camellia-aesni-avx2-asm_64.S 28 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051
  1. /* SPDX-License-Identifier: GPL-2.0-or-later */
  2. /*
  3. * x86_64/AVX2/AES-NI assembler implementation of Camellia
  4. *
  5. * Copyright © 2013 Jussi Kivilinna <[email protected]>
  6. */
  7. #include <linux/linkage.h>
  8. #include <asm/frame.h>
  9. #define CAMELLIA_TABLE_BYTE_LEN 272
  10. /* struct camellia_ctx: */
  11. #define key_table 0
  12. #define key_length CAMELLIA_TABLE_BYTE_LEN
  13. /* register macros */
  14. #define CTX %rdi
  15. #define RIO %r8
  16. /**********************************************************************
  17. helper macros
  18. **********************************************************************/
  19. #define filter_8bit(x, lo_t, hi_t, mask4bit, tmp0) \
  20. vpand x, mask4bit, tmp0; \
  21. vpandn x, mask4bit, x; \
  22. vpsrld $4, x, x; \
  23. \
  24. vpshufb tmp0, lo_t, tmp0; \
  25. vpshufb x, hi_t, x; \
  26. vpxor tmp0, x, x;
  27. #define ymm0_x xmm0
  28. #define ymm1_x xmm1
  29. #define ymm2_x xmm2
  30. #define ymm3_x xmm3
  31. #define ymm4_x xmm4
  32. #define ymm5_x xmm5
  33. #define ymm6_x xmm6
  34. #define ymm7_x xmm7
  35. #define ymm8_x xmm8
  36. #define ymm9_x xmm9
  37. #define ymm10_x xmm10
  38. #define ymm11_x xmm11
  39. #define ymm12_x xmm12
  40. #define ymm13_x xmm13
  41. #define ymm14_x xmm14
  42. #define ymm15_x xmm15
  43. /**********************************************************************
  44. 32-way camellia
  45. **********************************************************************/
  46. /*
  47. * IN:
  48. * x0..x7: byte-sliced AB state
  49. * mem_cd: register pointer storing CD state
  50. * key: index for key material
  51. * OUT:
  52. * x0..x7: new byte-sliced CD state
  53. */
  54. #define roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, t0, t1, t2, t3, t4, t5, t6, \
  55. t7, mem_cd, key) \
  56. /* \
  57. * S-function with AES subbytes \
  58. */ \
  59. vbroadcasti128 .Linv_shift_row, t4; \
  60. vpbroadcastd .L0f0f0f0f, t7; \
  61. vbroadcasti128 .Lpre_tf_lo_s1, t5; \
  62. vbroadcasti128 .Lpre_tf_hi_s1, t6; \
  63. vbroadcasti128 .Lpre_tf_lo_s4, t2; \
  64. vbroadcasti128 .Lpre_tf_hi_s4, t3; \
  65. \
  66. /* AES inverse shift rows */ \
  67. vpshufb t4, x0, x0; \
  68. vpshufb t4, x7, x7; \
  69. vpshufb t4, x3, x3; \
  70. vpshufb t4, x6, x6; \
  71. vpshufb t4, x2, x2; \
  72. vpshufb t4, x5, x5; \
  73. vpshufb t4, x1, x1; \
  74. vpshufb t4, x4, x4; \
  75. \
  76. /* prefilter sboxes 1, 2 and 3 */ \
  77. /* prefilter sbox 4 */ \
  78. filter_8bit(x0, t5, t6, t7, t4); \
  79. filter_8bit(x7, t5, t6, t7, t4); \
  80. vextracti128 $1, x0, t0##_x; \
  81. vextracti128 $1, x7, t1##_x; \
  82. filter_8bit(x3, t2, t3, t7, t4); \
  83. filter_8bit(x6, t2, t3, t7, t4); \
  84. vextracti128 $1, x3, t3##_x; \
  85. vextracti128 $1, x6, t2##_x; \
  86. filter_8bit(x2, t5, t6, t7, t4); \
  87. filter_8bit(x5, t5, t6, t7, t4); \
  88. filter_8bit(x1, t5, t6, t7, t4); \
  89. filter_8bit(x4, t5, t6, t7, t4); \
  90. \
  91. vpxor t4##_x, t4##_x, t4##_x; \
  92. \
  93. /* AES subbytes + AES shift rows */ \
  94. vextracti128 $1, x2, t6##_x; \
  95. vextracti128 $1, x5, t5##_x; \
  96. vaesenclast t4##_x, x0##_x, x0##_x; \
  97. vaesenclast t4##_x, t0##_x, t0##_x; \
  98. vinserti128 $1, t0##_x, x0, x0; \
  99. vaesenclast t4##_x, x7##_x, x7##_x; \
  100. vaesenclast t4##_x, t1##_x, t1##_x; \
  101. vinserti128 $1, t1##_x, x7, x7; \
