crct10dif-pcl-asm_64.S 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333
  1. ########################################################################
  2. # Implement fast CRC-T10DIF computation with SSE and PCLMULQDQ instructions
  3. #
  4. # Copyright (c) 2013, Intel Corporation
  5. #
  6. # Authors:
  7. # Erdinc Ozturk <[email protected]>
  8. # Vinodh Gopal <[email protected]>
  9. # James Guilford <[email protected]>
  10. # Tim Chen <[email protected]>
  11. #
  12. # This software is available to you under a choice of one of two
  13. # licenses. You may choose to be licensed under the terms of the GNU
  14. # General Public License (GPL) Version 2, available from the file
  15. # COPYING in the main directory of this source tree, or the
  16. # OpenIB.org BSD license below:
  17. #
  18. # Redistribution and use in source and binary forms, with or without
  19. # modification, are permitted provided that the following conditions are
  20. # met:
  21. #
  22. # * Redistributions of source code must retain the above copyright
  23. # notice, this list of conditions and the following disclaimer.
  24. #
  25. # * Redistributions in binary form must reproduce the above copyright
  26. # notice, this list of conditions and the following disclaimer in the
  27. # documentation and/or other materials provided with the
  28. # distribution.
  29. #
  30. # * Neither the name of the Intel Corporation nor the names of its
  31. # contributors may be used to endorse or promote products derived from
  32. # this software without specific prior written permission.
  33. #
  34. #
  35. # THIS SOFTWARE IS PROVIDED BY INTEL CORPORATION ""AS IS"" AND ANY
  36. # EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  37. # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
  38. # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL CORPORATION OR
  39. # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
  40. # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
  41. # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
  42. # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
  43. # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
  44. # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
  45. # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  46. #
  47. # Reference paper titled "Fast CRC Computation for Generic
  48. # Polynomials Using PCLMULQDQ Instruction"
  49. # URL: http://www.intel.com/content/dam/www/public/us/en/documents
  50. # /white-papers/fast-crc-computation-generic-polynomials-pclmulqdq-paper.pdf
  51. #
  52. #include <linux/linkage.h>
  53. .text
  54. #define init_crc %edi
  55. #define buf %rsi
  56. #define len %rdx
  57. #define FOLD_CONSTS %xmm10
  58. #define BSWAP_MASK %xmm11
  59. # Fold reg1, reg2 into the next 32 data bytes, storing the result back into
  60. # reg1, reg2.
  61. .macro fold_32_bytes offset, reg1, reg2
  62. movdqu \offset(buf), %xmm9
  63. movdqu \offset+16(buf), %xmm12
  64. pshufb BSWAP_MASK, %xmm9
  65. pshufb BSWAP_MASK, %xmm12
  66. movdqa \reg1, %xmm8
  67. movdqa \reg2, %xmm13
  68. pclmulqdq $0x00, FOLD_CONSTS, \reg1
  69. pclmulqdq $0x11, FOLD_CONSTS, %xmm8
  70. pclmulqdq $0x00, FOLD_CONSTS, \reg2
  71. pclmulqdq $0x11, FOLD_CONSTS, %xmm13
  72. pxor %xmm9 , \reg1
  73. xorps %xmm8 , \reg1
  74. pxor %xmm12, \reg2
  75. xorps %xmm13, \reg2
  76. .endm
  77. # Fold src_reg into dst_reg.
  78. .macro fold_16_bytes src_reg, dst_reg
  79. movdqa \src_reg, %xmm8
  80. pclmulqdq $0x11, FOLD_CONSTS, \src_reg
  81. pclmulqdq $0x00, FOLD_CONSTS, %xmm8
  82. pxor %xmm8, \dst_reg
  83. xorps \src_reg, \dst_reg
  84. .endm
  85. #
  86. # u16 crc_t10dif_pcl(u16 init_crc, const *u8 buf, size_t len);
  87. #
  88. # Assumes len >= 16.
