12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124 |
- #include <linux/gfp.h>
- #include <linux/initrd.h>
- #include <linux/ioport.h>
- #include <linux/swap.h>
- #include <linux/memblock.h>
- #include <linux/swapfile.h>
- #include <linux/swapops.h>
- #include <linux/kmemleak.h>
- #include <linux/sched/task.h>
- #include <asm/set_memory.h>
- #include <asm/cpu_device_id.h>
- #include <asm/e820/api.h>
- #include <asm/init.h>
- #include <asm/page.h>
- #include <asm/page_types.h>
- #include <asm/sections.h>
- #include <asm/setup.h>
- #include <asm/tlbflush.h>
- #include <asm/tlb.h>
- #include <asm/proto.h>
- #include <asm/dma.h> /* for MAX_DMA_PFN */
- #include <asm/microcode.h>
- #include <asm/kaslr.h>
- #include <asm/hypervisor.h>
- #include <asm/cpufeature.h>
- #include <asm/pti.h>
- #include <asm/text-patching.h>
- #include <asm/memtype.h>
- #include <asm/paravirt.h>
- /*
- * We need to define the tracepoints somewhere, and tlb.c
- * is only compiled when SMP=y.
- */
- #include <trace/events/tlb.h>
- #include "mm_internal.h"
- /*
- * Tables translating between page_cache_type_t and pte encoding.
- *
- * The default values are defined statically as minimal supported mode;
- * WC and WT fall back to UC-. pat_init() updates these values to support
- * more cache modes, WC and WT, when it is safe to do so. See pat_init()
- * for the details. Note, __early_ioremap() used during early boot-time
- * takes pgprot_t (pte encoding) and does not use these tables.
- *
- * Index into __cachemode2pte_tbl[] is the cachemode.
- *
- * Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
- * (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
- */
- static uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
- [_PAGE_CACHE_MODE_WB ] = 0 | 0 ,
- [_PAGE_CACHE_MODE_WC ] = 0 | _PAGE_PCD,
- [_PAGE_CACHE_MODE_UC_MINUS] = 0 | _PAGE_PCD,
- [_PAGE_CACHE_MODE_UC ] = _PAGE_PWT | _PAGE_PCD,
- [_PAGE_CACHE_MODE_WT ] = 0 | _PAGE_PCD,
- [_PAGE_CACHE_MODE_WP ] = 0 | _PAGE_PCD,
- };
- unsigned long cachemode2protval(enum page_cache_mode pcm)
- {
- if (likely(pcm == 0))
- return 0;
- return __cachemode2pte_tbl[pcm];
- }
- EXPORT_SYMBOL(cachemode2protval);
- static uint8_t __pte2cachemode_tbl[8] = {
- [__pte2cm_idx( 0 | 0 | 0 )] = _PAGE_CACHE_MODE_WB,
- [__pte2cm_idx(_PAGE_PWT | 0 | 0 )] = _PAGE_CACHE_MODE_UC_MINUS,
- [__pte2cm_idx( 0 | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC_MINUS,
- [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC,
- [__pte2cm_idx( 0 | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
- [__pte2cm_idx(_PAGE_PWT | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
- [__pte2cm_idx(0 | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
- [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
- };
- /*
- * Check that the write-protect PAT entry is set for write-protect.
- * To do this without making assumptions how PAT has been set up (Xen has
- * another layout than the kernel), translate the _PAGE_CACHE_MODE_WP cache
- * mode via the __cachemode2pte_tbl[] into protection bits (those protection
- * bits will select a cache mode of WP or better), and then translate the
- * protection bits back into the cache mode using __pte2cm_idx() and the
- * __pte2cachemode_tbl[] array. This will return the really used cache mode.
- */
- bool x86_has_pat_wp(void)
- {
- uint16_t prot = __cachemode2pte_tbl[_PAGE_CACHE_MODE_WP];
- return __pte2cachemode_tbl[__pte2cm_idx(prot)] == _PAGE_CACHE_MODE_WP;
- }
- enum page_cache_mode pgprot2cachemode(pgprot_t pgprot)
- {
- unsigned long masked;
- masked = pgprot_val(pgprot) & _PAGE_CACHE_MASK;
- if (likely(masked == 0))
- return 0;
- return __pte2cachemode_tbl[__pte2cm_idx(masked)];
- }
- static unsigned long __initdata pgt_buf_start;
- static unsigned long __initdata pgt_buf_end;
- static unsigned long __initdata pgt_buf_top;
- static unsigned long min_pfn_mapped;
- static bool __initdata can_use_brk_pgt = true;
- /*
- * Provide a run-time mean of disabling ZONE_DMA32 if it is enabled via
- * CONFIG_ZONE_DMA32.