  102. vaesenclast t4##_x, x3##_x, x3##_x; \
  103. vaesenclast t4##_x, t3##_x, t3##_x; \
  104. vinserti128 $1, t3##_x, x3, x3; \
  105. vaesenclast t4##_x, x6##_x, x6##_x; \
  106. vaesenclast t4##_x, t2##_x, t2##_x; \
  107. vinserti128 $1, t2##_x, x6, x6; \
  108. vextracti128 $1, x1, t3##_x; \
  109. vextracti128 $1, x4, t2##_x; \
  110. vbroadcasti128 .Lpost_tf_lo_s1, t0; \
  111. vbroadcasti128 .Lpost_tf_hi_s1, t1; \
  112. vaesenclast t4##_x, x2##_x, x2##_x; \
  113. vaesenclast t4##_x, t6##_x, t6##_x; \
  114. vinserti128 $1, t6##_x, x2, x2; \
  115. vaesenclast t4##_x, x5##_x, x5##_x; \
  116. vaesenclast t4##_x, t5##_x, t5##_x; \
  117. vinserti128 $1, t5##_x, x5, x5; \
  118. vaesenclast t4##_x, x1##_x, x1##_x; \
  119. vaesenclast t4##_x, t3##_x, t3##_x; \
  120. vinserti128 $1, t3##_x, x1, x1; \
  121. vaesenclast t4##_x, x4##_x, x4##_x; \
  122. vaesenclast t4##_x, t2##_x, t2##_x; \
  123. vinserti128 $1, t2##_x, x4, x4; \
  124. \
  125. /* postfilter sboxes 1 and 4 */ \
  126. vbroadcasti128 .Lpost_tf_lo_s3, t2; \
  127. vbroadcasti128 .Lpost_tf_hi_s3, t3; \
  128. filter_8bit(x0, t0, t1, t7, t6); \
  129. filter_8bit(x7, t0, t1, t7, t6); \
  130. filter_8bit(x3, t0, t1, t7, t6); \
  131. filter_8bit(x6, t0, t1, t7, t6); \
  132. \
  133. /* postfilter sbox 3 */ \
  134. vbroadcasti128 .Lpost_tf_lo_s2, t4; \
  135. vbroadcasti128 .Lpost_tf_hi_s2, t5; \
  136. filter_8bit(x2, t2, t3, t7, t6); \
  137. filter_8bit(x5, t2, t3, t7, t6); \
  138. \
  139. vpbroadcastq key, t0; /* higher 64-bit duplicate ignored */ \
  140. \
  141. /* postfilter sbox 2 */ \
  142. filter_8bit(x1, t4, t5, t7, t2); \
  143. filter_8bit(x4, t4, t5, t7, t2); \
  144. vpxor t7, t7, t7; \
  145. \
  146. vpsrldq $1, t0, t1; \
  147. vpsrldq $2, t0, t2; \
  148. vpshufb t7, t1, t1; \
  149. vpsrldq $3, t0, t3; \
  150. \
  151. /* P-function */ \
  152. vpxor x5, x0, x0; \
  153. vpxor x6, x1, x1; \
  154. vpxor x7, x2, x2; \
  155. vpxor x4, x3, x3; \
  156. \
  157. vpshufb t7, t2, t2; \
  158. vpsrldq $4, t0, t4; \
  159. vpshufb t7, t3, t3; \
  160. vpsrldq $5, t0, t5; \
  161. vpshufb t7, t4, t4; \
  162. \
  163. vpxor x2, x4, x4; \
  164. vpxor x3, x5, x5; \
  165. vpxor x0, x6, x6; \
  166. vpxor x1, x7, x7; \
  167. \
  168. vpsrldq $6, t0, t6; \
  169. vpshufb t7, t5, t5; \
  170. vpshufb t7, t6, t6; \
  171. \
  172. vpxor x7, x0, x0; \
  173. vpxor x4, x1, x1; \
  174. vpxor x5, x2, x2; \
  175. vpxor x6, x3, x3; \
  176. \
  177. vpxor x3, x4, x4; \
  178. vpxor x0, x5, x5; \
  179. vpxor x1, x6, x6; \
  180. vpxor x2, x7, x7; /* note: high and low parts swapped */ \
  181. \
  182. /* Add key material and result to CD (x becomes new CD) */ \
  183. \
  184. vpxor t6, x1, x1; \
  185. vpxor 5 * 32(mem_cd), x1, x1; \
  186. \
  187. vpsrldq $7, t0, t6; \
  188. vpshufb t7, t0, t0; \
  189. vpshufb t7, t6, t7; \
  190. \
  191. vpxor t7, x0, x0; \
  192. vpxor 4 * 32(mem_cd), x0, x0; \
  193. \
  194. vpxor t5, x2, x2; \
  195. vpxor 6 * 32(mem_cd), x2, x2; \
  196. \
  197. vpxor t4, x3, x3; \
  198. vpxor 7 * 32(mem_cd), x3, x3; \
  199. \
  200. vpxor t3, x4, x4; \
  201. vpxor 0 * 32(mem_cd), x4, x4; \
  202. \
  203. vpxor t2, x5, x5; \
  204. vpxor 1 * 32(mem_cd), x5, x5; \
  205. \
  206. vpxor t1, x6, x6; \
  207. vpxor 2 * 32(mem_cd), x6, x6; \
  208. \
  209. vpxor t0, x7, x7; \
  210. vpxor 3 * 32(mem_cd), x7, x7;
  211. /*
  212. * Size optimization... with inlined roundsm32 binary would be over 5 times
  213. * larger and would only marginally faster.
