123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602 |
- // SPDX-License-Identifier: GPL-2.0-only
- /*
- * handle transition of Linux booting another kernel
- * Copyright (C) 2002-2005 Eric Biederman <[email protected]>
- */
- #define pr_fmt(fmt) "kexec: " fmt
- #include <linux/mm.h>
- #include <linux/kexec.h>
- #include <linux/string.h>
- #include <linux/gfp.h>
- #include <linux/reboot.h>
- #include <linux/numa.h>
- #include <linux/ftrace.h>
- #include <linux/io.h>
- #include <linux/suspend.h>
- #include <linux/vmalloc.h>
- #include <linux/efi.h>
- #include <linux/cc_platform.h>
- #include <asm/init.h>
- #include <asm/tlbflush.h>
- #include <asm/mmu_context.h>
- #include <asm/io_apic.h>
- #include <asm/debugreg.h>
- #include <asm/kexec-bzimage64.h>
- #include <asm/setup.h>
- #include <asm/set_memory.h>
- #include <asm/cpu.h>
- #ifdef CONFIG_ACPI
- /*
- * Used while adding mapping for ACPI tables.
- * Can be reused when other iomem regions need be mapped
- */
- struct init_pgtable_data {
- struct x86_mapping_info *info;
- pgd_t *level4p;
- };
- static int mem_region_callback(struct resource *res, void *arg)
- {
- struct init_pgtable_data *data = arg;
- unsigned long mstart, mend;
- mstart = res->start;
- mend = mstart + resource_size(res) - 1;
- return kernel_ident_mapping_init(data->info, data->level4p, mstart, mend);
- }
- static int
- map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p)
- {
- struct init_pgtable_data data;
- unsigned long flags;
- int ret;
- data.info = info;
- data.level4p = level4p;
- flags = IORESOURCE_MEM | IORESOURCE_BUSY;
- ret = walk_iomem_res_desc(IORES_DESC_ACPI_TABLES, flags, 0, -1,
- &data, mem_region_callback);
- if (ret && ret != -EINVAL)
- return ret;
- /* ACPI tables could be located in ACPI Non-volatile Storage region */
- ret = walk_iomem_res_desc(IORES_DESC_ACPI_NV_STORAGE, flags, 0, -1,
- &data, mem_region_callback);
- if (ret && ret != -EINVAL)
- return ret;
- return 0;
- }
- #else
- static int map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p) { return 0; }
- #endif
- #ifdef CONFIG_KEXEC_FILE
- const struct kexec_file_ops * const kexec_file_loaders[] = {
- &kexec_bzImage64_ops,
- NULL
- };
- #endif
- static int
- map_efi_systab(struct x86_mapping_info *info, pgd_t *level4p)
- {
- #ifdef CONFIG_EFI
- unsigned long mstart, mend;
- if (!efi_enabled(EFI_BOOT))
- return 0;
- mstart = (boot_params.efi_info.efi_systab |
- ((u64)boot_params.efi_info.efi_systab_hi<<32));
- if (efi_enabled(EFI_64BIT))
- mend = mstart + sizeof(efi_system_table_64_t);
- else
- mend = mstart + sizeof(efi_system_table_32_t);
- if (!mstart)
- return 0;
- return kernel_ident_mapping_init(info, level4p, mstart, mend);
- #endif
- return 0;
- }
- static void free_transition_pgtable(struct kimage *image)
- {
- free_page((unsigned long)image->arch.p4d);
- image->arch.p4d = NULL;
- free_page((unsigned long)image->arch.pud);
- image->arch.pud = NULL;
- free_page((unsigned long)image->arch.pmd);
- image->arch.pmd = NULL;
- free_page((unsigned long)image->arch.pte);
- image->arch.pte = NULL;
- }
- static int init_transition_pgtable(struct kimage *image, pgd_t *pgd)
- {
- pgprot_t prot = PAGE_KERNEL_EXEC_NOENC;
- unsigned long vaddr, paddr;
- int result = -ENOMEM;
- p4d_t *p4d;
- pud_t *pud;
- pmd_t *pmd;
- pte_t *pte;
- vaddr = (unsigned long)relocate_kernel;
- paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE);
- pgd += pgd_index(vaddr);
- if (!pgd_present(*pgd)) {
- p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
- if (!p4d)
- goto err;
- image->arch.p4d = p4d;
- set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE));
- }
- p4d = p4d_offset(pgd, vaddr);
- if (!p4d_present(*p4d)) {
- pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
- if (!pud)
- goto err;
- image->arch.pud = pud;
- set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
- }
- pud = pud_offset(p4d, vaddr);
- if (!pud_present(*pud)) {
- pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
- if (!pmd)
- goto err;
- image->arch.pmd = pmd;
- set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
- }
- pmd = pmd_offset(pud, vaddr);
- if (!pmd_present(*pmd)) {
- pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
- if (!pte)
- goto err;
- image->arch.pte = pte;
- set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
- }
- pte = pte_offset_kernel(pmd, vaddr);
- if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
- prot = PAGE_KERNEL_EXEC;
- set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, prot));
- return 0;
- err:
- return result;
- }
- static void *alloc_pgt_page(void *data)
- {
- struct kimage *image = (struct kimage *)data;
- struct page *page;
- void *p = NULL;
- page = kimage_alloc_control_pages(image, 0);
- if (page) {
- p = page_address(page);
- clear_page(p);
- }
- return p;
- }
- static int init_pgtable(struct kimage *image, unsigned long start_pgtable)
- {
- struct x86_mapping_info info = {
- .alloc_pgt_page = alloc_pgt_page,
- .context = image,
- .page_flag = __PAGE_KERNEL_LARGE_EXEC,
- .kernpg_flag = _KERNPG_TABLE_NOENC,
- };
- unsigned long mstart, mend;
- pgd_t *level4p;
- int result;
- int i;
- level4p = (pgd_t *)__va(start_pgtable);
- clear_page(level4p);
- if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) {
- info.page_flag |= _PAGE_ENC;
- info.kernpg_flag |= _PAGE_ENC;
- }
- if (direct_gbpages)
- info.direct_gbpages = true;
- for (i = 0; i < nr_pfn_mapped; i++) {
- mstart = pfn_mapped[i].start << PAGE_SHIFT;
- mend = pfn_mapped[i].end << PAGE_SHIFT;
- result = kernel_ident_mapping_init(&info,
- level4p, mstart, mend);
- if (result)
- return result;
- }
- /*
- * segments's mem ranges could be outside 0 ~ max_pfn,
- * for example when jump back to original kernel from kexeced kernel.
- * or first kernel is booted with user mem map, and second kernel
- * could be loaded out of that range.
- */
- for (i = 0; i < image->nr_segments; i++) {
- mstart = image->segment[i].mem;
- mend = mstart + image->segment[i].memsz;
- result = kernel_ident_mapping_init(&info,
- level4p, mstart, mend);
- if (result)
- return result;
- }
- /*
- * Prepare EFI systab and ACPI tables for kexec kernel since they are
- * not covered by pfn_mapped.
- */
- result = map_efi_systab(&info, level4p);
- if (result)
- return result;
- result = map_acpi_tables(&info, level4p);
- if (result)
- return result;
- return init_transition_pgtable(image, level4p);
- }
- static void load_segments(void)
- {
- __asm__ __volatile__ (
- "\tmovl %0,%%ds\n"
- "\tmovl %0,%%es\n"
- "\tmovl %0,%%ss\n"
- "\tmovl %0,%%fs\n"
- "\tmovl %0,%%gs\n"
- : : "a" (__KERNEL_DS) : "memory"
- );
- }
- int machine_kexec_prepare(struct kimage *image)
- {
- unsigned long start_pgtable;
- int result;
- /* Calculate the offsets */
- start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT;
- /* Setup the identity mapped 64bit page table */
- result = init_pgtable(image, start_pgtable);
- if (result)
- return result;
- return 0;
- }
- void machine_kexec_cleanup(struct kimage *image)
- {
- free_transition_pgtable(image);
- }
- /*
- * Do not allocate memory (or fail in any way) in machine_kexec().
- * We are past the point of no return, committed to rebooting now.
- */
- void machine_kexec(struct kimage *image)
- {
- unsigned long page_list[PAGES_NR];
- void *control_page;
- int save_ftrace_enabled;
- #ifdef CONFIG_KEXEC_JUMP
- if (image->preserve_context)
- save_processor_state();
- #endif
- save_ftrace_enabled = __ftrace_enabled_save();
- /* Interrupts aren't acceptable while we reboot */
- local_irq_disable();
- hw_breakpoint_disable();
- cet_disable();
- if (image->preserve_context) {
- #ifdef CONFIG_X86_IO_APIC
- /*
- * We need to put APICs in legacy mode so that we can
- * get timer interrupts in second kernel. kexec/kdump
- * paths already have calls to restore_boot_irq_mode()
- * in one form or other. kexec jump path also need one.
