLL_CONFIG_CTL_U1", PLL_OFF_CONFIG_CTL_U1},
  3422. {"PLL_TEST_CTL", PLL_OFF_TEST_CTL},
  3423. {"PLL_TEST_CTL_U", PLL_OFF_TEST_CTL_U},
  3424. {"PLL_TEST_CTL_U1", PLL_OFF_TEST_CTL_U1},
  3425. {"PLL_OPMODE", PLL_OFF_OPMODE},
  3426. };
  3427. static struct clk_register_data data1[] = {
  3428. {"APSS_PLL_VOTE", 0x0},
  3429. };
  3430. size = ARRAY_SIZE(data);
  3431. for (i = 0; i < size; i++) {
  3432. regmap_read(pll->clkr.regmap, pll->offset +
  3433. pll->regs[data[i].offset], &val);
  3434. clock_debug_output(f, "%20s: 0x%.8x\n", data[i].name, val);
  3435. }
  3436. regmap_read(pll->clkr.regmap, pll->offset + pll->regs[data[0].offset],
  3437. &val);
  3438. if (val & PLL_FSM_ENA) {
  3439. regmap_read(pll->clkr.regmap, pll->clkr.enable_reg +
  3440. data1[0].offset, &val);
  3441. clock_debug_output(f, "%20s: 0x%.8x\n", data1[0].name, val);
  3442. }
  3443. }
  3444. static struct clk_regmap_ops clk_alpha_pll_zonda_evo_regmap_ops = {
  3445. .list_registers = clk_alpha_pll_zonda_evo_list_registers,
  3446. };
  3447. static int clk_alpha_pll_zonda_evo_init(struct clk_hw *hw)
  3448. {
  3449. struct clk_regmap *rclk = to_clk_regmap(hw);
  3450. if (!rclk->ops)
  3451. rclk->ops = &clk_alpha_pll_zonda_evo_regmap_ops;
  3452. return 0;
  3453. }
  3454. int clk_zonda_evo_pll_configure(struct clk_alpha_pll *pll, struct regmap *regmap,
  3455. const struct alpha_pll_config *config)
  3456. {
  3457. int ret;
  3458. ret = __zonda_pll_is_enabled(pll, regmap);
  3459. if (ret)
  3460. return ret;
  3461. if (config->l)
  3462. ret |= regmap_write(regmap, PLL_L_VAL(pll), config->l);
  3463. if (config->alpha)
  3464. ret |= regmap_write(regmap, PLL_ALPHA_VAL(pll), config->alpha);
  3465. if (config->config_ctl_val)
  3466. ret |= regmap_write(regmap, PLL_CONFIG_CTL(pll),
  3467. config->config_ctl_val);
  3468. if (config->config_ctl_hi_val)
  3469. ret |= regmap_write(regmap, PLL_CONFIG_CTL_U(pll),
  3470. config->config_ctl_hi_val);
  3471. if (config->config_ctl_hi1_val)
  3472. ret |= regmap_write(regmap, PLL_CONFIG_CTL_U1(pll),
  3473. config->config_ctl_hi1_val);
  3474. if (config->user_ctl_val)
  3475. ret |= regmap_write(regmap, PLL_USER_CTL(pll),
  3476. config->user_ctl_val);
  3477. if (config->user_ctl_hi_val)
  3478. ret |= regmap_write(regmap, PLL_USER_CTL_U(pll),
  3479. config->user_ctl_hi_val);
  3480. if (config->test_ctl_val)
  3481. ret |= regmap_write(regmap, PLL_TEST_CTL(pll),
  3482. config->test_ctl_val);
  3483. if (config->test_ctl_hi_val)
  3484. ret |= regmap_write(regmap, PLL_TEST_CTL_U(pll),
  3485. config->test_ctl_hi_val);
  3486. if (config->test_ctl_hi1_val)
  3487. ret |= regmap_write(regmap, PLL_TEST_CTL_U1(pll),
  3488. config->test_ctl_hi1_val);
  3489. ret |= regmap_update_bits(regmap, PLL_MODE(pll),
  3490. PLL_BYPASSNL, 0);
  3491. /* Disable PLL output */
  3492. ret |= regmap_update_bits(regmap, PLL_MODE(pll),
  3493. PLL_OUTCTRL, 0);
  3494. /* Set operation mode to OFF */
  3495. ret |= regmap_write(regmap, PLL_OPMODE(pll), PLL_STANDBY);
  3496. /* PLL should be in OFF mode before continuing */
  3497. wmb();
  3498. /* Place the PLL in STANDBY mode */
  3499. ret |= regmap_update_bits(regmap, PLL_MODE(pll),
  3500. PLL_RESET_N, PLL_RESET_N);
  3501. return ret ? -EIO : 0;
  3502. }
  3503. EXPORT_SYMBOL_GPL(clk_zonda_evo_pll_configure);
  3504. const struct clk_ops clk_alpha_pll_zonda_evo_ops = {