  214. */
  215. .align 8
  216. SYM_FUNC_START_LOCAL(roundsm32_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd)
  217. roundsm32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
  218. %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14, %ymm15,
  219. %rcx, (%r9));
  220. RET;
  221. SYM_FUNC_END(roundsm32_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd)
  222. .align 8
  223. SYM_FUNC_START_LOCAL(roundsm32_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab)
  224. roundsm32(%ymm4, %ymm5, %ymm6, %ymm7, %ymm0, %ymm1, %ymm2, %ymm3,
  225. %ymm12, %ymm13, %ymm14, %ymm15, %ymm8, %ymm9, %ymm10, %ymm11,
  226. %rax, (%r9));
  227. RET;
  228. SYM_FUNC_END(roundsm32_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab)
  229. /*
  230. * IN/OUT:
  231. * x0..x7: byte-sliced AB state preloaded
  232. * mem_ab: byte-sliced AB state in memory
  233. * mem_cb: byte-sliced CD state in memory
  234. */
  235. #define two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
  236. y6, y7, mem_ab, mem_cd, i, dir, store_ab) \
  237. leaq (key_table + (i) * 8)(CTX), %r9; \
  238. call roundsm32_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd; \
  239. \
  240. vmovdqu x0, 4 * 32(mem_cd); \
  241. vmovdqu x1, 5 * 32(mem_cd); \
  242. vmovdqu x2, 6 * 32(mem_cd); \
  243. vmovdqu x3, 7 * 32(mem_cd); \
  244. vmovdqu x4, 0 * 32(mem_cd); \
  245. vmovdqu x5, 1 * 32(mem_cd); \
  246. vmovdqu x6, 2 * 32(mem_cd); \
  247. vmovdqu x7, 3 * 32(mem_cd); \
  248. \
  249. leaq (key_table + ((i) + (dir)) * 8)(CTX), %r9; \
  250. call roundsm32_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab; \
  251. \
  252. store_ab(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab);
  253. #define dummy_store(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab) /* do nothing */
  254. #define store_ab_state(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab) \
  255. /* Store new AB state */ \
  256. vmovdqu x4, 4 * 32(mem_ab); \
  257. vmovdqu x5, 5 * 32(mem_ab); \
  258. vmovdqu x6, 6 * 32(mem_ab); \
  259. vmovdqu x7, 7 * 32(mem_ab); \
  260. vmovdqu x0, 0 * 32(mem_ab); \
  261. vmovdqu x1, 1 * 32(mem_ab); \
  262. vmovdqu x2, 2 * 32(mem_ab); \
  263. vmovdqu x3, 3 * 32(mem_ab);
  264. #define enc_rounds32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
  265. y6, y7, mem_ab, mem_cd, i) \
  266. two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
  267. y6, y7, mem_ab, mem_cd, (i) + 2, 1, store_ab_state); \
  268. two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
  269. y6, y7, mem_ab, mem_cd, (i) + 4, 1, store_ab_state); \
  270. two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
  271. y6, y7, mem_ab, mem_cd, (i) + 6, 1, dummy_store);
  272. #define dec_rounds32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
  273. y6, y7, mem_ab, mem_cd, i) \
  274. two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
  275. y6, y7, mem_ab, mem_cd, (i) + 7, -1, store_ab_state); \
  276. two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
  277. y6, y7, mem_ab, mem_cd, (i) + 5, -1, store_ab_state); \
  278. two_roundsm32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
  279. y6, y7, mem_ab, mem_cd, (i) + 3, -1, dummy_store);
  280. /*
  281. * IN:
  282. * v0..3: byte-sliced 32-bit integers
  283. * OUT:
  284. * v0..3: (IN <<< 1)
  285. */
  286. #define rol32_1_32(v0, v1, v2, v3, t0, t1, t2, zero) \
  287. vpcmpgtb v0, zero, t0; \
  288. vpaddb v0, v0, v0; \
  289. vpabsb t0, t0; \
  290. \
  291. vpcmpgtb v1, zero, t1; \
  292. vpaddb v1, v1, v1; \
  293. vpabsb t1, t1; \
  294. \
  295. vpcmpgtb v2, zero, t2; \
  296. vpaddb v2, v2, v2; \
  297. vpabsb t2, t2; \
  298. \
  299. vpor t0, v1, v1; \
  300. \
  301. vpcmpgtb v3, zero, t0; \
  302. vpaddb v3, v3, v3; \
  303. vpabsb t0, t0; \
  304. \
  305. vpor t1, v2, v2; \
  306. vpor t2, v3, v3; \
  307. vpor t0, v0, v0;
  308. /*
  309. * IN:
  310. * r: byte-sliced AB state in memory
  311. * l: byte-sliced CD state in memory
  312. * OUT:
  313. * x0..x7: new byte-sliced CD state
  314. */
  315. #define fls32(l, l0, l1, l2, l3, l4, l5, l6, l7, r, t0, t1, t2, t3, tt0, \
  316. tt1, tt2, tt3, kll, klr, krl, krr) \
  317. /* \
  318. * t0 = kll; \
  319. * t0 &= ll; \
  320. * lr ^= rol32(t0, 1); \
  321. */ \
  322. vpbroadcastd kll, t0; /* only lowest 32-bit used */ \
  323. vpxor tt0, tt0, tt0; \
