123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507 |
- // SPDX-License-Identifier: GPL-2.0-only
- /*
- * Kernel-based Virtual Machine driver for Linux
- *
- * Macros and functions to access KVM PTEs (also known as SPTEs)
- *
- * Copyright (C) 2006 Qumranet, Inc.
- * Copyright 2020 Red Hat, Inc. and/or its affiliates.
- */
- #include <linux/kvm_host.h>
- #include "mmu.h"
- #include "mmu_internal.h"
- #include "x86.h"
- #include "spte.h"
- #include <asm/e820/api.h>
- #include <asm/memtype.h>
- #include <asm/vmx.h>
- bool __read_mostly enable_mmio_caching = true;
- static bool __ro_after_init allow_mmio_caching;
- module_param_named(mmio_caching, enable_mmio_caching, bool, 0444);
- EXPORT_SYMBOL_GPL(enable_mmio_caching);
- u64 __read_mostly shadow_host_writable_mask;
- u64 __read_mostly shadow_mmu_writable_mask;
- u64 __read_mostly shadow_nx_mask;
- u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
- u64 __read_mostly shadow_user_mask;
- u64 __read_mostly shadow_accessed_mask;
- u64 __read_mostly shadow_dirty_mask;
- u64 __read_mostly shadow_mmio_value;
- u64 __read_mostly shadow_mmio_mask;
- u64 __read_mostly shadow_mmio_access_mask;
- u64 __read_mostly shadow_present_mask;
- u64 __read_mostly shadow_memtype_mask;
- u64 __read_mostly shadow_me_value;
- u64 __read_mostly shadow_me_mask;
- u64 __read_mostly shadow_acc_track_mask;
- u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
- u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;
- u8 __read_mostly shadow_phys_bits;
- void __init kvm_mmu_spte_module_init(void)
- {
- /*
- * Snapshot userspace's desire to allow MMIO caching. Whether or not
- * KVM can actually enable MMIO caching depends on vendor-specific
- * hardware capabilities and other module params that can't be resolved
- * until the vendor module is loaded, i.e. enable_mmio_caching can and
- * will change when the vendor module is (re)loaded.
- */
- allow_mmio_caching = enable_mmio_caching;
- }
- static u64 generation_mmio_spte_mask(u64 gen)
- {
- u64 mask;
- WARN_ON(gen & ~MMIO_SPTE_GEN_MASK);
- mask = (gen << MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_SPTE_GEN_LOW_MASK;
- mask |= (gen << MMIO_SPTE_GEN_HIGH_SHIFT) & MMIO_SPTE_GEN_HIGH_MASK;
- return mask;
- }
- u64 make_mmio_spte(struct kvm_vcpu *vcpu, u64 gfn, unsigned int access)
- {
- u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK;
- u64 spte = generation_mmio_spte_mask(gen);
- u64 gpa = gfn << PAGE_SHIFT;
- WARN_ON_ONCE(!shadow_mmio_value);
- access &= shadow_mmio_access_mask;
- spte |= shadow_mmio_value | access;
- spte |= gpa | shadow_nonpresent_or_rsvd_mask;
- spte |= (gpa & shadow_nonpresent_or_rsvd_mask)
- << SHADOW_NONPRESENT_OR_RSVD_MASK_LEN;
- return spte;
- }
- static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
- {
- if (pfn_valid(pfn))
- return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
- /*
- * Some reserved pages, such as those from NVDIMM
- * DAX devices, are not for MMIO, and can be mapped
- * with cached memory type for better performance.
- * However, the above check misconceives those pages
- * as MMIO, and results in KVM mapping them with UC
- * memory type, which would hurt the performance.
- * Therefore, we check the host memory type in addition
- * and only treat UC/UC-/WC pages as MMIO.
- */
- (!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
- return !e820__mapped_raw_any(pfn_to_hpa(pfn),
- pfn_to_hpa(pfn + 1) - 1,
- E820_TYPE_RAM);
- }
- /*
- * Returns true if the SPTE has bits that may be set without holding mmu_lock.