- */
- clear_IO_APIC();
- restore_boot_irq_mode();
- #endif
- }
- control_page = page_address(image->control_code_page) + PAGE_SIZE;
- __memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE);
- page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page);
- page_list[VA_CONTROL_PAGE] = (unsigned long)control_page;
- page_list[PA_TABLE_PAGE] =
- (unsigned long)__pa(page_address(image->control_code_page));
- if (image->type == KEXEC_TYPE_DEFAULT)
- page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page)
- << PAGE_SHIFT);
- /*
- * The segment registers are funny things, they have both a
- * visible and an invisible part. Whenever the visible part is
- * set to a specific selector, the invisible part is loaded
- * with from a table in memory. At no other time is the
- * descriptor table in memory accessed.
- *
- * I take advantage of this here by force loading the
- * segments, before I zap the gdt with an invalid value.
- */
- load_segments();
- /*
- * The gdt & idt are now invalid.
- * If you want to load them you must set up your own idt & gdt.
- */
- native_idt_invalidate();
- native_gdt_invalidate();
- /* now call it */
- image->start = relocate_kernel((unsigned long)image->head,
- (unsigned long)page_list,
- image->start,
- image->preserve_context,
- cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT));
- #ifdef CONFIG_KEXEC_JUMP
- if (image->preserve_context)
- restore_processor_state();
- #endif
- __ftrace_enabled_restore(save_ftrace_enabled);
- }
- /* arch-dependent functionality related to kexec file-based syscall */
- #ifdef CONFIG_KEXEC_FILE
- void *arch_kexec_kernel_image_load(struct kimage *image)
- {
- if (!image->fops || !image->fops->load)
- return ERR_PTR(-ENOEXEC);
- return image->fops->load(image, image->kernel_buf,
- image->kernel_buf_len, image->initrd_buf,
- image->initrd_buf_len, image->cmdline_buf,
- image->cmdline_buf_len);
- }
- /*
- * Apply purgatory relocations.
- *
- * @pi: Purgatory to be relocated.
- * @section: Section relocations applying to.
- * @relsec: Section containing RELAs.
- * @symtabsec: Corresponding symtab.
- *
- * TODO: Some of the code belongs to generic code. Move that in kexec.c.
- */
- int arch_kexec_apply_relocations_add(struct purgatory_info *pi,
- Elf_Shdr *section, const Elf_Shdr *relsec,
- const Elf_Shdr *symtabsec)
- {
- unsigned int i;
- Elf64_Rela *rel;
- Elf64_Sym *sym;
- void *location;
- unsigned long address, sec_base, value;
- const char *strtab, *name, *shstrtab;
- const Elf_Shdr *sechdrs;
- /* String & section header string table */
- sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
- strtab = (char *)pi->ehdr + sechdrs[symtabsec->sh_link].sh_offset;
- shstrtab = (char *)pi->ehdr + sechdrs[pi->ehdr->e_shstrndx].sh_offset;
- rel = (void *)pi->ehdr + relsec->sh_offset;
- pr_debug("Applying relocate section %s to %u\n",
- shstrtab + relsec->sh_name, relsec->sh_info);
- for (i = 0; i < relsec->sh_size / sizeof(*rel); i++) {
- /*
- * rel[i].r_offset contains byte offset from beginning
- * of section to the storage unit affected.
- *
- * This is location to update. This is temporary buffer
- * where section is currently loaded. This will finally be
- * loaded to a different address later, pointed to by
- * ->sh_addr. kexec takes care of moving it
- * (kexec_load_segment()).
- */
- location = pi->purgatory_buf;
- location += section->sh_offset;
- location += rel[i].r_offset;
- /* Final address of the location */
- address = section->sh_addr + rel[i].r_offset;
- /*
- * rel[i].r_info contains information about symbol table index
- * w.r.t which relocation must be made and type of relocation
- * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get
- * these respectively.