  324. vpshufb tt0, t0, t3; \
  325. vpsrldq $1, t0, t0; \
  326. vpshufb tt0, t0, t2; \
  327. vpsrldq $1, t0, t0; \
  328. vpshufb tt0, t0, t1; \
  329. vpsrldq $1, t0, t0; \
  330. vpshufb tt0, t0, t0; \
  331. \
  332. vpand l0, t0, t0; \
  333. vpand l1, t1, t1; \
  334. vpand l2, t2, t2; \
  335. vpand l3, t3, t3; \
  336. \
  337. rol32_1_32(t3, t2, t1, t0, tt1, tt2, tt3, tt0); \
  338. \
  339. vpxor l4, t0, l4; \
  340. vpbroadcastd krr, t0; /* only lowest 32-bit used */ \
  341. vmovdqu l4, 4 * 32(l); \
  342. vpxor l5, t1, l5; \
  343. vmovdqu l5, 5 * 32(l); \
  344. vpxor l6, t2, l6; \
  345. vmovdqu l6, 6 * 32(l); \
  346. vpxor l7, t3, l7; \
  347. vmovdqu l7, 7 * 32(l); \
  348. \
  349. /* \
  350. * t2 = krr; \
  351. * t2 |= rr; \
  352. * rl ^= t2; \
  353. */ \
  354. \
  355. vpshufb tt0, t0, t3; \
  356. vpsrldq $1, t0, t0; \
  357. vpshufb tt0, t0, t2; \
  358. vpsrldq $1, t0, t0; \
  359. vpshufb tt0, t0, t1; \
  360. vpsrldq $1, t0, t0; \
  361. vpshufb tt0, t0, t0; \
  362. \
  363. vpor 4 * 32(r), t0, t0; \
  364. vpor 5 * 32(r), t1, t1; \
  365. vpor 6 * 32(r), t2, t2; \
  366. vpor 7 * 32(r), t3, t3; \
  367. \
  368. vpxor 0 * 32(r), t0, t0; \
  369. vpxor 1 * 32(r), t1, t1; \
  370. vpxor 2 * 32(r), t2, t2; \
  371. vpxor 3 * 32(r), t3, t3; \
  372. vmovdqu t0, 0 * 32(r); \
  373. vpbroadcastd krl, t0; /* only lowest 32-bit used */ \
  374. vmovdqu t1, 1 * 32(r); \
  375. vmovdqu t2, 2 * 32(r); \
  376. vmovdqu t3, 3 * 32(r); \
  377. \
  378. /* \
  379. * t2 = krl; \
  380. * t2 &= rl; \
  381. * rr ^= rol32(t2, 1); \
  382. */ \
  383. vpshufb tt0, t0, t3; \
  384. vpsrldq $1, t0, t0; \
  385. vpshufb tt0, t0, t2; \
  386. vpsrldq $1, t0, t0; \
  387. vpshufb tt0, t0, t1; \
  388. vpsrldq $1, t0, t0; \
  389. vpshufb tt0, t0, t0; \
  390. \
  391. vpand 0 * 32(r), t0, t0; \
  392. vpand 1 * 32(r), t1, t1; \
  393. vpand 2 * 32(r), t2, t2; \
  394. vpand 3 * 32(r), t3, t3; \
  395. \
  396. rol32_1_32(t3, t2, t1, t0, tt1, tt2, tt3, tt0); \
  397. \
  398. vpxor 4 * 32(r), t0, t0; \
  399. vpxor 5 * 32(r), t1, t1; \
  400. vpxor 6 * 32(r), t2, t2; \
  401. vpxor 7 * 32(r), t3, t3; \
  402. vmovdqu t0, 4 * 32(r); \
  403. vpbroadcastd klr, t0; /* only lowest 32-bit used */ \
  404. vmovdqu t1, 5 * 32(r); \
  405. vmovdqu t2, 6 * 32(r); \
  406. vmovdqu t3, 7 * 32(r); \
  407. \
  408. /* \
  409. * t0 = klr; \
  410. * t0 |= lr; \
  411. * ll ^= t0; \
  412. */ \
  413. \
  414. vpshufb tt0, t0, t3; \
  415. vpsrldq $1, t0, t0; \
  416. vpshufb tt0, t0, t2; \
  417. vpsrldq $1, t0, t0; \
  418. vpshufb tt0, t0, t1; \
  419. vpsrldq $1, t0, t0; \
  420. vpshufb tt0, t0, t0; \
  421. \
  422. vpor l4, t0, t0; \
  423. vpor l5, t1, t1; \
  424. vpor l6, t2, t2; \
  425. vpor l7, t3, t3; \
  426. \
  427. vpxor l0, t0, l0; \
  428. vmovdqu l0, 0 * 32(l); \
  429. vpxor l1, t1, l1; \
  430. vmovdqu l1, 1 * 32(l); \
  431. vpxor l2, t2, l2; \
  432. vmovdqu l2, 2 * 32(l); \
  433. vpxor l3, t3, l3; \
  434. vmovdqu l3, 3 * 32(l);
  435. #define transpose_4x4(x0, x1, x2, x3, t1, t2) \
  436. vpunpckhdq x1, x0, t2; \
  437. vpunpckldq x1, x0, x0; \
  438. \
  439. vpunpckldq x3, x2, t1; \
  440. vpunpckhdq x3, x2, x2; \
  441. \
  442. vpunpckhqdq t1, x0, x1; \
  443. vpunpcklqdq t1, x0, x0; \
  444. \
  445. vpunpckhqdq x2, t2, x3; \
  446. vpunpcklqdq x2, t2, x2;
  447. #define byteslice_16x16b_fast(a0, b0, c0, d0, a1, b1, c1, d1, a2, b2, c2, d2, \
  448. a3, b3, c3, d3, st0, st1) \
  449. vmovdqu d2, st0; \
  450. vmovdqu d3, st1; \
  451. transpose_4x4(a0, a1, a2, a3, d2, d3); \
  452. transpose_4x4(b0, b1, b2, b3, d2, d3); \
  453. vmovdqu st0, d2; \
  454. vmovdqu st1, d3; \
  455. \
  456. vmovdqu a0, st0; \
  457. vmovdqu a1, st1; \
  458. transpose_4x4(c0, c1, c2, c3, a0, a1); \
  459. transpose_4x4(d0, d1, d2, d3, a0, a1); \
  460. \
  461. vbroadcasti128 .Lshufb_16x16b, a0; \
  462. vmovdqu st1, a1; \
  463. vpshufb a0, a2, a2; \
  464. vpshufb a0, a3, a3; \
  465. vpshufb a0, b0, b0; \
  466. vpshufb a0, b1, b1; \
  467. vpshufb a0, b2, b2; \
  468. vpshufb a0, b3, b3; \
  469. vpshufb a0, a1, a1; \
  470. vpshufb a0, c0, c0; \
  471. vpshufb a0, c1, c1; \
  472. vpshufb a0, c2, c2; \
  473. vpshufb a0, c3, c3; \
  474. vpshufb a0, d0, d0; \
  475. vpshufb a0, d1, d1; \
  476. vpshufb a0, d2, d2; \
  477. vpshufb a0, d3, d3; \
  478. vmovdqu d3, st1; \
  479. vmovdqu st0, d3; \