  89. #
  90. .align 16
  91. SYM_FUNC_START(crc_t10dif_pcl)
  92. movdqa .Lbswap_mask(%rip), BSWAP_MASK
  93. # For sizes less than 256 bytes, we can't fold 128 bytes at a time.
  94. cmp $256, len
  95. jl .Lless_than_256_bytes
  96. # Load the first 128 data bytes. Byte swapping is necessary to make the
  97. # bit order match the polynomial coefficient order.
  98. movdqu 16*0(buf), %xmm0
  99. movdqu 16*1(buf), %xmm1
  100. movdqu 16*2(buf), %xmm2
  101. movdqu 16*3(buf), %xmm3
  102. movdqu 16*4(buf), %xmm4
  103. movdqu 16*5(buf), %xmm5
  104. movdqu 16*6(buf), %xmm6
  105. movdqu 16*7(buf), %xmm7
  106. add $128, buf
  107. pshufb BSWAP_MASK, %xmm0
  108. pshufb BSWAP_MASK, %xmm1
  109. pshufb BSWAP_MASK, %xmm2
  110. pshufb BSWAP_MASK, %xmm3
  111. pshufb BSWAP_MASK, %xmm4
  112. pshufb BSWAP_MASK, %xmm5
  113. pshufb BSWAP_MASK, %xmm6
  114. pshufb BSWAP_MASK, %xmm7
  115. # XOR the first 16 data *bits* with the initial CRC value.
  116. pxor %xmm8, %xmm8
  117. pinsrw $7, init_crc, %xmm8
  118. pxor %xmm8, %xmm0
  119. movdqa .Lfold_across_128_bytes_consts(%rip), FOLD_CONSTS
  120. # Subtract 128 for the 128 data bytes just consumed. Subtract another
  121. # 128 to simplify the termination condition of the following loop.
  122. sub $256, len
  123. # While >= 128 data bytes remain (not counting xmm0-7), fold the 128
  124. # bytes xmm0-7 into them, storing the result back into xmm0-7.
  125. .Lfold_128_bytes_loop:
  126. fold_32_bytes 0, %xmm0, %xmm1
  127. fold_32_bytes 32, %xmm2, %xmm3
  128. fold_32_bytes 64, %xmm4, %xmm5
  129. fold_32_bytes 96, %xmm6, %xmm7
  130. add $128, buf
  131. sub $128, len
  132. jge .Lfold_128_bytes_loop
  133. # Now fold the 112 bytes in xmm0-xmm6 into the 16 bytes in xmm7.
  134. # Fold across 64 bytes.
  135. movdqa .Lfold_across_64_bytes_consts(%rip), FOLD_CONSTS
  136. fold_16_bytes %xmm0, %xmm4
  137. fold_16_bytes %xmm1, %xmm5
  138. fold_16_bytes %xmm2, %xmm6
  139. fold_16_bytes %xmm3, %xmm7
  140. # Fold across 32 bytes.
  141. movdqa .Lfold_across_32_bytes_consts(%rip), FOLD_CONSTS
  142. fold_16_bytes %xmm4, %xmm6
  143. fold_16_bytes %xmm5, %xmm7
  144. # Fold across 16 bytes.
  145. movdqa .Lfold_across_16_bytes_consts(%rip), FOLD_CONSTS
  146. fold_16_bytes %xmm6, %xmm7
  147. # Add 128 to get the correct number of data bytes remaining in 0...127
  148. # (not counting xmm7), following the previous extra subtraction by 128.
  149. # Then subtract 16 to simplify the termination condition of the
  150. # following loop.
  151. add $128-16, len
  152. # While >= 16 data bytes remain (not counting xmm7), fold the 16 bytes
  153. # xmm7 into them, storing the result back into xmm7.
  154. jl .Lfold_16_bytes_loop_done
  155. .Lfold_16_bytes_loop:
  156. movdqa %xmm7, %xmm8
  157. pclmulqdq $0x11, FOLD_CONSTS, %xmm7
  158. pclmulqdq $0x00, FOLD_CONSTS, %xmm8
  159. pxor %xmm8, %xmm7
  160. movdqu (buf), %xmm0
  161. pshufb BSWAP_MASK, %xmm0
  162. pxor %xmm0 , %xmm7
  163. add $16, buf
  164. sub $16, len
  165. jge .Lfold_16_bytes_loop
  166. .Lfold_16_bytes_loop_done:
  167. # Add 16 to get the correct number of data bytes remaining in 0...15
  168. # (not counting xmm7), following the previous extra subtraction by 16.