- */
- static bool disable_dma32 __ro_after_init;
- /*
- * Pages returned are already directly mapped.
- *
- * Changing that is likely to break Xen, see commit:
- *
- * 279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
- *
- * for detailed information.
- */
- __ref void *alloc_low_pages(unsigned int num)
- {
- unsigned long pfn;
- int i;
- if (after_bootmem) {
- unsigned int order;
- order = get_order((unsigned long)num << PAGE_SHIFT);
- return (void *)__get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
- }
- if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
- unsigned long ret = 0;
- if (min_pfn_mapped < max_pfn_mapped) {
- ret = memblock_phys_alloc_range(
- PAGE_SIZE * num, PAGE_SIZE,
- min_pfn_mapped << PAGE_SHIFT,
- max_pfn_mapped << PAGE_SHIFT);
- }
- if (!ret && can_use_brk_pgt)
- ret = __pa(extend_brk(PAGE_SIZE * num, PAGE_SIZE));
- if (!ret)
- panic("alloc_low_pages: can not alloc memory");
- pfn = ret >> PAGE_SHIFT;
- } else {
- pfn = pgt_buf_end;
- pgt_buf_end += num;
- }
- for (i = 0; i < num; i++) {
- void *adr;
- adr = __va((pfn + i) << PAGE_SHIFT);
- clear_page(adr);
- }
- return __va(pfn << PAGE_SHIFT);
- }
- /*
- * By default need to be able to allocate page tables below PGD firstly for
- * the 0-ISA_END_ADDRESS range and secondly for the initial PMD_SIZE mapping.
- * With KASLR memory randomization, depending on the machine e820 memory and the
- * PUD alignment, twice that many pages may be needed when KASLR memory
- * randomization is enabled.
- */
- #ifndef CONFIG_X86_5LEVEL
- #define INIT_PGD_PAGE_TABLES 3
- #else
- #define INIT_PGD_PAGE_TABLES 4
- #endif
- #ifndef CONFIG_RANDOMIZE_MEMORY
- #define INIT_PGD_PAGE_COUNT (2 * INIT_PGD_PAGE_TABLES)
- #else
- #define INIT_PGD_PAGE_COUNT (4 * INIT_PGD_PAGE_TABLES)
- #endif
- #define INIT_PGT_BUF_SIZE (INIT_PGD_PAGE_COUNT * PAGE_SIZE)
- RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
- void __init early_alloc_pgt_buf(void)
- {
- unsigned long tables = INIT_PGT_BUF_SIZE;
- phys_addr_t base;
- base = __pa(extend_brk(tables, PAGE_SIZE));
- pgt_buf_start = base >> PAGE_SHIFT;
- pgt_buf_end = pgt_buf_start;
- pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
- }
- int after_bootmem;
- early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
- struct map_range {
- unsigned long start;
- unsigned long end;
- unsigned page_size_mask;
- };
- static int page_size_mask;
- /*
- * Save some of cr4 feature set we're using (e.g. Pentium 4MB
- * enable and PPro Global page enable), so that any CPU's that boot
- * up after us can get the correct flags. Invoked on the boot CPU.
- */
- static inline void cr4_set_bits_and_update_boot(unsigned long mask)
- {
- mmu_cr4_features |= mask;
- if (trampoline_cr4_features)
- *trampoline_cr4_features = mmu_cr4_features;
- cr4_set_bits(mask);
- }
- static void __init probe_page_size_mask(void)
- {
- /*
- * For pagealloc debugging, identity mapping will use small pages.
- * This will simplify cpa(), which otherwise needs to support splitting
- * large pages into small in interrupt context, etc.
- */
- if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled())
- page_size_mask |= 1 << PG_LEVEL_2M;
- else
- direct_gbpages = 0;
- /* Enable PSE if available */
- if (boot_cpu_has(X86_FEATURE_PSE))
- cr4_set_bits_and_update_boot(X86_CR4_PSE);
- /* Enable PGE if available */
- __supported_pte_mask &= ~_PAGE_GLOBAL;
- if (boot_cpu_has(X86_FEATURE_PGE)) {
- cr4_set_bits_and_update_boot(X86_CR4_PGE);
- __supported_pte_mask |= _PAGE_GLOBAL;
- }
- /* By the default is everything supported: */
- __default_kernel_pte_mask = __supported_pte_mask;
- /* Except when with PTI where the kernel is mostly non-Global: */
- if (cpu_feature_enabled(X86_FEATURE_PTI))
- __default_kernel_pte_mask &= ~_PAGE_GLOBAL;
- /* Enable 1 GB linear kernel mappings if available: */
- if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) {
- printk(KERN_INFO "Using GB pages for direct mapping\n");
- page_size_mask |= 1 << PG_LEVEL_1G;
- } else {
- direct_gbpages = 0;
- }
- }
- #define INTEL_MATCH(_model) { .vendor = X86_VENDOR_INTEL, \
- .family = 6, \
- .model = _model, \
- }
- /*
- * INVLPG may not properly flush Global entries
- * on these CPUs when PCIDs are enabled.