  480. vpshufb a0, d3, a0; \
  481. vmovdqu d2, st0; \
  482. \
  483. transpose_4x4(a0, b0, c0, d0, d2, d3); \
  484. transpose_4x4(a1, b1, c1, d1, d2, d3); \
  485. vmovdqu st0, d2; \
  486. vmovdqu st1, d3; \
  487. \
  488. vmovdqu b0, st0; \
  489. vmovdqu b1, st1; \
  490. transpose_4x4(a2, b2, c2, d2, b0, b1); \
  491. transpose_4x4(a3, b3, c3, d3, b0, b1); \
  492. vmovdqu st0, b0; \
  493. vmovdqu st1, b1; \
  494. /* does not adjust output bytes inside vectors */
  495. /* load blocks to registers and apply pre-whitening */
  496. #define inpack32_pre(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
  497. y6, y7, rio, key) \
  498. vpbroadcastq key, x0; \
  499. vpshufb .Lpack_bswap, x0, x0; \
  500. \
  501. vpxor 0 * 32(rio), x0, y7; \
  502. vpxor 1 * 32(rio), x0, y6; \
  503. vpxor 2 * 32(rio), x0, y5; \
  504. vpxor 3 * 32(rio), x0, y4; \
  505. vpxor 4 * 32(rio), x0, y3; \
  506. vpxor 5 * 32(rio), x0, y2; \
  507. vpxor 6 * 32(rio), x0, y1; \
  508. vpxor 7 * 32(rio), x0, y0; \
  509. vpxor 8 * 32(rio), x0, x7; \
  510. vpxor 9 * 32(rio), x0, x6; \
  511. vpxor 10 * 32(rio), x0, x5; \
  512. vpxor 11 * 32(rio), x0, x4; \
  513. vpxor 12 * 32(rio), x0, x3; \
  514. vpxor 13 * 32(rio), x0, x2; \
  515. vpxor 14 * 32(rio), x0, x1; \
  516. vpxor 15 * 32(rio), x0, x0;
  517. /* byteslice pre-whitened blocks and store to temporary memory */
  518. #define inpack32_post(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
  519. y6, y7, mem_ab, mem_cd) \
  520. byteslice_16x16b_fast(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, \
  521. y4, y5, y6, y7, (mem_ab), (mem_cd)); \
  522. \
  523. vmovdqu x0, 0 * 32(mem_ab); \
  524. vmovdqu x1, 1 * 32(mem_ab); \
  525. vmovdqu x2, 2 * 32(mem_ab); \
  526. vmovdqu x3, 3 * 32(mem_ab); \
  527. vmovdqu x4, 4 * 32(mem_ab); \
  528. vmovdqu x5, 5 * 32(mem_ab); \
  529. vmovdqu x6, 6 * 32(mem_ab); \
  530. vmovdqu x7, 7 * 32(mem_ab); \
  531. vmovdqu y0, 0 * 32(mem_cd); \
  532. vmovdqu y1, 1 * 32(mem_cd); \
  533. vmovdqu y2, 2 * 32(mem_cd); \
  534. vmovdqu y3, 3 * 32(mem_cd); \
  535. vmovdqu y4, 4 * 32(mem_cd); \
  536. vmovdqu y5, 5 * 32(mem_cd); \
  537. vmovdqu y6, 6 * 32(mem_cd); \
  538. vmovdqu y7, 7 * 32(mem_cd);
  539. /* de-byteslice, apply post-whitening and store blocks */
  540. #define outunpack32(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, \
  541. y5, y6, y7, key, stack_tmp0, stack_tmp1) \
  542. byteslice_16x16b_fast(y0, y4, x0, x4, y1, y5, x1, x5, y2, y6, x2, x6, \
  543. y3, y7, x3, x7, stack_tmp0, stack_tmp1); \
  544. \
  545. vmovdqu x0, stack_tmp0; \
  546. \
  547. vpbroadcastq key, x0; \
  548. vpshufb .Lpack_bswap, x0, x0; \
  549. \
  550. vpxor x0, y7, y7; \
  551. vpxor x0, y6, y6; \
  552. vpxor x0, y5, y5; \
  553. vpxor x0, y4, y4; \
  554. vpxor x0, y3, y3; \
  555. vpxor x0, y2, y2; \
  556. vpxor x0, y1, y1; \
  557. vpxor x0, y0, y0; \
  558. vpxor x0, x7, x7; \
  559. vpxor x0, x6, x6; \
  560. vpxor x0, x5, x5; \
  561. vpxor x0, x4, x4; \
  562. vpxor x0, x3, x3; \
  563. vpxor x0, x2, x2; \
  564. vpxor x0, x1, x1; \
  565. vpxor stack_tmp0, x0, x0;
  566. #define write_output(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
  567. y6, y7, rio) \
  568. vmovdqu x0, 0 * 32(rio); \
  569. vmovdqu x1, 1 * 32(rio); \
  570. vmovdqu x2, 2 * 32(rio); \
  571. vmovdqu x3, 3 * 32(rio); \
  572. vmovdqu x4, 4 * 32(rio); \
  573. vmovdqu x5, 5 * 32(rio); \
  574. vmovdqu x6, 6 * 32(rio); \
  575. vmovdqu x7, 7 * 32(rio); \
  576. vmovdqu y0, 8 * 32(rio); \
  577. vmovdqu y1, 9 * 32(rio); \
  578. vmovdqu y2, 10 * 32(rio); \
  579. vmovdqu y3, 11 * 32(rio); \
  580. vmovdqu y4, 12 * 32(rio); \
  581. vmovdqu y5, 13 * 32(rio); \
  582. vmovdqu y6, 14 * 32(rio); \
  583. vmovdqu y7, 15 * 32(rio);
  584. .section .rodata.cst32.shufb_16x16b, "aM", @progbits, 32
  585. .align 32
  586. #define SHUFB_BYTES(idx) \
  587. 0 + (idx), 4 + (idx), 8 + (idx), 12 + (idx)
  588. .Lshufb_16x16b:
  589. .byte SHUFB_BYTES(0), SHUFB_BYTES(1), SHUFB_BYTES(2), SHUFB_BYTES(3)
  590. .byte SHUFB_BYTES(0), SHUFB_BYTES(1), SHUFB_BYTES(2), SHUFB_BYTES(3)
  591. .section .rodata.cst32.pack_bswap, "aM", @progbits, 32
  592. .align 32
  593. .Lpack_bswap:
  594. .long 0x00010203, 0x04050607, 0x80808080, 0x80808080
  595. .long 0x00010203, 0x04050607, 0x80808080, 0x80808080