  169. add $16, len
  170. je .Lreduce_final_16_bytes
  171. .Lhandle_partial_segment:
  172. # Reduce the last '16 + len' bytes where 1 <= len <= 15 and the first 16
  173. # bytes are in xmm7 and the rest are the remaining data in 'buf'. To do
  174. # this without needing a fold constant for each possible 'len', redivide
  175. # the bytes into a first chunk of 'len' bytes and a second chunk of 16
  176. # bytes, then fold the first chunk into the second.
  177. movdqa %xmm7, %xmm2
  178. # xmm1 = last 16 original data bytes
  179. movdqu -16(buf, len), %xmm1
  180. pshufb BSWAP_MASK, %xmm1
  181. # xmm2 = high order part of second chunk: xmm7 left-shifted by 'len' bytes.
  182. lea .Lbyteshift_table+16(%rip), %rax
  183. sub len, %rax
  184. movdqu (%rax), %xmm0
  185. pshufb %xmm0, %xmm2
  186. # xmm7 = first chunk: xmm7 right-shifted by '16-len' bytes.
  187. pxor .Lmask1(%rip), %xmm0
  188. pshufb %xmm0, %xmm7
  189. # xmm1 = second chunk: 'len' bytes from xmm1 (low-order bytes),
  190. # then '16-len' bytes from xmm2 (high-order bytes).
  191. pblendvb %xmm2, %xmm1 #xmm0 is implicit
  192. # Fold the first chunk into the second chunk, storing the result in xmm7.
  193. movdqa %xmm7, %xmm8
  194. pclmulqdq $0x11, FOLD_CONSTS, %xmm7
  195. pclmulqdq $0x00, FOLD_CONSTS, %xmm8
  196. pxor %xmm8, %xmm7
  197. pxor %xmm1, %xmm7
  198. .Lreduce_final_16_bytes:
  199. # Reduce the 128-bit value M(x), stored in xmm7, to the final 16-bit CRC
  200. # Load 'x^48 * (x^48 mod G(x))' and 'x^48 * (x^80 mod G(x))'.
  201. movdqa .Lfinal_fold_consts(%rip), FOLD_CONSTS
  202. # Fold the high 64 bits into the low 64 bits, while also multiplying by
  203. # x^64. This produces a 128-bit value congruent to x^64 * M(x) and
  204. # whose low 48 bits are 0.
  205. movdqa %xmm7, %xmm0
  206. pclmulqdq $0x11, FOLD_CONSTS, %xmm7 # high bits * x^48 * (x^80 mod G(x))
  207. pslldq $8, %xmm0
  208. pxor %xmm0, %xmm7 # + low bits * x^64
  209. # Fold the high 32 bits into the low 96 bits. This produces a 96-bit
  210. # value congruent to x^64 * M(x) and whose low 48 bits are 0.
  211. movdqa %xmm7, %xmm0
  212. pand .Lmask2(%rip), %xmm0 # zero high 32 bits
  213. psrldq $12, %xmm7 # extract high 32 bits
  214. pclmulqdq $0x00, FOLD_CONSTS, %xmm7 # high 32 bits * x^48 * (x^48 mod G(x))
  215. pxor %xmm0, %xmm7 # + low bits
  216. # Load G(x) and floor(x^48 / G(x)).
  217. movdqa .Lbarrett_reduction_consts(%rip), FOLD_CONSTS
  218. # Use Barrett reduction to compute the final CRC value.