  3505. .prepare = clk_prepare_regmap,
  3506. .unprepare = clk_unprepare_regmap,
  3507. .pre_rate_change = clk_pre_change_regmap,
  3508. .post_rate_change = clk_post_change_regmap,
  3509. .enable = clk_zonda_evo_pll_enable,
  3510. .disable = clk_zonda_evo_pll_disable,
  3511. .set_rate = clk_zonda_pll_set_rate,
  3512. .is_enabled = clk_zonda_pll_is_enabled,
  3513. .recalc_rate = clk_zonda_pll_recalc_rate,
  3514. .round_rate = clk_alpha_pll_round_rate,
  3515. .debug_init = clk_common_debug_init,
  3516. .init = clk_alpha_pll_zonda_evo_init,
  3517. #ifdef CONFIG_COMMON_CLK_QCOM_DEBUG
  3518. .list_rate_vdd_level = clk_list_rate_vdd_level,
  3519. #endif
  3520. };
  3521. EXPORT_SYMBOL_GPL(clk_alpha_pll_zonda_evo_ops);
  3522. const struct clk_ops clk_alpha_pll_fixed_zonda_evo_ops = {
  3523. .prepare = clk_prepare_regmap,
  3524. .unprepare = clk_unprepare_regmap,
  3525. .pre_rate_change = clk_pre_change_regmap,
  3526. .post_rate_change = clk_post_change_regmap,
  3527. .enable = clk_zonda_evo_pll_enable,
  3528. .disable = clk_zonda_evo_pll_disable,
  3529. .is_enabled = clk_zonda_pll_is_enabled,
  3530. .recalc_rate = clk_zonda_pll_recalc_rate,
  3531. .round_rate = clk_alpha_pll_round_rate,
  3532. .debug_init = clk_common_debug_init,
  3533. .init = clk_alpha_pll_zonda_evo_init,
  3534. #ifdef CONFIG_COMMON_CLK_QCOM_DEBUG
  3535. .list_rate_vdd_level = clk_list_rate_vdd_level,
  3536. #endif
  3537. };
  3538. EXPORT_SYMBOL_GPL(clk_alpha_pll_fixed_zonda_evo_ops);
  3539. const struct clk_ops clk_alpha_pll_postdiv_zonda_evo_ops = {
  3540. .recalc_rate = clk_alpha_pll_postdiv_fabia_recalc_rate,
  3541. .round_rate = clk_alpha_pll_postdiv_fabia_round_rate,
  3542. .set_rate = clk_alpha_pll_postdiv_fabia_set_rate,
  3543. };
  3544. EXPORT_SYMBOL_GPL(clk_alpha_pll_postdiv_zonda_evo_ops);
  3545. int clk_rivian_evo_pll_configure(struct clk_alpha_pll *pll,
  3546. struct regmap *regmap, const struct alpha_pll_config *config)
  3547. {
  3548. u32 mask;
  3549. int ret;
  3550. ret = trion_pll_is_enabled(pll, regmap);
  3551. if (ret)
  3552. return ret;
  3553. if (config->config_ctl_val)
  3554. ret |= regmap_write(regmap, PLL_CONFIG_CTL(pll),
  3555. config->config_ctl_val);
  3556. if (config->config_ctl_hi_val)
  3557. ret |= regmap_write(regmap, PLL_CONFIG_CTL_U(pll),
  3558. config->config_ctl_hi_val);
  3559. if (config->config_ctl_hi1_val)
  3560. ret |= regmap_write(regmap, PLL_CONFIG_CTL_U1(pll),
  3561. config->config_ctl_hi1_val);
  3562. if (config->test_ctl_val)
  3563. ret |= regmap_write(regmap, PLL_TEST_CTL(pll),
  3564. config->test_ctl_val);
  3565. if (config->test_ctl_hi_val)
  3566. ret |= regmap_write(regmap, PLL_TEST_CTL_U(pll),
  3567. config->test_ctl_hi_val);
  3568. if (config->l)
  3569. ret |= regmap_write(regmap, PLL_L_VAL(pll), config->l);
  3570. if (config->user_ctl_val)
  3571. ret |= regmap_write(regmap, PLL_USER_CTL(pll),
  3572. config->user_ctl_val);
  3573. if (config->user_ctl_hi_val)
  3574. ret |= regmap_write(regmap, PLL_USER_CTL_U(pll),
  3575. config->user_ctl_hi_val);
  3576. /* pll_opmode to STANDBY */
  3577. ret |= regmap_write(regmap, PLL_OPMODE(pll), PLL_STANDBY);
  3578. mask = PLL_RESET_N | PLL_BYPASSNL;
  3579. ret |= regmap_update_bits(regmap, PLL_MODE(pll), mask, mask);
  3580. return ret ? -EIO : 0;
  3581. }
  3582. EXPORT_SYMBOL(clk_rivian_evo_pll_configure);
  3583. static unsigned long clk_rivian_evo_pll_recalc_rate(struct clk_hw *hw,