  596. /* NB: section is mergeable, all elements must be aligned 16-byte blocks */
  597. .section .rodata.cst16, "aM", @progbits, 16
  598. .align 16
  599. /*
  600. * pre-SubByte transform
  601. *
  602. * pre-lookup for sbox1, sbox2, sbox3:
  603. * swap_bitendianness(
  604. * isom_map_camellia_to_aes(
  605. * camellia_f(
  606. * swap_bitendianess(in)
  607. * )
  608. * )
  609. * )
  610. *
  611. * (note: '⊕ 0xc5' inside camellia_f())
  612. */
  613. .Lpre_tf_lo_s1:
  614. .byte 0x45, 0xe8, 0x40, 0xed, 0x2e, 0x83, 0x2b, 0x86
  615. .byte 0x4b, 0xe6, 0x4e, 0xe3, 0x20, 0x8d, 0x25, 0x88
  616. .Lpre_tf_hi_s1:
  617. .byte 0x00, 0x51, 0xf1, 0xa0, 0x8a, 0xdb, 0x7b, 0x2a
  618. .byte 0x09, 0x58, 0xf8, 0xa9, 0x83, 0xd2, 0x72, 0x23
  619. /*
  620. * pre-SubByte transform
  621. *
  622. * pre-lookup for sbox4:
  623. * swap_bitendianness(
  624. * isom_map_camellia_to_aes(
  625. * camellia_f(
  626. * swap_bitendianess(in <<< 1)
  627. * )
  628. * )
  629. * )
  630. *
  631. * (note: '⊕ 0xc5' inside camellia_f())
  632. */
  633. .Lpre_tf_lo_s4:
  634. .byte 0x45, 0x40, 0x2e, 0x2b, 0x4b, 0x4e, 0x20, 0x25
  635. .byte 0x14, 0x11, 0x7f, 0x7a, 0x1a, 0x1f, 0x71, 0x74
  636. .Lpre_tf_hi_s4:
  637. .byte 0x00, 0xf1, 0x8a, 0x7b, 0x09, 0xf8, 0x83, 0x72
  638. .byte 0xad, 0x5c, 0x27, 0xd6, 0xa4, 0x55, 0x2e, 0xdf
  639. /*
  640. * post-SubByte transform
  641. *
  642. * post-lookup for sbox1, sbox4:
  643. * swap_bitendianness(
  644. * camellia_h(
  645. * isom_map_aes_to_camellia(
  646. * swap_bitendianness(
  647. * aes_inverse_affine_transform(in)
  648. * )
  649. * )
  650. * )
  651. * )
  652. *
  653. * (note: '⊕ 0x6e' inside camellia_h())
  654. */
  655. .Lpost_tf_lo_s1:
  656. .byte 0x3c, 0xcc, 0xcf, 0x3f, 0x32, 0xc2, 0xc1, 0x31
  657. .byte 0xdc, 0x2c, 0x2f, 0xdf, 0xd2, 0x22, 0x21, 0xd1
  658. .Lpost_tf_hi_s1:
  659. .byte 0x00, 0xf9, 0x86, 0x7f, 0xd7, 0x2e, 0x51, 0xa8
  660. .byte 0xa4, 0x5d, 0x22, 0xdb, 0x73, 0x8a, 0xf5, 0x0c
  661. /*
  662. * post-SubByte transform
  663. *
  664. * post-lookup for sbox2:
  665. * swap_bitendianness(
  666. * camellia_h(
  667. * isom_map_aes_to_camellia(
  668. * swap_bitendianness(
  669. * aes_inverse_affine_transform(in)
  670. * )
  671. * )
  672. * )
  673. * ) <<< 1
  674. *
  675. * (note: '⊕ 0x6e' inside camellia_h())
  676. */
  677. .Lpost_tf_lo_s2:
  678. .byte 0x78, 0x99, 0x9f, 0x7e, 0x64, 0x85, 0x83, 0x62
  679. .byte 0xb9, 0x58, 0x5e, 0xbf, 0xa5, 0x44, 0x42, 0xa3
  680. .Lpost_tf_hi_s2:
  681. .byte 0x00, 0xf3, 0x0d, 0xfe, 0xaf, 0x5c, 0xa2, 0x51
  682. .byte 0x49, 0xba, 0x44, 0xb7, 0xe6, 0x15, 0xeb, 0x18
  683. /*
  684. * post-SubByte transform
  685. *
  686. * post-lookup for sbox3:
  687. * swap_bitendianness(
  688. * camellia_h(
  689. * isom_map_aes_to_camellia(
  690. * swap_bitendianness(
  691. * aes_inverse_affine_transform(in)
  692. * )
  693. * )
  694. * )
  695. * ) >>> 1
  696. *
  697. * (note: '⊕ 0x6e' inside camellia_h())
  698. */
  699. .Lpost_tf_lo_s3:
  700. .byte 0x1e, 0x66, 0xe7, 0x9f, 0x19, 0x61, 0xe0, 0x98
  701. .byte 0x6e, 0x16, 0x97, 0xef, 0x69, 0x11, 0x90, 0xe8
  702. .Lpost_tf_hi_s3:
  703. .byte 0x00, 0xfc, 0x43, 0xbf, 0xeb, 0x17, 0xa8, 0x54
  704. .byte 0x52, 0xae, 0x11, 0xed, 0xb9, 0x45, 0xfa, 0x06
  705. /* For isolating SubBytes from AESENCLAST, inverse shift row */
  706. .Linv_shift_row:
  707. .byte 0x00, 0x0d, 0x0a, 0x07, 0x04, 0x01, 0x0e, 0x0b
  708. .byte 0x08, 0x05, 0x02, 0x0f, 0x0c, 0x09, 0x06, 0x03
  709. .section .rodata.cst4.L0f0f0f0f, "aM", @progbits, 4
  710. .align 4
  711. /* 4-bit mask */
  712. .L0f0f0f0f:
  713. .long 0x0f0f0f0f
  714. .text
  715. .align 8
  716. SYM_FUNC_START_LOCAL(__camellia_enc_blk32)
  717. /* input:
  718. * %rdi: ctx, CTX
  719. * %rax: temporary storage, 512 bytes
  720. * %ymm0..%ymm15: 32 plaintext blocks
  721. * output:
  722. * %ymm0..%ymm15: 32 encrypted blocks, order swapped:
  723. * 7, 8, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8
  724. */
  725. FRAME_BEGIN
  726. leaq 8 * 32(%rax), %rcx;
  727. inpack32_post(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
  728. %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
  729. %ymm15, %rax, %rcx);
  730. enc_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
  731. %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
  732. %ymm15, %rax, %rcx, 0);
  733. fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