  219. movdqa %xmm7, %xmm0
  220. pclmulqdq $0x11, FOLD_CONSTS, %xmm7 # high 32 bits * floor(x^48 / G(x))
  221. psrlq $32, %xmm7 # /= x^32
  222. pclmulqdq $0x00, FOLD_CONSTS, %xmm7 # *= G(x)
  223. psrlq $48, %xmm0
  224. pxor %xmm7, %xmm0 # + low 16 nonzero bits
  225. # Final CRC value (x^16 * M(x)) mod G(x) is in low 16 bits of xmm0.
  226. pextrw $0, %xmm0, %eax
  227. RET
  228. .align 16
  229. .Lless_than_256_bytes:
  230. # Checksumming a buffer of length 16...255 bytes
  231. # Load the first 16 data bytes.
  232. movdqu (buf), %xmm7
  233. pshufb BSWAP_MASK, %xmm7
  234. add $16, buf
  235. # XOR the first 16 data *bits* with the initial CRC value.
  236. pxor %xmm0, %xmm0
  237. pinsrw $7, init_crc, %xmm0
  238. pxor %xmm0, %xmm7
  239. movdqa .Lfold_across_16_bytes_consts(%rip), FOLD_CONSTS
  240. cmp $16, len
  241. je .Lreduce_final_16_bytes # len == 16
  242. sub $32, len
  243. jge .Lfold_16_bytes_loop # 32 <= len <= 255
  244. add $16, len
  245. jmp .Lhandle_partial_segment # 17 <= len <= 31
  246. SYM_FUNC_END(crc_t10dif_pcl)
  247. .section .rodata, "a", @progbits
  248. .align 16
  249. # Fold constants precomputed from the polynomial 0x18bb7
  250. # G(x) = x^16 + x^15 + x^11 + x^9 + x^8 + x^7 + x^5 + x^4 + x^2 + x^1 + x^0
  251. .Lfold_across_128_bytes_consts:
  252. .quad 0x0000000000006123 # x^(8*128) mod G(x)
  253. .quad 0x0000000000002295 # x^(8*128+64) mod G(x)
  254. .Lfold_across_64_bytes_consts:
  255. .quad 0x0000000000001069 # x^(4*128) mod G(x)
  256. .quad 0x000000000000dd31 # x^(4*128+64) mod G(x)
  257. .Lfold_across_32_bytes_consts:
  258. .quad 0x000000000000857d # x^(2*128) mod G(x)
  259. .quad 0x0000000000007acc # x^(2*128+64) mod G(x)
  260. .Lfold_across_16_bytes_consts:
  261. .quad 0x000000000000a010 # x^(1*128) mod G(x)
  262. .quad 0x0000000000001faa # x^(1*128+64) mod G(x)
  263. .Lfinal_fold_consts:
  264. .quad 0x1368000000000000 # x^48 * (x^48 mod G(x))
  265. .quad 0x2d56000000000000 # x^48 * (x^80 mod G(x))
  266. .Lbarrett_reduction_consts:
  267. .quad 0x0000000000018bb7 # G(x)
  268. .quad 0x00000001f65a57f8 # floor(x^48 / G(x))
  269. .section .rodata.cst16.mask1, "aM", @progbits, 16
  270. .align 16
  271. .Lmask1:
  272. .octa 0x80808080808080808080808080808080
  273. .section .rodata.cst16.mask2, "aM", @progbits, 16
  274. .align 16
  275. .Lmask2:
  276. .octa 0x00000000FFFFFFFFFFFFFFFFFFFFFFFF
  277. .section .rodata.cst16.bswap_mask, "aM", @progbits, 16
  278. .align 16
  279. .Lbswap_mask:
  280. .octa 0x000102030405060708090A0B0C0D0E0F
  281. .section .rodata.cst32.byteshift_table, "aM", @progbits, 32
  282. .align 16
  283. # For 1 <= len <= 15, the 16-byte vector beginning at &byteshift_table[16 - len]
  284. # is the index vector to shift left by 'len' bytes, and is also {0x80, ...,
  285. # 0x80} XOR the index vector to shift right by '16 - len' bytes.
  286. .Lbyteshift_table:
  287. .byte 0x0, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87
  288. .byte 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f
  289. .byte 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7
  290. .byte 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xe , 0x0