- */
- static const struct x86_cpu_id invlpg_miss_ids[] = {
- INTEL_MATCH(INTEL_FAM6_ALDERLAKE ),
- INTEL_MATCH(INTEL_FAM6_ALDERLAKE_L ),
- INTEL_MATCH(INTEL_FAM6_ALDERLAKE_N ),
- INTEL_MATCH(INTEL_FAM6_RAPTORLAKE ),
- INTEL_MATCH(INTEL_FAM6_RAPTORLAKE_P),
- INTEL_MATCH(INTEL_FAM6_RAPTORLAKE_S),
- {}
- };
- static void setup_pcid(void)
- {
- if (!IS_ENABLED(CONFIG_X86_64))
- return;
- if (!boot_cpu_has(X86_FEATURE_PCID))
- return;
- if (x86_match_cpu(invlpg_miss_ids)) {
- pr_info("Incomplete global flushes, disabling PCID");
- setup_clear_cpu_cap(X86_FEATURE_PCID);
- return;
- }
- if (boot_cpu_has(X86_FEATURE_PGE)) {
- /*
- * This can't be cr4_set_bits_and_update_boot() -- the
- * trampoline code can't handle CR4.PCIDE and it wouldn't
- * do any good anyway. Despite the name,
- * cr4_set_bits_and_update_boot() doesn't actually cause
- * the bits in question to remain set all the way through
- * the secondary boot asm.
- *
- * Instead, we brute-force it and set CR4.PCIDE manually in
- * start_secondary().
- */
- cr4_set_bits(X86_CR4_PCIDE);
- /*
- * INVPCID's single-context modes (2/3) only work if we set
- * X86_CR4_PCIDE, *and* we INVPCID support. It's unusable
- * on systems that have X86_CR4_PCIDE clear, or that have
- * no INVPCID support at all.
- */
- if (boot_cpu_has(X86_FEATURE_INVPCID))
- setup_force_cpu_cap(X86_FEATURE_INVPCID_SINGLE);
- } else {
- /*
- * flush_tlb_all(), as currently implemented, won't work if
- * PCID is on but PGE is not. Since that combination
- * doesn't exist on real hardware, there's no reason to try
- * to fully support it, but it's polite to avoid corrupting
- * data if we're on an improperly configured VM.
- */
- setup_clear_cpu_cap(X86_FEATURE_PCID);
- }
- }
- #ifdef CONFIG_X86_32
- #define NR_RANGE_MR 3
- #else /* CONFIG_X86_64 */
- #define NR_RANGE_MR 5
- #endif
- static int __meminit save_mr(struct map_range *mr, int nr_range,
- unsigned long start_pfn, unsigned long end_pfn,
- unsigned long page_size_mask)
- {
- if (start_pfn < end_pfn) {
- if (nr_range >= NR_RANGE_MR)
- panic("run out of range for init_memory_mapping\n");
- mr[nr_range].start = start_pfn<<PAGE_SHIFT;
- mr[nr_range].end = end_pfn<<PAGE_SHIFT;
- mr[nr_range].page_size_mask = page_size_mask;
- nr_range++;
- }
- return nr_range;
- }
- /*
- * adjust the page_size_mask for small range to go with
- * big page size instead small one if nearby are ram too.
- */
- static void __ref adjust_range_page_size_mask(struct map_range *mr,
- int nr_range)
- {
- int i;
- for (i = 0; i < nr_range; i++) {
- if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
- !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
- unsigned long start = round_down(mr[i].start, PMD_SIZE);
- unsigned long end = round_up(mr[i].end, PMD_SIZE);
- #ifdef CONFIG_X86_32
- if ((end >> PAGE_SHIFT) > max_low_pfn)
- continue;
- #endif
- if (memblock_is_region_memory(start, end - start))
- mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
- }
- if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
- !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
- unsigned long start = round_down(mr[i].start, PUD_SIZE);
- unsigned long end = round_up(mr[i].end, PUD_SIZE);
- if (memblock_is_region_memory(start, end - start))
- mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
- }
- }
- }
- static const char *page_size_string(struct map_range *mr)
- {
- static const char str_1g[] = "1G";
- static const char str_2m[] = "2M";
- static const char str_4m[] = "4M";
- static const char str_4k[] = "4k";
- if (mr->page_size_mask & (1<<PG_LEVEL_1G))
- return str_1g;
- /*
- * 32-bit without PAE has a 4M large page size.