  734. %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
  735. %ymm15,
  736. ((key_table + (8) * 8) + 0)(CTX),
  737. ((key_table + (8) * 8) + 4)(CTX),
  738. ((key_table + (8) * 8) + 8)(CTX),
  739. ((key_table + (8) * 8) + 12)(CTX));
  740. enc_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
  741. %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
  742. %ymm15, %rax, %rcx, 8);
  743. fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
  744. %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
  745. %ymm15,
  746. ((key_table + (16) * 8) + 0)(CTX),
  747. ((key_table + (16) * 8) + 4)(CTX),
  748. ((key_table + (16) * 8) + 8)(CTX),
  749. ((key_table + (16) * 8) + 12)(CTX));
  750. enc_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
  751. %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
  752. %ymm15, %rax, %rcx, 16);
  753. movl $24, %r8d;
  754. cmpl $16, key_length(CTX);
  755. jne .Lenc_max32;
  756. .Lenc_done:
  757. /* load CD for output */
  758. vmovdqu 0 * 32(%rcx), %ymm8;
  759. vmovdqu 1 * 32(%rcx), %ymm9;
  760. vmovdqu 2 * 32(%rcx), %ymm10;
  761. vmovdqu 3 * 32(%rcx), %ymm11;
  762. vmovdqu 4 * 32(%rcx), %ymm12;
  763. vmovdqu 5 * 32(%rcx), %ymm13;
  764. vmovdqu 6 * 32(%rcx), %ymm14;
  765. vmovdqu 7 * 32(%rcx), %ymm15;
  766. outunpack32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
  767. %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
  768. %ymm15, (key_table)(CTX, %r8, 8), (%rax), 1 * 32(%rax));
  769. FRAME_END
  770. RET;
  771. .align 8
  772. .Lenc_max32:
  773. movl $32, %r8d;
  774. fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
  775. %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
  776. %ymm15,
  777. ((key_table + (24) * 8) + 0)(CTX),
  778. ((key_table + (24) * 8) + 4)(CTX),
  779. ((key_table + (24) * 8) + 8)(CTX),
  780. ((key_table + (24) * 8) + 12)(CTX));
  781. enc_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
  782. %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
  783. %ymm15, %rax, %rcx, 24);
  784. jmp .Lenc_done;
  785. SYM_FUNC_END(__camellia_enc_blk32)
  786. .align 8
  787. SYM_FUNC_START_LOCAL(__camellia_dec_blk32)
  788. /* input:
  789. * %rdi: ctx, CTX
  790. * %rax: temporary storage, 512 bytes
  791. * %r8d: 24 for 16 byte key, 32 for larger
  792. * %ymm0..%ymm15: 16 encrypted blocks
  793. * output:
  794. * %ymm0..%ymm15: 16 plaintext blocks, order swapped:
  795. * 7, 8, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8
  796. */
  797. FRAME_BEGIN
  798. leaq 8 * 32(%rax), %rcx;
  799. inpack32_post(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
  800. %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
  801. %ymm15, %rax, %rcx);
  802. cmpl $32, %r8d;
  803. je .Ldec_max32;
  804. .Ldec_max24:
  805. dec_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
  806. %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
  807. %ymm15, %rax, %rcx, 16);
  808. fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
  809. %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
  810. %ymm15,
  811. ((key_table + (16) * 8) + 8)(CTX),
  812. ((key_table + (16) * 8) + 12)(CTX),
  813. ((key_table + (16) * 8) + 0)(CTX),
  814. ((key_table + (16) * 8) + 4)(CTX));
  815. dec_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
  816. %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
  817. %ymm15, %rax, %rcx, 8);
  818. fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
  819. %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
  820. %ymm15,
  821. ((key_table + (8) * 8) + 8)(CTX),
  822. ((key_table + (8) * 8) + 12)(CTX),
  823. ((key_table + (8) * 8) + 0)(CTX),
  824. ((key_table + (8) * 8) + 4)(CTX));
  825. dec_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
  826. %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
  827. %ymm15, %rax, %rcx, 0);
  828. /* load CD for output */
  829. vmovdqu 0 * 32(%rcx), %ymm8;
  830. vmovdqu 1 * 32(%rcx), %ymm9;
  831. vmovdqu 2 * 32(%rcx), %ymm10;
  832. vmovdqu 3 * 32(%rcx), %ymm11;
  833. vmovdqu 4 * 32(%rcx), %ymm12;
  834. vmovdqu 5 * 32(%rcx), %ymm13;
  835. vmovdqu 6 * 32(%rcx), %ymm14;
  836. vmovdqu 7 * 32(%rcx), %ymm15;
  837. outunpack32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
  838. %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
  839. %ymm15, (key_table)(CTX), (%rax), 1 * 32(%rax));