- * The caller is responsible for checking if the SPTE is shadow-present, and
- * for determining whether or not the caller cares about non-leaf SPTEs.
- */
- bool spte_has_volatile_bits(u64 spte)
- {
- /*
- * Always atomically update spte if it can be updated
- * out of mmu-lock, it can ensure dirty bit is not lost,
- * also, it can help us to get a stable is_writable_pte()
- * to ensure tlb flush is not missed.
- */
- if (!is_writable_pte(spte) && is_mmu_writable_spte(spte))
- return true;
- if (is_access_track_spte(spte))
- return true;
- if (spte_ad_enabled(spte)) {
- if (!(spte & shadow_accessed_mask) ||
- (is_writable_pte(spte) && !(spte & shadow_dirty_mask)))
- return true;
- }
- return false;
- }
- bool make_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
- const struct kvm_memory_slot *slot,
- unsigned int pte_access, gfn_t gfn, kvm_pfn_t pfn,
- u64 old_spte, bool prefetch, bool can_unsync,
- bool host_writable, u64 *new_spte)
- {
- int level = sp->role.level;
- u64 spte = SPTE_MMU_PRESENT_MASK;
- bool wrprot = false;
- WARN_ON_ONCE(!pte_access && !shadow_present_mask);
- if (sp->role.ad_disabled)
- spte |= SPTE_TDP_AD_DISABLED_MASK;
- else if (kvm_mmu_page_ad_need_write_protect(sp))
- spte |= SPTE_TDP_AD_WRPROT_ONLY_MASK;
- /*
- * For the EPT case, shadow_present_mask is 0 if hardware
- * supports exec-only page table entries. In that case,
- * ACC_USER_MASK and shadow_user_mask are used to represent
- * read access. See FNAME(gpte_access) in paging_tmpl.h.
- */
- spte |= shadow_present_mask;
- if (!prefetch)
- spte |= spte_shadow_accessed_mask(spte);
- if (level > PG_LEVEL_4K && (pte_access & ACC_EXEC_MASK) &&
- is_nx_huge_page_enabled(vcpu->kvm)) {
- pte_access &= ~ACC_EXEC_MASK;
- }
- if (pte_access & ACC_EXEC_MASK)
- spte |= shadow_x_mask;
- else
- spte |= shadow_nx_mask;
- if (pte_access & ACC_USER_MASK)
- spte |= shadow_user_mask;
- if (level > PG_LEVEL_4K)
- spte |= PT_PAGE_SIZE_MASK;
- if (shadow_memtype_mask)
- spte |= static_call(kvm_x86_get_mt_mask)(vcpu, gfn,
- kvm_is_mmio_pfn(pfn));
- if (host_writable)
- spte |= shadow_host_writable_mask;
- else
- pte_access &= ~ACC_WRITE_MASK;
- if (shadow_me_value && !kvm_is_mmio_pfn(pfn))
- spte |= shadow_me_value;
- spte |= (u64)pfn << PAGE_SHIFT;
- if (pte_access & ACC_WRITE_MASK) {
- spte |= PT_WRITABLE_MASK | shadow_mmu_writable_mask;
- /*
- * Optimization: for pte sync, if spte was writable the hash
- * lookup is unnecessary (and expensive). Write protection
- * is responsibility of kvm_mmu_get_page / kvm_mmu_sync_roots.
- * Same reasoning can be applied to dirty page accounting.
- */
- if (is_writable_pte(old_spte))
- goto out;
- /*
- * Unsync shadow pages that are reachable by the new, writable
- * SPTE. Write-protect the SPTE if the page can't be unsync'd,
- * e.g. it's write-tracked (upper-level SPs) or has one or more
- * shadow pages and unsync'ing pages is not allowed.