  3584. unsigned long parent_rate)
  3585. {
  3586. struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
  3587. u32 l;
  3588. regmap_read(pll->clkr.regmap, PLL_L_VAL(pll), &l);
  3589. return parent_rate * l;
  3590. }
  3591. static long clk_rivian_evo_pll_round_rate(struct clk_hw *hw, unsigned long rate,
  3592. unsigned long *prate)
  3593. {
  3594. struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
  3595. unsigned long min_freq, max_freq;
  3596. u32 l;
  3597. u64 a;
  3598. rate = alpha_pll_round_rate(rate, *prate, &l, &a, 0);
  3599. if (!pll->vco_table || alpha_pll_find_vco(pll, rate))
  3600. return rate;
  3601. min_freq = pll->vco_table[0].min_freq;
  3602. max_freq = pll->vco_table[pll->num_vco - 1].max_freq;
  3603. return clamp(rate, min_freq, max_freq);
  3604. }
  3605. static void clk_rivian_evo_pll_list_registers(struct seq_file *f, struct clk_hw *hw)
  3606. {
  3607. struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
  3608. int size, i, val;
  3609. static struct clk_register_data data[] = {
  3610. {"PLL_MODE", PLL_OFF_MODE},
  3611. {"PLL_OPMODE", PLL_OFF_OPMODE},
  3612. {"PLL_STATUS", PLL_OFF_STATUS},
  3613. {"PLL_L_VAL", PLL_OFF_L_VAL},
  3614. {"PLL_USER_CTL", PLL_OFF_USER_CTL},
  3615. {"PLL_USER_CTL_U", PLL_OFF_USER_CTL_U},
  3616. {"PLL_CONFIG_CTL", PLL_OFF_CONFIG_CTL},
  3617. {"PLL_CONFIG_CTL_U", PLL_OFF_CONFIG_CTL_U},
  3618. {"PLL_CONFIG_CTL_U1", PLL_OFF_CONFIG_CTL_U1},
  3619. {"PLL_TEST_CTL", PLL_OFF_TEST_CTL},
  3620. {"PLL_TEST_CTL_U", PLL_OFF_TEST_CTL_U},
  3621. };
  3622. size = ARRAY_SIZE(data);
  3623. for (i = 0; i < size; i++) {
  3624. regmap_read(pll->clkr.regmap, pll->offset +
  3625. pll->regs[data[i].offset], &val);
  3626. clock_debug_output(f, "%20s: 0x%.8x\n", data[i].name, val);
  3627. }
  3628. }
  3629. static struct clk_regmap_ops clk_rivian_evo_pll_regmap_ops = {
  3630. .list_registers = &clk_rivian_evo_pll_list_registers,
  3631. };
  3632. static int clk_rivian_evo_pll_init(struct clk_hw *hw)
  3633. {
  3634. struct clk_regmap *rclk = to_clk_regmap(hw);
  3635. if (!rclk->ops)
  3636. rclk->ops = &clk_rivian_evo_pll_regmap_ops;
  3637. return 0;
  3638. }
  3639. const struct clk_ops clk_alpha_pll_rivian_evo_ops = {
  3640. .prepare = clk_prepare_regmap,
  3641. .unprepare = clk_unprepare_regmap,
  3642. .pre_rate_change = clk_pre_change_regmap,
  3643. .post_rate_change = clk_post_change_regmap,
  3644. .enable = alpha_pll_lucid_5lpe_enable,
  3645. .disable = alpha_pll_lucid_5lpe_disable,
  3646. .is_enabled = clk_trion_pll_is_enabled,
  3647. .recalc_rate = clk_rivian_evo_pll_recalc_rate,
  3648. .round_rate = clk_rivian_evo_pll_round_rate,
  3649. .debug_init = clk_common_debug_init,
  3650. .init = clk_rivian_evo_pll_init,
  3651. .restore_context = clk_pll_restore_context,
  3652. };
  3653. EXPORT_SYMBOL_GPL(clk_alpha_pll_rivian_evo_ops);
  3654. static int clk_alpha_pll_slew_update(struct clk_alpha_pll *pll)
  3655. {
  3656. int ret = 0;
  3657. u32 val;
  3658. regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll),
  3659. PLL_UPDATE, PLL_UPDATE);
  3660. regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val);
  3661. ret = wait_for_pll_update(pll);
  3662. if (ret)
  3663. return ret;
  3664. /*
  3665. * HPG mandates a wait of at least 570ns before polling the LOCK
  3666. * detect bit. Have a delay of 1us just to be safe.