  840. FRAME_END
  841. RET;
  842. .align 8
  843. .Ldec_max32:
  844. dec_rounds32(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
  845. %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
  846. %ymm15, %rax, %rcx, 24);
  847. fls32(%rax, %ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
  848. %rcx, %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
  849. %ymm15,
  850. ((key_table + (24) * 8) + 8)(CTX),
  851. ((key_table + (24) * 8) + 12)(CTX),
  852. ((key_table + (24) * 8) + 0)(CTX),
  853. ((key_table + (24) * 8) + 4)(CTX));
  854. jmp .Ldec_max24;
  855. SYM_FUNC_END(__camellia_dec_blk32)
  856. SYM_FUNC_START(camellia_ecb_enc_32way)
  857. /* input:
  858. * %rdi: ctx, CTX
  859. * %rsi: dst (32 blocks)
  860. * %rdx: src (32 blocks)
  861. */
  862. FRAME_BEGIN
  863. vzeroupper;
  864. inpack32_pre(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
  865. %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
  866. %ymm15, %rdx, (key_table)(CTX));
  867. /* now dst can be used as temporary buffer (even in src == dst case) */
  868. movq %rsi, %rax;
  869. call __camellia_enc_blk32;
  870. write_output(%ymm7, %ymm6, %ymm5, %ymm4, %ymm3, %ymm2, %ymm1, %ymm0,
  871. %ymm15, %ymm14, %ymm13, %ymm12, %ymm11, %ymm10, %ymm9,
  872. %ymm8, %rsi);
  873. vzeroupper;
  874. FRAME_END
  875. RET;
  876. SYM_FUNC_END(camellia_ecb_enc_32way)
  877. SYM_FUNC_START(camellia_ecb_dec_32way)
  878. /* input:
  879. * %rdi: ctx, CTX
  880. * %rsi: dst (32 blocks)
  881. * %rdx: src (32 blocks)
  882. */
  883. FRAME_BEGIN
  884. vzeroupper;
  885. cmpl $16, key_length(CTX);
  886. movl $32, %r8d;
  887. movl $24, %eax;
  888. cmovel %eax, %r8d; /* max */
  889. inpack32_pre(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
  890. %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
  891. %ymm15, %rdx, (key_table)(CTX, %r8, 8));
  892. /* now dst can be used as temporary buffer (even in src == dst case) */
  893. movq %rsi, %rax;
  894. call __camellia_dec_blk32;
  895. write_output(%ymm7, %ymm6, %ymm5, %ymm4, %ymm3, %ymm2, %ymm1, %ymm0,
  896. %ymm15, %ymm14, %ymm13, %ymm12, %ymm11, %ymm10, %ymm9,
  897. %ymm8, %rsi);
  898. vzeroupper;
  899. FRAME_END
  900. RET;
  901. SYM_FUNC_END(camellia_ecb_dec_32way)
  902. SYM_FUNC_START(camellia_cbc_dec_32way)
  903. /* input:
  904. * %rdi: ctx, CTX
  905. * %rsi: dst (32 blocks)
  906. * %rdx: src (32 blocks)
  907. */
  908. FRAME_BEGIN
  909. subq $(16 * 32), %rsp;
  910. vzeroupper;
  911. cmpl $16, key_length(CTX);
  912. movl $32, %r8d;
  913. movl $24, %eax;
  914. cmovel %eax, %r8d; /* max */
  915. inpack32_pre(%ymm0, %ymm1, %ymm2, %ymm3, %ymm4, %ymm5, %ymm6, %ymm7,
  916. %ymm8, %ymm9, %ymm10, %ymm11, %ymm12, %ymm13, %ymm14,
  917. %ymm15, %rdx, (key_table)(CTX, %r8, 8));
  918. cmpq %rsi, %rdx;
  919. je .Lcbc_dec_use_stack;
  920. /* dst can be used as temporary storage, src is not overwritten. */
  921. movq %rsi, %rax;
  922. jmp .Lcbc_dec_continue;
  923. .Lcbc_dec_use_stack:
  924. /*
  925. * dst still in-use (because dst == src), so use stack for temporary
  926. * storage.
  927. */
  928. movq %rsp, %rax;
  929. .Lcbc_dec_continue:
  930. call __camellia_dec_blk32;
  931. vmovdqu %ymm7, (%rax);
  932. vpxor %ymm7, %ymm7, %ymm7;
  933. vinserti128 $1, (%rdx), %ymm7, %ymm7;
  934. vpxor (%rax), %ymm7, %ymm7;
  935. vpxor (0 * 32 + 16)(%rdx), %ymm6, %ymm6;
  936. vpxor (1 * 32 + 16)(%rdx), %ymm5, %ymm5;
  937. vpxor (2 * 32 + 16)(%rdx), %ymm4, %ymm4;
  938. vpxor (3 * 32 + 16)(%rdx), %ymm3, %ymm3;
  939. vpxor (4 * 32 + 16)(%rdx), %ymm2, %ymm2;
  940. vpxor (5 * 32 + 16)(%rdx), %ymm1, %ymm1;
  941. vpxor (6 * 32 + 16)(%rdx), %ymm0, %ymm0;
  942. vpxor (7 * 32 + 16)(%rdx), %ymm15, %ymm15;
  943. vpxor (8 * 32 + 16)(%rdx), %ymm14, %ymm14;
  944. vpxor (9 * 32 + 16)(%rdx), %ymm13, %ymm13;
  945. vpxor (10 * 32 + 16)(%rdx), %ymm12, %ymm12;
  946. vpxor (11 * 32 + 16)(%rdx), %ymm11, %ymm11;
  947. vpxor (12 * 32 + 16)(%rdx), %ymm10, %ymm10;
  948. vpxor (13 * 32 + 16)(%rdx), %ymm9, %ymm9;
  949. vpxor (14 * 32 + 16)(%rdx), %ymm8, %ymm8;
  950. write_output(%ymm7, %ymm6, %ymm5, %ymm4, %ymm3, %ymm2, %ymm1, %ymm0,
  951. %ymm15, %ymm14, %ymm13, %ymm12, %ymm11, %ymm10, %ymm9,
  952. %ymm8, %rsi);
  953. vzeroupper;
  954. addq $(16 * 32), %rsp;
  955. FRAME_END
  956. RET;
  957. SYM_FUNC_END(camellia_cbc_dec_32way)