- */
- if (mmu_try_to_unsync_pages(vcpu->kvm, slot, gfn, can_unsync, prefetch)) {
- pgprintk("%s: found shadow page for %llx, marking ro\n",
- __func__, gfn);
- wrprot = true;
- pte_access &= ~ACC_WRITE_MASK;
- spte &= ~(PT_WRITABLE_MASK | shadow_mmu_writable_mask);
- }
- }
- if (pte_access & ACC_WRITE_MASK)
- spte |= spte_shadow_dirty_mask(spte);
- out:
- if (prefetch)
- spte = mark_spte_for_access_track(spte);
- WARN_ONCE(is_rsvd_spte(&vcpu->arch.mmu->shadow_zero_check, spte, level),
- "spte = 0x%llx, level = %d, rsvd bits = 0x%llx", spte, level,
- get_rsvd_bits(&vcpu->arch.mmu->shadow_zero_check, spte, level));
- if ((spte & PT_WRITABLE_MASK) && kvm_slot_dirty_track_enabled(slot)) {
- /* Enforced by kvm_mmu_hugepage_adjust. */
- WARN_ON(level > PG_LEVEL_4K);
- mark_page_dirty_in_slot(vcpu->kvm, slot, gfn);
- }
- *new_spte = spte;
- return wrprot;
- }
- static u64 make_spte_executable(u64 spte)
- {
- bool is_access_track = is_access_track_spte(spte);
- if (is_access_track)
- spte = restore_acc_track_spte(spte);
- spte &= ~shadow_nx_mask;
- spte |= shadow_x_mask;
- if (is_access_track)
- spte = mark_spte_for_access_track(spte);
- return spte;
- }
- /*
- * Construct an SPTE that maps a sub-page of the given huge page SPTE where
- * `index` identifies which sub-page.
- *
- * This is used during huge page splitting to build the SPTEs that make up the
- * new page table.
- */
- u64 make_huge_page_split_spte(struct kvm *kvm, u64 huge_spte, union kvm_mmu_page_role role,
- int index)
- {
- u64 child_spte;
- if (WARN_ON_ONCE(!is_shadow_present_pte(huge_spte)))
- return 0;
- if (WARN_ON_ONCE(!is_large_pte(huge_spte)))
- return 0;
- child_spte = huge_spte;
- /*
- * The child_spte already has the base address of the huge page being
- * split. So we just have to OR in the offset to the page at the next
- * lower level for the given index.
- */
- child_spte |= (index * KVM_PAGES_PER_HPAGE(role.level)) << PAGE_SHIFT;
- if (role.level == PG_LEVEL_4K) {
- child_spte &= ~PT_PAGE_SIZE_MASK;
- /*
- * When splitting to a 4K page where execution is allowed, mark
- * the page executable as the NX hugepage mitigation no longer
- * applies.