  3667. */
  3668. mb();
  3669. udelay(1);
  3670. ret = wait_for_pll_enable_lock(pll);
  3671. return ret;
  3672. }
  3673. static int clk_alpha_pll_slew_set_rate(struct clk_hw *hw, unsigned long rate,
  3674. unsigned long parent_rate)
  3675. {
  3676. struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
  3677. unsigned long freq_hz;
  3678. const struct pll_vco *curr_vco, *vco;
  3679. u32 l, alpha_width = pll_alpha_width(pll);
  3680. u64 a;
  3681. freq_hz = alpha_pll_round_rate(rate, parent_rate, &l, &a, alpha_width);
  3682. if (freq_hz != rate) {
  3683. pr_err("alpha_pll: Call clk_set_rate with rounded rates!\n");
  3684. return -EINVAL;
  3685. }
  3686. curr_vco = alpha_pll_find_vco(pll, clk_hw_get_rate(hw));
  3687. if (!curr_vco) {
  3688. pr_err("alpha pll: not in a valid vco range\n");
  3689. return -EINVAL;
  3690. }
  3691. vco = alpha_pll_find_vco(pll, freq_hz);
  3692. if (!vco) {
  3693. pr_err("alpha pll: not in a valid vco range\n");
  3694. return -EINVAL;
  3695. }
  3696. /*
  3697. * Dynamic pll update will not support switching frequencies across
  3698. * vco ranges. In those cases fall back to normal alpha set rate.
  3699. */
  3700. if (curr_vco->val != vco->val)
  3701. return clk_alpha_pll_set_rate(hw, rate, parent_rate);
  3702. a = a << (ALPHA_REG_BITWIDTH - ALPHA_BITWIDTH);
  3703. regmap_write(pll->clkr.regmap, PLL_L_VAL(pll), l);
  3704. regmap_write(pll->clkr.regmap, PLL_ALPHA_VAL(pll), a);
  3705. regmap_write(pll->clkr.regmap, PLL_ALPHA_VAL_U(pll), a >> 32);
  3706. /* Ensure that the write above goes through before proceeding. */
  3707. mb();
  3708. if (clk_hw_is_enabled(hw)) {
  3709. if (pll->flags & SUPPORTS_DYNAMIC_UPDATE)
  3710. clk_alpha_pll_dynamic_update(pll);
  3711. else
  3712. clk_alpha_pll_slew_update(pll);
  3713. }
  3714. return 0;
  3715. }
  3716. /*
  3717. * Slewing plls should be bought up at frequency which is in the middle of the
  3718. * desired VCO range. So after bringing up the pll at calibration freq, set it
  3719. * back to desired frequency(that was set by previous clk_set_rate).
  3720. */
  3721. static int clk_alpha_pll_calibrate(struct clk_hw *hw)
  3722. {
  3723. unsigned long calibration_freq, freq_hz;
  3724. struct clk_alpha_pll *pll = to_clk_alpha_pll(hw);
  3725. struct clk_hw *parent;
  3726. const struct pll_vco *vco;
  3727. u64 a;
  3728. u32 l, alpha_width = pll_alpha_width(pll);
  3729. int rc;
  3730. parent = clk_hw_get_parent(hw);
  3731. if (!parent) {
  3732. pr_err("alpha pll: no valid parent found\n");
  3733. return -EINVAL;
  3734. }
  3735. vco = alpha_pll_find_vco(pll, clk_hw_get_rate(hw));
  3736. if (!vco) {
  3737. pr_err("alpha pll: not in a valid vco range\n");
  3738. return -EINVAL;
  3739. }
  3740. /*
  3741. * As during slewing plls vco_sel won't be allowed to change, vco table
  3742. * should have only one entry table, i.e. index = 0, find the
  3743. * calibration frequency.