- */
- sym = (void *)pi->ehdr + symtabsec->sh_offset;
- sym += ELF64_R_SYM(rel[i].r_info);
- if (sym->st_name)
- name = strtab + sym->st_name;
- else
- name = shstrtab + sechdrs[sym->st_shndx].sh_name;
- pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n",
- name, sym->st_info, sym->st_shndx, sym->st_value,
- sym->st_size);
- if (sym->st_shndx == SHN_UNDEF) {
- pr_err("Undefined symbol: %s\n", name);
- return -ENOEXEC;
- }
- if (sym->st_shndx == SHN_COMMON) {
- pr_err("symbol '%s' in common section\n", name);
- return -ENOEXEC;
- }
- if (sym->st_shndx == SHN_ABS)
- sec_base = 0;
- else if (sym->st_shndx >= pi->ehdr->e_shnum) {
- pr_err("Invalid section %d for symbol %s\n",
- sym->st_shndx, name);
- return -ENOEXEC;
- } else
- sec_base = pi->sechdrs[sym->st_shndx].sh_addr;
- value = sym->st_value;
- value += sec_base;
- value += rel[i].r_addend;
- switch (ELF64_R_TYPE(rel[i].r_info)) {
- case R_X86_64_NONE:
- break;
- case R_X86_64_64:
- *(u64 *)location = value;
- break;
- case R_X86_64_32:
- *(u32 *)location = value;
- if (value != *(u32 *)location)
- goto overflow;
- break;
- case R_X86_64_32S:
- *(s32 *)location = value;
- if ((s64)value != *(s32 *)location)
- goto overflow;
- break;
- case R_X86_64_PC32:
- case R_X86_64_PLT32:
- value -= (u64)address;
- *(u32 *)location = value;
- break;
- default:
- pr_err("Unknown rela relocation: %llu\n",
- ELF64_R_TYPE(rel[i].r_info));
- return -ENOEXEC;
- }
- }
- return 0;
- overflow:
- pr_err("Overflow in relocation type %d value 0x%lx\n",
- (int)ELF64_R_TYPE(rel[i].r_info), value);
- return -ENOEXEC;
- }
- int arch_kimage_file_post_load_cleanup(struct kimage *image)
- {
- vfree(image->elf_headers);
- image->elf_headers = NULL;
- image->elf_headers_sz = 0;
- return kexec_image_post_load_cleanup_default(image);
- }
- #endif /* CONFIG_KEXEC_FILE */
- static int
- kexec_mark_range(unsigned long start, unsigned long end, bool protect)
- {
- struct page *page;
- unsigned int nr_pages;
- /*
- * For physical range: [start, end]. We must skip the unassigned
- * crashk resource with zero-valued "end" member.
- */
- if (!end || start > end)
- return 0;
- page = pfn_to_page(start >> PAGE_SHIFT);
- nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
- if (protect)
- return set_pages_ro(page, nr_pages);
- else
- return set_pages_rw(page, nr_pages);
- }
- static void kexec_mark_crashkres(bool protect)
- {
- unsigned long control;
- kexec_mark_range(crashk_low_res.start, crashk_low_res.end, protect);
- /* Don't touch the control code page used in crash_kexec().*/
- control = PFN_PHYS(page_to_pfn(kexec_crash_image->control_code_page));
- /* Control code page is located in the 2nd page. */
- kexec_mark_range(crashk_res.start, control + PAGE_SIZE - 1, protect);
- control += KEXEC_CONTROL_PAGE_SIZE;
- kexec_mark_range(control, crashk_res.end, protect);
- }
- void arch_kexec_protect_crashkres(void)
- {
- kexec_mark_crashkres(true);
- }
- void arch_kexec_unprotect_crashkres(void)
- {
- kexec_mark_crashkres(false);
- }
- /*
- * During a traditional boot under SME, SME will encrypt the kernel,
- * so the SME kexec kernel also needs to be un-encrypted in order to
- * replicate a normal SME boot.
- *
- * During a traditional boot under SEV, the kernel has already been
- * loaded encrypted, so the SEV kexec kernel needs to be encrypted in
- * order to replicate a normal SEV boot.
- */
- int arch_kexec_post_alloc_pages(void *vaddr, unsigned int pages, gfp_t gfp)
- {
- if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT))
- return 0;
- /*
- * If host memory encryption is active we need to be sure that kexec
- * pages are not encrypted because when we boot to the new kernel the
- * pages won't be accessed encrypted (initially).
- */
- return set_memory_decrypted((unsigned long)vaddr, pages);
- }
- void arch_kexec_pre_free_pages(void *vaddr, unsigned int pages)
- {
- if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT))
- return;
- /*
- * If host memory encryption is active we need to reset the pages back
- * to being an encrypted mapping before freeing them.
- */
- set_memory_encrypted((unsigned long)vaddr, pages);
- }
|