- * PG_LEVEL_2M is misnamed, but we can at least
- * print out the right size in the string.
- */
- if (IS_ENABLED(CONFIG_X86_32) &&
- !IS_ENABLED(CONFIG_X86_PAE) &&
- mr->page_size_mask & (1<<PG_LEVEL_2M))
- return str_4m;
- if (mr->page_size_mask & (1<<PG_LEVEL_2M))
- return str_2m;
- return str_4k;
- }
- static int __meminit split_mem_range(struct map_range *mr, int nr_range,
- unsigned long start,
- unsigned long end)
- {
- unsigned long start_pfn, end_pfn, limit_pfn;
- unsigned long pfn;
- int i;
- limit_pfn = PFN_DOWN(end);
- /* head if not big page alignment ? */
- pfn = start_pfn = PFN_DOWN(start);
- #ifdef CONFIG_X86_32
- /*
- * Don't use a large page for the first 2/4MB of memory
- * because there are often fixed size MTRRs in there
- * and overlapping MTRRs into large pages can cause
- * slowdowns.
- */
- if (pfn == 0)
- end_pfn = PFN_DOWN(PMD_SIZE);
- else
- end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
- #else /* CONFIG_X86_64 */
- end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
- #endif
- if (end_pfn > limit_pfn)
- end_pfn = limit_pfn;
- if (start_pfn < end_pfn) {
- nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
- pfn = end_pfn;
- }
- /* big page (2M) range */
- start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
- #ifdef CONFIG_X86_32
- end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
- #else /* CONFIG_X86_64 */
- end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
- if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
- end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
- #endif
- if (start_pfn < end_pfn) {
- nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
- page_size_mask & (1<<PG_LEVEL_2M));
- pfn = end_pfn;
- }
- #ifdef CONFIG_X86_64
- /* big page (1G) range */
- start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
- end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
- if (start_pfn < end_pfn) {
- nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
- page_size_mask &
- ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
- pfn = end_pfn;
- }
- /* tail is not big page (1G) alignment */
- start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
- end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
- if (start_pfn < end_pfn) {
- nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
- page_size_mask & (1<<PG_LEVEL_2M));
- pfn = end_pfn;
- }
- #endif
- /* tail is not big page (2M) alignment */
- start_pfn = pfn;
- end_pfn = limit_pfn;
- nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
- if (!after_bootmem)
- adjust_range_page_size_mask(mr, nr_range);
- /* try to merge same page size and continuous */
- for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
- unsigned long old_start;
- if (mr[i].end != mr[i+1].start ||
- mr[i].page_size_mask != mr[i+1].page_size_mask)
- continue;
- /* move it */
- old_start = mr[i].start;
- memmove(&mr[i], &mr[i+1],
- (nr_range - 1 - i) * sizeof(struct map_range));
- mr[i--].start = old_start;
- nr_range--;
- }
- for (i = 0; i < nr_range; i++)
- pr_debug(" [mem %#010lx-%#010lx] page %s\n",
- mr[i].start, mr[i].end - 1,
- page_size_string(&mr[i]));
- return nr_range;
- }
- struct range pfn_mapped[E820_MAX_ENTRIES];
- int nr_pfn_mapped;
- static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
- {
- nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES,
- nr_pfn_mapped, start_pfn, end_pfn);
- nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES);
- max_pfn_mapped = max(max_pfn_mapped, end_pfn);
- if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
- max_low_pfn_mapped = max(max_low_pfn_mapped,
- min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
- }
- bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
- {
- int i;
- for (i = 0; i < nr_pfn_mapped; i++)
- if ((start_pfn >= pfn_mapped[i].start) &&
- (end_pfn <= pfn_mapped[i].end))
- return true;
- return false;
- }
- /*
- * Setup the direct mapping of the physical memory at PAGE_OFFSET.
- * This runs before bootmem is initialized and gets pages directly from
- * the physical memory. To access them they are temporarily mapped.
