123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292 |
- /* SPDX-License-Identifier: GPL-2.0 */
- #ifndef _ASM_X86_PGTABLE_3LEVEL_H
- #define _ASM_X86_PGTABLE_3LEVEL_H
- #include <asm/atomic64_32.h>
- /*
- * Intel Physical Address Extension (PAE) Mode - three-level page
- * tables on PPro+ CPUs.
- *
- * Copyright (C) 1999 Ingo Molnar <[email protected]>
- */
- #define pte_ERROR(e) \
- pr_err("%s:%d: bad pte %p(%08lx%08lx)\n", \
- __FILE__, __LINE__, &(e), (e).pte_high, (e).pte_low)
- #define pmd_ERROR(e) \
- pr_err("%s:%d: bad pmd %p(%016Lx)\n", \
- __FILE__, __LINE__, &(e), pmd_val(e))
- #define pgd_ERROR(e) \
- pr_err("%s:%d: bad pgd %p(%016Lx)\n", \
- __FILE__, __LINE__, &(e), pgd_val(e))
- /* Rules for using set_pte: the pte being assigned *must* be
- * either not present or in a state where the hardware will
- * not attempt to update the pte. In places where this is
- * not possible, use pte_get_and_clear to obtain the old pte
- * value and then use set_pte to update it. -ben
- */
- static inline void native_set_pte(pte_t *ptep, pte_t pte)
- {
- ptep->pte_high = pte.pte_high;
- smp_wmb();
- ptep->pte_low = pte.pte_low;
- }
- #define pmd_read_atomic pmd_read_atomic
- /*
- * pte_offset_map_lock() on 32-bit PAE kernels was reading the pmd_t with
- * a "*pmdp" dereference done by GCC. Problem is, in certain places
- * where pte_offset_map_lock() is called, concurrent page faults are
- * allowed, if the mmap_lock is hold for reading. An example is mincore
- * vs page faults vs MADV_DONTNEED. On the page fault side
- * pmd_populate() rightfully does a set_64bit(), but if we're reading the
- * pmd_t with a "*pmdp" on the mincore side, a SMP race can happen
- * because GCC will not read the 64-bit value of the pmd atomically.
- *
- * To fix this all places running pte_offset_map_lock() while holding the
- * mmap_lock in read mode, shall read the pmdp pointer using this
- * function to know if the pmd is null or not, and in turn to know if
- * they can run pte_offset_map_lock() or pmd_trans_huge() or other pmd
- * operations.
- *
- * Without THP if the mmap_lock is held for reading, the pmd can only
- * transition from null to not null while pmd_read_atomic() runs. So
- * we can always return atomic pmd values with this function.
- *
- * With THP if the mmap_lock is held for reading, the pmd can become
- * trans_huge or none or point to a pte (and in turn become "stable")
- * at any time under pmd_read_atomic(). We could read it truly
- * atomically here with an atomic64_read() for the THP enabled case (and
- * it would be a whole lot simpler), but to avoid using cmpxchg8b we
- * only return an atomic pmdval if the low part of the pmdval is later
- * found to be stable (i.e. pointing to a pte). We are also returning a
- * 'none' (zero) pmdval if the low part of the pmd is zero.
- *
- * In some cases the high and low part of the pmdval returned may not be
- * consistent if THP is enabled (the low part may point to previously
- * mapped hugepage, while the high part may point to a more recently
- * mapped hugepage), but pmd_none_or_trans_huge_or_clear_bad() only
- * needs the low part of the pmd to be read atomically to decide if the
- * pmd is unstable or not, with the only exception when the low part
- * of the pmd is zero, in which case we return a 'none' pmd.
- */
- static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
- {
- pmdval_t ret;
- u32 *tmp = (u32 *)pmdp;
- ret = (pmdval_t) (*tmp);
- if (ret) {
- /*
- * If the low part is null, we must not read the high part
- * or we can end up with a partial pmd.
- */
- smp_rmb();
- ret |= ((pmdval_t)*(tmp + 1)) << 32;
- }
- return (pmd_t) { ret };
- }
- static inline void native_set_pte_atomic(pte_t *ptep, pte_t pte)
- {
- set_64bit((unsigned long long *)(ptep), native_pte_val(pte));
- }
- static inline void native_set_pmd(pmd_t *pmdp, pmd_t pmd)
- {
- set_64bit((unsigned long long *)(pmdp), native_pmd_val(pmd));
- }
- static inline void native_set_pud(pud_t *pudp, pud_t pud)
- {
- #ifdef CONFIG_PAGE_TABLE_ISOLATION
- pud.p4d.pgd = pti_set_user_pgtbl(&pudp->p4d.pgd, pud.p4d.pgd);
- #endif
- set_64bit((unsigned long long *)(pudp), native_pud_val(pud));
- }
- /*
- * For PTEs and PDEs, we must clear the P-bit first when clearing a page table
- * entry, so clear the bottom half first and enforce ordering with a compiler
- * barrier.
- */
- static inline void native_pte_clear(struct mm_struct *mm, unsigned long addr,
- pte_t *ptep)
- {
- ptep->pte_low = 0;
- smp_wmb();
- ptep->pte_high = 0;
- }
- static inline void native_pmd_clear(pmd_t *pmd)
- {
- u32 *tmp = (u32 *)pmd;
- *tmp = 0;
- smp_wmb();
- *(tmp + 1) = 0;
- }
- static inline void native_pud_clear(pud_t *pudp)
- {
- }
- static inline void pud_clear(pud_t *pudp)
- {
- set_pud(pudp, __pud(0));
- /*
- * According to Intel App note "TLBs, Paging-Structure Caches,
- * and Their Invalidation", April 2007, document 317080-001,
- * section 8.1: in PAE mode we explicitly have to flush the
- * TLB via cr3 if the top-level pgd is changed...