- */
- if ((role.access & ACC_EXEC_MASK) && is_nx_huge_page_enabled(kvm))
- child_spte = make_spte_executable(child_spte);
- }
- return child_spte;
- }
- u64 make_nonleaf_spte(u64 *child_pt, bool ad_disabled)
- {
- u64 spte = SPTE_MMU_PRESENT_MASK;
- spte |= __pa(child_pt) | shadow_present_mask | PT_WRITABLE_MASK |
- shadow_user_mask | shadow_x_mask | shadow_me_value;
- if (ad_disabled)
- spte |= SPTE_TDP_AD_DISABLED_MASK;
- else
- spte |= shadow_accessed_mask;
- return spte;
- }
- u64 kvm_mmu_changed_pte_notifier_make_spte(u64 old_spte, kvm_pfn_t new_pfn)
- {
- u64 new_spte;
- new_spte = old_spte & ~SPTE_BASE_ADDR_MASK;
- new_spte |= (u64)new_pfn << PAGE_SHIFT;
- new_spte &= ~PT_WRITABLE_MASK;
- new_spte &= ~shadow_host_writable_mask;
- new_spte &= ~shadow_mmu_writable_mask;
- new_spte = mark_spte_for_access_track(new_spte);
- return new_spte;
- }
- u64 mark_spte_for_access_track(u64 spte)
- {
- if (spte_ad_enabled(spte))
- return spte & ~shadow_accessed_mask;
- if (is_access_track_spte(spte))
- return spte;
- check_spte_writable_invariants(spte);
- WARN_ONCE(spte & (SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
- SHADOW_ACC_TRACK_SAVED_BITS_SHIFT),
- "kvm: Access Tracking saved bit locations are not zero\n");
- spte |= (spte & SHADOW_ACC_TRACK_SAVED_BITS_MASK) <<
- SHADOW_ACC_TRACK_SAVED_BITS_SHIFT;
- spte &= ~shadow_acc_track_mask;
- return spte;
- }
- void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 mmio_mask, u64 access_mask)
- {
- BUG_ON((u64)(unsigned)access_mask != access_mask);
- WARN_ON(mmio_value & shadow_nonpresent_or_rsvd_lower_gfn_mask);
- /*
- * Reset to the original module param value to honor userspace's desire
- * to (dis)allow MMIO caching. Update the param itself so that
- * userspace can see whether or not KVM is actually using MMIO caching.
- */
- enable_mmio_caching = allow_mmio_caching;
- if (!enable_mmio_caching)
- mmio_value = 0;
- /*
- * The mask must contain only bits that are carved out specifically for
- * the MMIO SPTE mask, e.g. to ensure there's no overlap with the MMIO
- * generation.
- */
- if (WARN_ON(mmio_mask & ~SPTE_MMIO_ALLOWED_MASK))
- mmio_value = 0;
- /*
- * Disable MMIO caching if the MMIO value collides with the bits that
- * are used to hold the relocated GFN when the L1TF mitigation is
- * enabled. This should never fire as there is no known hardware that
- * can trigger this condition, e.g. SME/SEV CPUs that require a custom
- * MMIO value are not susceptible to L1TF.
- */
- if (WARN_ON(mmio_value & (shadow_nonpresent_or_rsvd_mask <<
- SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)))
- mmio_value = 0;
- /*
- * The masked MMIO value must obviously match itself and a removed SPTE
- * must not get a false positive. Removed SPTEs and MMIO SPTEs should
- * never collide as MMIO must set some RWX bits, and removed SPTEs must
- * not set any RWX bits.
- */
- if (WARN_ON((mmio_value & mmio_mask) != mmio_value) ||
- WARN_ON(mmio_value && (REMOVED_SPTE & mmio_mask) == mmio_value))
- mmio_value = 0;
- if (!mmio_value)
- enable_mmio_caching = false;
- shadow_mmio_value = mmio_value;
- shadow_mmio_mask = mmio_mask;
- shadow_mmio_access_mask = access_mask;
- }
- EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
- void kvm_mmu_set_me_spte_mask(u64 me_value, u64 me_mask)
- {
- /* shadow_me_value must be a subset of shadow_me_mask */
- if (WARN_ON(me_value & ~me_mask))
- me_value = me_mask = 0;
- shadow_me_value = me_value;
- shadow_me_mask = me_mask;
- }
- EXPORT_SYMBOL_GPL(kvm_mmu_set_me_spte_mask);
- void kvm_mmu_set_ept_masks(bool has_ad_bits, bool has_exec_only)
- {
- shadow_user_mask = VMX_EPT_READABLE_MASK;
- shadow_accessed_mask = has_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull;
- shadow_dirty_mask = has_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull;
- shadow_nx_mask = 0ull;
- shadow_x_mask = VMX_EPT_EXECUTABLE_MASK;
- shadow_present_mask = has_exec_only ? 0ull : VMX_EPT_READABLE_MASK;
- /*
- * EPT overrides the host MTRRs, and so KVM must program the desired
- * memtype directly into the SPTEs. Note, this mask is just the mask
- * of all bits that factor into the memtype, the actual memtype must be
- * dynamically calculated, e.g. to ensure host MMIO is mapped UC.