- */
- unsigned long __ref init_memory_mapping(unsigned long start,
- unsigned long end, pgprot_t prot)
- {
- struct map_range mr[NR_RANGE_MR];
- unsigned long ret = 0;
- int nr_range, i;
- pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
- start, end - 1);
- memset(mr, 0, sizeof(mr));
- nr_range = split_mem_range(mr, 0, start, end);
- for (i = 0; i < nr_range; i++)
- ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
- mr[i].page_size_mask,
- prot);
- add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
- return ret >> PAGE_SHIFT;
- }
- /*
- * We need to iterate through the E820 memory map and create direct mappings
- * for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply
- * create direct mappings for all pfns from [0 to max_low_pfn) and
- * [4GB to max_pfn) because of possible memory holes in high addresses
- * that cannot be marked as UC by fixed/variable range MTRRs.
- * Depending on the alignment of E820 ranges, this may possibly result
- * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
- *
- * init_mem_mapping() calls init_range_memory_mapping() with big range.
- * That range would have hole in the middle or ends, and only ram parts
- * will be mapped in init_range_memory_mapping().
- */
- static unsigned long __init init_range_memory_mapping(
- unsigned long r_start,
- unsigned long r_end)
- {
- unsigned long start_pfn, end_pfn;
- unsigned long mapped_ram_size = 0;
- int i;
- for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
- u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
- u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
- if (start >= end)
- continue;
- /*
- * if it is overlapping with brk pgt, we need to
- * alloc pgt buf from memblock instead.
- */
- can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
- min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
- init_memory_mapping(start, end, PAGE_KERNEL);
- mapped_ram_size += end - start;
- can_use_brk_pgt = true;
- }
- return mapped_ram_size;
- }
- static unsigned long __init get_new_step_size(unsigned long step_size)
- {
- /*
- * Initial mapped size is PMD_SIZE (2M).
- * We can not set step_size to be PUD_SIZE (1G) yet.
- * In worse case, when we cross the 1G boundary, and
- * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
- * to map 1G range with PTE. Hence we use one less than the
- * difference of page table level shifts.
- *
- * Don't need to worry about overflow in the top-down case, on 32bit,
- * when step_size is 0, round_down() returns 0 for start, and that
- * turns it into 0x100000000ULL.
- * In the bottom-up case, round_up(x, 0) returns 0 though too, which
- * needs to be taken into consideration by the code below.
- */
- return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
- }
- /**
- * memory_map_top_down - Map [map_start, map_end) top down
- * @map_start: start address of the target memory range
- * @map_end: end address of the target memory range
- *
- * This function will setup direct mapping for memory range
- * [map_start, map_end) in top-down. That said, the page tables
- * will be allocated at the end of the memory, and we map the
- * memory in top-down.
- */
- static void __init memory_map_top_down(unsigned long map_start,
- unsigned long map_end)
- {
- unsigned long real_end, last_start;
- unsigned long step_size;
- unsigned long addr;
- unsigned long mapped_ram_size = 0;
- /*
- * Systems that have many reserved areas near top of the memory,
- * e.g. QEMU with less than 1G RAM and EFI enabled, or Xen, will
- * require lots of 4K mappings which may exhaust pgt_buf.
- * Start with top-most PMD_SIZE range aligned at PMD_SIZE to ensure
- * there is enough mapped memory that can be allocated from
- * memblock.
- */
- addr = memblock_phys_alloc_range(PMD_SIZE, PMD_SIZE, map_start,
- map_end);
- memblock_phys_free(addr, PMD_SIZE);
- real_end = addr + PMD_SIZE;
- /* step_size need to be small so pgt_buf from BRK could cover it */
- step_size = PMD_SIZE;
- max_pfn_mapped = 0; /* will get exact value next */
- min_pfn_mapped = real_end >> PAGE_SHIFT;
- last_start = real_end;
- /*
- * We start from the top (end of memory) and go to the bottom.
- * The memblock_find_in_range() gets us a block of RAM from the
- * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
- * for page table.
- */
- while (last_start > map_start) {
- unsigned long start;
- if (last_start > step_size) {
- start = round_down(last_start - 1, step_size);
- if (start < map_start)
- start = map_start;
- } else
- start = map_start;
- mapped_ram_size += init_range_memory_mapping(start,
- last_start);
- last_start = start;
- min_pfn_mapped = last_start >> PAGE_SHIFT;
- if (mapped_ram_size >= step_size)
- step_size = get_new_step_size(step_size);
- }
- if (real_end < map_end)
- init_range_memory_mapping(real_end, map_end);
- }
- /**
- * memory_map_bottom_up - Map [map_start, map_end) bottom up
- * @map_start: start address of the target memory range
- * @map_end: end address of the target memory range
- *
- * This function will setup direct mapping for memory range
- * [map_start, map_end) in bottom-up. Since we have limited the
- * bottom-up allocation above the kernel, the page tables will
- * be allocated just above the kernel and we map the memory
- * in [map_start, map_end) in bottom-up.