- *
- * Currently all places where pud_clear() is called either have
- * flush_tlb_mm() followed or don't need TLB flush (x86_64 code or
- * pud_clear_bad()), so we don't need TLB flush here.
- */
- }
- #ifdef CONFIG_SMP
- static inline pte_t native_ptep_get_and_clear(pte_t *ptep)
- {
- pte_t res;
- res.pte = (pteval_t)arch_atomic64_xchg((atomic64_t *)ptep, 0);
- return res;
- }
- #else
- #define native_ptep_get_and_clear(xp) native_local_ptep_get_and_clear(xp)
- #endif
- union split_pmd {
- struct {
- u32 pmd_low;
- u32 pmd_high;
- };
- pmd_t pmd;
- };
- #ifdef CONFIG_SMP
- static inline pmd_t native_pmdp_get_and_clear(pmd_t *pmdp)
- {
- union split_pmd res, *orig = (union split_pmd *)pmdp;
- /* xchg acts as a barrier before setting of the high bits */
- res.pmd_low = xchg(&orig->pmd_low, 0);
- res.pmd_high = orig->pmd_high;
- orig->pmd_high = 0;
- return res.pmd;
- }
- #else
- #define native_pmdp_get_and_clear(xp) native_local_pmdp_get_and_clear(xp)
- #endif
- #ifndef pmdp_establish
- #define pmdp_establish pmdp_establish
- static inline pmd_t pmdp_establish(struct vm_area_struct *vma,
- unsigned long address, pmd_t *pmdp, pmd_t pmd)
- {
- pmd_t old;
- /*
- * If pmd has present bit cleared we can get away without expensive
- * cmpxchg64: we can update pmdp half-by-half without racing with
- * anybody.
- */
- if (!(pmd_val(pmd) & _PAGE_PRESENT)) {
- union split_pmd old, new, *ptr;
- ptr = (union split_pmd *)pmdp;
- new.pmd = pmd;
- /* xchg acts as a barrier before setting of the high bits */
- old.pmd_low = xchg(&ptr->pmd_low, new.pmd_low);
- old.pmd_high = ptr->pmd_high;
- ptr->pmd_high = new.pmd_high;
- return old.pmd;
- }
- do {
- old = *pmdp;
- } while (cmpxchg64(&pmdp->pmd, old.pmd, pmd.pmd) != old.pmd);
- return old;
- }
- #endif
- #ifdef CONFIG_SMP
- union split_pud {
- struct {
- u32 pud_low;
- u32 pud_high;
- };
- pud_t pud;
- };
- static inline pud_t native_pudp_get_and_clear(pud_t *pudp)
- {
- union split_pud res, *orig = (union split_pud *)pudp;
- #ifdef CONFIG_PAGE_TABLE_ISOLATION
- pti_set_user_pgtbl(&pudp->p4d.pgd, __pgd(0));
- #endif
- /* xchg acts as a barrier before setting of the high bits */
- res.pud_low = xchg(&orig->pud_low, 0);
- res.pud_high = orig->pud_high;
- orig->pud_high = 0;
- return res.pud;
- }
- #else
- #define native_pudp_get_and_clear(xp) native_local_pudp_get_and_clear(xp)
- #endif
- /* Encode and de-code a swap entry */
- #define SWP_TYPE_BITS 5
- #define SWP_OFFSET_FIRST_BIT (_PAGE_BIT_PROTNONE + 1)
- /* We always extract/encode the offset by shifting it all the way up, and then down again */
- #define SWP_OFFSET_SHIFT (SWP_OFFSET_FIRST_BIT + SWP_TYPE_BITS)
- #define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS)
- #define __swp_type(x) (((x).val) & ((1UL << SWP_TYPE_BITS) - 1))
- #define __swp_offset(x) ((x).val >> SWP_TYPE_BITS)
- #define __swp_entry(type, offset) ((swp_entry_t){(type) | (offset) << SWP_TYPE_BITS})
- /*
- * Normally, __swp_entry() converts from arch-independent swp_entry_t to
- * arch-dependent swp_entry_t, and __swp_entry_to_pte() just stores the result
- * to pte. But here we have 32bit swp_entry_t and 64bit pte, and need to use the
- * whole 64 bits. Thus, we shift the "real" arch-dependent conversion to
- * __swp_entry_to_pte() through the following helper macro based on 64bit
- * __swp_entry().
- */
- #define __swp_pteval_entry(type, offset) ((pteval_t) { \
- (~(pteval_t)(offset) << SWP_OFFSET_SHIFT >> SWP_TYPE_BITS) \
- | ((pteval_t)(type) << (64 - SWP_TYPE_BITS)) })
- #define __swp_entry_to_pte(x) ((pte_t){ .pte = \
- __swp_pteval_entry(__swp_type(x), __swp_offset(x)) })
- /*
- * Analogically, __pte_to_swp_entry() doesn't just extract the arch-dependent
- * swp_entry_t, but also has to convert it from 64bit to the 32bit
- * intermediate representation, using the following macros based on 64bit
- * __swp_type() and __swp_offset().
- */
- #define __pteval_swp_type(x) ((unsigned long)((x).pte >> (64 - SWP_TYPE_BITS)))
- #define __pteval_swp_offset(x) ((unsigned long)(~((x).pte) << SWP_TYPE_BITS >> SWP_OFFSET_SHIFT))
- #define __pte_to_swp_entry(pte) (__swp_entry(__pteval_swp_type(pte), \
- __pteval_swp_offset(pte)))
- #include <asm/pgtable-invert.h>
- #endif /* _ASM_X86_PGTABLE_3LEVEL_H */
|