  3744. */
  3745. calibration_freq = (pll->vco_table[0].min_freq +
  3746. pll->vco_table[0].max_freq)/2;
  3747. freq_hz = alpha_pll_round_rate(calibration_freq,
  3748. clk_hw_get_rate(parent), &l, &a, alpha_width);
  3749. if (freq_hz != calibration_freq) {
  3750. pr_err("alpha_pll: call clk_set_rate with rounded rates!\n");
  3751. return -EINVAL;
  3752. }
  3753. /* Setup PLL for calibration frequency */
  3754. a <<= (ALPHA_REG_BITWIDTH - ALPHA_BITWIDTH);
  3755. regmap_write(pll->clkr.regmap, PLL_L_VAL(pll), l);
  3756. regmap_write(pll->clkr.regmap, PLL_ALPHA_VAL(pll), a);
  3757. regmap_write(pll->clkr.regmap, PLL_ALPHA_VAL_U(pll), a >> 32);
  3758. regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll),
  3759. PLL_VCO_MASK << PLL_VCO_SHIFT,
  3760. vco->val << PLL_VCO_SHIFT);
  3761. regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll),
  3762. PLL_ALPHA_EN, PLL_ALPHA_EN);
  3763. /* Bringup the pll at calibration frequency */
  3764. rc = clk_alpha_pll_enable(hw);
  3765. if (rc) {
  3766. pr_err("alpha pll calibration failed\n");
  3767. return rc;
  3768. }
  3769. /*
  3770. * PLL is already running at calibration frequency.
  3771. * So slew pll to the previously set frequency.
  3772. */
  3773. freq_hz = alpha_pll_round_rate(clk_hw_get_rate(hw),
  3774. clk_hw_get_rate(parent), &l, &a, alpha_width);
  3775. pr_debug("pll %s: setting back to required rate %lu, freq_hz %ld\n",
  3776. clk_hw_get_name(hw), clk_hw_get_rate(hw), freq_hz);
  3777. /* Setup the PLL for the new frequency */
  3778. a <<= (ALPHA_REG_BITWIDTH - ALPHA_BITWIDTH);
  3779. regmap_write(pll->clkr.regmap, PLL_L_VAL(pll), l);
  3780. regmap_write(pll->clkr.regmap, PLL_ALPHA_VAL(pll), a);
  3781. regmap_write(pll->clkr.regmap, PLL_ALPHA_VAL_U(pll), a >> 32);
  3782. regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll),
  3783. PLL_ALPHA_EN, PLL_ALPHA_EN);
  3784. if (pll->flags & SUPPORTS_DYNAMIC_UPDATE)
  3785. return clk_alpha_pll_dynamic_update(pll);
  3786. else
  3787. return clk_alpha_pll_slew_update(pll);
  3788. }
  3789. static int clk_alpha_pll_slew_enable(struct clk_hw *hw)
  3790. {
  3791. int rc;
  3792. rc = clk_alpha_pll_calibrate(hw);
  3793. if (rc)
  3794. return rc;
  3795. rc = clk_alpha_pll_enable(hw);
  3796. return rc;
  3797. }
  3798. const struct clk_ops clk_alpha_pll_slew_ops = {
  3799. .prepare = clk_prepare_regmap,
  3800. .unprepare = clk_unprepare_regmap,
  3801. .pre_rate_change = clk_pre_change_regmap,
  3802. .post_rate_change = clk_post_change_regmap,
  3803. .enable = clk_alpha_pll_slew_enable,
  3804. .disable = clk_alpha_pll_disable,
  3805. .recalc_rate = clk_alpha_pll_recalc_rate,
  3806. .round_rate = clk_alpha_pll_round_rate,
  3807. .set_rate = clk_alpha_pll_slew_set_rate,
  3808. .init = clk_alpha_pll_init,
  3809. .debug_init = clk_common_debug_init,
  3810. #ifdef CONFIG_COMMON_CLK_QCOM_DEBUG
  3811. .list_rate_vdd_level = clk_list_rate_vdd_level,
  3812. #endif
  3813. .restore_context = clk_pll_restore_context,
  3814. };
  3815. EXPORT_SYMBOL(clk_alpha_pll_slew_ops);