- */
- static void __init memory_map_bottom_up(unsigned long map_start,
- unsigned long map_end)
- {
- unsigned long next, start;
- unsigned long mapped_ram_size = 0;
- /* step_size need to be small so pgt_buf from BRK could cover it */
- unsigned long step_size = PMD_SIZE;
- start = map_start;
- min_pfn_mapped = start >> PAGE_SHIFT;
- /*
- * We start from the bottom (@map_start) and go to the top (@map_end).
- * The memblock_find_in_range() gets us a block of RAM from the
- * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
- * for page table.
- */
- while (start < map_end) {
- if (step_size && map_end - start > step_size) {
- next = round_up(start + 1, step_size);
- if (next > map_end)
- next = map_end;
- } else {
- next = map_end;
- }
- mapped_ram_size += init_range_memory_mapping(start, next);
- start = next;
- if (mapped_ram_size >= step_size)
- step_size = get_new_step_size(step_size);
- }
- }
- /*
- * The real mode trampoline, which is required for bootstrapping CPUs
- * occupies only a small area under the low 1MB. See reserve_real_mode()
- * for details.
- *
- * If KASLR is disabled the first PGD entry of the direct mapping is copied
- * to map the real mode trampoline.
- *
- * If KASLR is enabled, copy only the PUD which covers the low 1MB
- * area. This limits the randomization granularity to 1GB for both 4-level
- * and 5-level paging.
- */
- static void __init init_trampoline(void)
- {
- #ifdef CONFIG_X86_64
- /*
- * The code below will alias kernel page-tables in the user-range of the
- * address space, including the Global bit. So global TLB entries will
- * be created when using the trampoline page-table.
- */
- if (!kaslr_memory_enabled())
- trampoline_pgd_entry = init_top_pgt[pgd_index(__PAGE_OFFSET)];
- else
- init_trampoline_kaslr();
- #endif
- }
- void __init init_mem_mapping(void)
- {
- unsigned long end;
- pti_check_boottime_disable();
- probe_page_size_mask();
- setup_pcid();
- #ifdef CONFIG_X86_64
- end = max_pfn << PAGE_SHIFT;
- #else
- end = max_low_pfn << PAGE_SHIFT;
- #endif
- /* the ISA range is always mapped regardless of memory holes */
- init_memory_mapping(0, ISA_END_ADDRESS, PAGE_KERNEL);
- /* Init the trampoline, possibly with KASLR memory offset */
- init_trampoline();
- /*
- * If the allocation is in bottom-up direction, we setup direct mapping
- * in bottom-up, otherwise we setup direct mapping in top-down.
- */
- if (memblock_bottom_up()) {
- unsigned long kernel_end = __pa_symbol(_end);
- /*
- * we need two separate calls here. This is because we want to
- * allocate page tables above the kernel. So we first map
- * [kernel_end, end) to make memory above the kernel be mapped
- * as soon as possible. And then use page tables allocated above
- * the kernel to map [ISA_END_ADDRESS, kernel_end).
- */
- memory_map_bottom_up(kernel_end, end);
- memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
- } else {
- memory_map_top_down(ISA_END_ADDRESS, end);
- }
- #ifdef CONFIG_X86_64
- if (max_pfn > max_low_pfn) {
- /* can we preserve max_low_pfn ?*/
- max_low_pfn = max_pfn;
- }
- #else
- early_ioremap_page_table_range_init();
- #endif
- load_cr3(swapper_pg_dir);
- __flush_tlb_all();
- x86_init.hyper.init_mem_mapping();
- early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
- }
- /*
- * Initialize an mm_struct to be used during poking and a pointer to be used
- * during patching.
- */
- void __init poking_init(void)
- {
- spinlock_t *ptl;
- pte_t *ptep;
- poking_mm = mm_alloc();
- BUG_ON(!poking_mm);
- /* Xen PV guests need the PGD to be pinned. */
- paravirt_arch_dup_mmap(NULL, poking_mm);
- /*
- * Randomize the poking address, but make sure that the following page
- * will be mapped at the same PMD. We need 2 pages, so find space for 3,
- * and adjust the address if the PMD ends after the first one.