- */
- shadow_memtype_mask = VMX_EPT_MT_MASK | VMX_EPT_IPAT_BIT;
- shadow_acc_track_mask = VMX_EPT_RWX_MASK;
- shadow_host_writable_mask = EPT_SPTE_HOST_WRITABLE;
- shadow_mmu_writable_mask = EPT_SPTE_MMU_WRITABLE;
- /*
- * EPT Misconfigurations are generated if the value of bits 2:0
- * of an EPT paging-structure entry is 110b (write/execute).
- */
- kvm_mmu_set_mmio_spte_mask(VMX_EPT_MISCONFIG_WX_VALUE,
- VMX_EPT_RWX_MASK, 0);
- }
- EXPORT_SYMBOL_GPL(kvm_mmu_set_ept_masks);
- void kvm_mmu_reset_all_pte_masks(void)
- {
- u8 low_phys_bits;
- u64 mask;
- shadow_phys_bits = kvm_get_shadow_phys_bits();
- /*
- * If the CPU has 46 or less physical address bits, then set an
- * appropriate mask to guard against L1TF attacks. Otherwise, it is
- * assumed that the CPU is not vulnerable to L1TF.
- *
- * Some Intel CPUs address the L1 cache using more PA bits than are
- * reported by CPUID. Use the PA width of the L1 cache when possible
- * to achieve more effective mitigation, e.g. if system RAM overlaps
- * the most significant bits of legal physical address space.
- */
- shadow_nonpresent_or_rsvd_mask = 0;
- low_phys_bits = boot_cpu_data.x86_phys_bits;
- if (boot_cpu_has_bug(X86_BUG_L1TF) &&
- !WARN_ON_ONCE(boot_cpu_data.x86_cache_bits >=
- 52 - SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)) {
- low_phys_bits = boot_cpu_data.x86_cache_bits
- - SHADOW_NONPRESENT_OR_RSVD_MASK_LEN;
- shadow_nonpresent_or_rsvd_mask =
- rsvd_bits(low_phys_bits, boot_cpu_data.x86_cache_bits - 1);
- }
- shadow_nonpresent_or_rsvd_lower_gfn_mask =
- GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT);
- shadow_user_mask = PT_USER_MASK;
- shadow_accessed_mask = PT_ACCESSED_MASK;
- shadow_dirty_mask = PT_DIRTY_MASK;
- shadow_nx_mask = PT64_NX_MASK;
- shadow_x_mask = 0;
- shadow_present_mask = PT_PRESENT_MASK;
- /*
- * For shadow paging and NPT, KVM uses PAT entry '0' to encode WB
- * memtype in the SPTEs, i.e. relies on host MTRRs to provide the
- * correct memtype (WB is the "weakest" memtype).
- */
- shadow_memtype_mask = 0;
- shadow_acc_track_mask = 0;
- shadow_me_mask = 0;
- shadow_me_value = 0;
- shadow_host_writable_mask = DEFAULT_SPTE_HOST_WRITABLE;
- shadow_mmu_writable_mask = DEFAULT_SPTE_MMU_WRITABLE;
- /*
- * Set a reserved PA bit in MMIO SPTEs to generate page faults with
- * PFEC.RSVD=1 on MMIO accesses. 64-bit PTEs (PAE, x86-64, and EPT
- * paging) support a maximum of 52 bits of PA, i.e. if the CPU supports
- * 52-bit physical addresses then there are no reserved PA bits in the
- * PTEs and so the reserved PA approach must be disabled.
- */
- if (shadow_phys_bits < 52)
- mask = BIT_ULL(51) | PT_PRESENT_MASK;
- else
- mask = 0;
- kvm_mmu_set_mmio_spte_mask(mask, mask, ACC_WRITE_MASK | ACC_USER_MASK);
- }
|