- */
- poking_addr = TASK_UNMAPPED_BASE;
- if (IS_ENABLED(CONFIG_RANDOMIZE_BASE))
- poking_addr += (kaslr_get_random_long("Poking") & PAGE_MASK) %
- (TASK_SIZE - TASK_UNMAPPED_BASE - 3 * PAGE_SIZE);
- if (((poking_addr + PAGE_SIZE) & ~PMD_MASK) == 0)
- poking_addr += PAGE_SIZE;
- /*
- * We need to trigger the allocation of the page-tables that will be
- * needed for poking now. Later, poking may be performed in an atomic
- * section, which might cause allocation to fail.
- */
- ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
- BUG_ON(!ptep);
- pte_unmap_unlock(ptep, ptl);
- }
- /*
- * devmem_is_allowed() checks to see if /dev/mem access to a certain address
- * is valid. The argument is a physical page number.
- *
- * On x86, access has to be given to the first megabyte of RAM because that
- * area traditionally contains BIOS code and data regions used by X, dosemu,
- * and similar apps. Since they map the entire memory range, the whole range
- * must be allowed (for mapping), but any areas that would otherwise be
- * disallowed are flagged as being "zero filled" instead of rejected.
- * Access has to be given to non-kernel-ram areas as well, these contain the
- * PCI mmio resources as well as potential bios/acpi data regions.
- */
- int devmem_is_allowed(unsigned long pagenr)
- {
- if (region_intersects(PFN_PHYS(pagenr), PAGE_SIZE,
- IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE)
- != REGION_DISJOINT) {
- /*
- * For disallowed memory regions in the low 1MB range,
- * request that the page be shown as all zeros.
- */
- if (pagenr < 256)
- return 2;
- return 0;
- }
- /*
- * This must follow RAM test, since System RAM is considered a
- * restricted resource under CONFIG_STRICT_DEVMEM.
- */
- if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) {
- /* Low 1MB bypasses iomem restrictions. */
- if (pagenr < 256)
- return 1;
- return 0;
- }
- return 1;
- }
- void free_init_pages(const char *what, unsigned long begin, unsigned long end)
- {
- unsigned long begin_aligned, end_aligned;
- /* Make sure boundaries are page aligned */
- begin_aligned = PAGE_ALIGN(begin);
- end_aligned = end & PAGE_MASK;
- if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
- begin = begin_aligned;
- end = end_aligned;
- }
- if (begin >= end)
- return;
- /*
- * If debugging page accesses then do not free this memory but
- * mark them not present - any buggy init-section access will
- * create a kernel page fault:
- */
- if (debug_pagealloc_enabled()) {
- pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n",
- begin, end - 1);
- /*
- * Inform kmemleak about the hole in the memory since the
- * corresponding pages will be unmapped.
- */
- kmemleak_free_part((void *)begin, end - begin);
- set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
- } else {
- /*
- * We just marked the kernel text read only above, now that
- * we are going to free part of that, we need to make that
- * writeable and non-executable first.
- */
- set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
- set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
- free_reserved_area((void *)begin, (void *)end,
- POISON_FREE_INITMEM, what);
- }
- }
- /*
- * begin/end can be in the direct map or the "high kernel mapping"
- * used for the kernel image only. free_init_pages() will do the
- * right thing for either kind of address.
- */
- void free_kernel_image_pages(const char *what, void *begin, void *end)
- {
- unsigned long begin_ul = (unsigned long)begin;
- unsigned long end_ul = (unsigned long)end;
- unsigned long len_pages = (end_ul - begin_ul) >> PAGE_SHIFT;
- free_init_pages(what, begin_ul, end_ul);
- /*
- * PTI maps some of the kernel into userspace. For performance,
- * this includes some kernel areas that do not contain secrets.
- * Those areas might be adjacent to the parts of the kernel image
- * being freed, which may contain secrets. Remove the "high kernel
- * image mapping" for these freed areas, ensuring they are not even
- * potentially vulnerable to Meltdown regardless of the specific
- * optimizations PTI is currently using.
- *
- * The "noalias" prevents unmapping the direct map alias which is
- * needed to access the freed pages.
- *
- * This is only valid for 64bit kernels. 32bit has only one mapping
- * which can't be treated in this way for obvious reasons.
- */
- if (IS_ENABLED(CONFIG_X86_64) && cpu_feature_enabled(X86_FEATURE_PTI))
- set_memory_np_noalias(begin_ul, len_pages);
- }
- void __ref free_initmem(void)
- {
- e820__reallocate_tables();
- mem_encrypt_free_decrypted_mem();
- free_kernel_image_pages("unused kernel image (initmem)",
- &__init_begin, &__init_end);
- }
- #ifdef CONFIG_BLK_DEV_INITRD
- void __init free_initrd_mem(unsigned long start, unsigned long end)
- {
- /*
- * end could be not aligned, and We can not align that,
- * decompressor could be confused by aligned initrd_end
- * We already reserve the end partial page before in
- * - i386_start_kernel()
- * - x86_64_start_kernel()
- * - relocate_initrd()
- * So here We can do PAGE_ALIGN() safely to get partial page to be freed
- */
- free_init_pages("initrd", start, PAGE_ALIGN(end));
- }
- #endif
- /*
- * Calculate the precise size of the DMA zone (first 16 MB of RAM),
- * and pass it to the MM layer - to help it set zone watermarks more
- * accurately.
- *
- * Done on 64-bit systems only for the time being, although 32-bit systems
- * might benefit from this as well.
- */
- void __init memblock_find_dma_reserve(void)
- {
- #ifdef CONFIG_X86_64
- u64 nr_pages = 0, nr_free_pages = 0;
- unsigned long start_pfn, end_pfn;
- phys_addr_t start_addr, end_addr;
- int i;
- u64 u;
- /*
- * Iterate over all memory ranges (free and reserved ones alike),
- * to calculate the total number of pages in the first 16 MB of RAM:
- */
- nr_pages = 0;
- for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
- start_pfn = min(start_pfn, MAX_DMA_PFN);
- end_pfn = min(end_pfn, MAX_DMA_PFN);
- nr_pages += end_pfn - start_pfn;
- }
- /*
- * Iterate over free memory ranges to calculate the number of free
- * pages in the DMA zone, while not counting potential partial
- * pages at the beginning or the end of the range:
- */
- nr_free_pages = 0;
- for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) {
- start_pfn = min_t(unsigned long, PFN_UP(start_addr), MAX_DMA_PFN);
- end_pfn = min_t(unsigned long, PFN_DOWN(end_addr), MAX_DMA_PFN);
- if (start_pfn < end_pfn)
- nr_free_pages += end_pfn - start_pfn;
- }
- set_dma_reserve(nr_pages - nr_free_pages);
- #endif
- }
- void __init zone_sizes_init(void)
- {
- unsigned long max_zone_pfns[MAX_NR_ZONES];
- memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
- #ifdef CONFIG_ZONE_DMA
- max_zone_pfns[ZONE_DMA] = min(MAX_DMA_PFN, max_low_pfn);
- #endif
- #ifdef CONFIG_ZONE_DMA32
- max_zone_pfns[ZONE_DMA32] = disable_dma32 ? 0 : min(MAX_DMA32_PFN, max_low_pfn);
- #endif
- max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
- #ifdef CONFIG_HIGHMEM
- max_zone_pfns[ZONE_HIGHMEM] = max_pfn;
- #endif
- free_area_init(max_zone_pfns);
- }
- static int __init early_disable_dma32(char *buf)
- {
- if (!buf)
- return -EINVAL;
- if (!strcmp(buf, "on"))
- disable_dma32 = true;
- return 0;
- }
- early_param("disable_dma32", early_disable_dma32);
- __visible DEFINE_PER_CPU_ALIGNED(struct tlb_state, cpu_tlbstate) = {
- .loaded_mm = &init_mm,
- .next_asid = 1,
- .cr4 = ~0UL, /* fail hard if we screw up cr4 shadow initialization */
- };
- void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
- {
- /* entry 0 MUST be WB (hardwired to speed up translations) */
- BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
- __cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
- __pte2cachemode_tbl[entry] = cache;
- }
- #ifdef CONFIG_SWAP
- unsigned long arch_max_swapfile_size(void)
- {
- unsigned long pages;
- pages = generic_max_swapfile_size();
- if (boot_cpu_has_bug(X86_BUG_L1TF) && l1tf_mitigation != L1TF_MITIGATION_OFF) {
- /* Limit the swap file size to MAX_PA/2 for L1TF workaround */
- unsigned long long l1tf_limit = l1tf_pfn_limit();
- /*
- * We encode swap offsets also with 3 bits below those for pfn
- * which makes the usable limit higher.
- */
- #if CONFIG_PGTABLE_LEVELS > 2
- l1tf_limit <<= PAGE_SHIFT - SWP_OFFSET_FIRST_BIT;
- #endif
- pages = min_t(unsigned long long, l1tf_limit, pages);
- }
- return pages;
- }
- #endif
|