elf_kexec.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Load ELF vmlinux file for the kexec_file_load syscall.
  4. *
  5. * Copyright (C) 2021 Huawei Technologies Co, Ltd.
  6. *
  7. * Author: Liao Chang ([email protected])
  8. *
  9. * Based on kexec-tools' kexec-elf-riscv.c, heavily modified
  10. * for kernel.
  11. */
  12. #define pr_fmt(fmt) "kexec_image: " fmt
  13. #include <linux/elf.h>
  14. #include <linux/kexec.h>
  15. #include <linux/slab.h>
  16. #include <linux/of.h>
  17. #include <linux/libfdt.h>
  18. #include <linux/types.h>
  19. #include <linux/memblock.h>
  20. #include <asm/setup.h>
  21. int arch_kimage_file_post_load_cleanup(struct kimage *image)
  22. {
  23. kvfree(image->arch.fdt);
  24. image->arch.fdt = NULL;
  25. vfree(image->elf_headers);
  26. image->elf_headers = NULL;
  27. image->elf_headers_sz = 0;
  28. return kexec_image_post_load_cleanup_default(image);
  29. }
  30. static int riscv_kexec_elf_load(struct kimage *image, struct elfhdr *ehdr,
  31. struct kexec_elf_info *elf_info, unsigned long old_pbase,
  32. unsigned long new_pbase)
  33. {
  34. int i;
  35. int ret = 0;
  36. size_t size;
  37. struct kexec_buf kbuf;
  38. const struct elf_phdr *phdr;
  39. kbuf.image = image;
  40. for (i = 0; i < ehdr->e_phnum; i++) {
  41. phdr = &elf_info->proghdrs[i];
  42. if (phdr->p_type != PT_LOAD)
  43. continue;
  44. size = phdr->p_filesz;
  45. if (size > phdr->p_memsz)
  46. size = phdr->p_memsz;
  47. kbuf.buffer = (void *) elf_info->buffer + phdr->p_offset;
  48. kbuf.bufsz = size;
  49. kbuf.buf_align = phdr->p_align;
  50. kbuf.mem = phdr->p_paddr - old_pbase + new_pbase;
  51. kbuf.memsz = phdr->p_memsz;
  52. kbuf.top_down = false;
  53. ret = kexec_add_buffer(&kbuf);
  54. if (ret)
  55. break;
  56. }
  57. return ret;
  58. }
  59. /*
  60. * Go through the available phsyical memory regions and find one that hold
  61. * an image of the specified size.
  62. */
  63. static int elf_find_pbase(struct kimage *image, unsigned long kernel_len,
  64. struct elfhdr *ehdr, struct kexec_elf_info *elf_info,
  65. unsigned long *old_pbase, unsigned long *new_pbase)
  66. {
  67. int i;
  68. int ret;
  69. struct kexec_buf kbuf;
  70. const struct elf_phdr *phdr;
  71. unsigned long lowest_paddr = ULONG_MAX;
  72. unsigned long lowest_vaddr = ULONG_MAX;
  73. for (i = 0; i < ehdr->e_phnum; i++) {
  74. phdr = &elf_info->proghdrs[i];
  75. if (phdr->p_type != PT_LOAD)
  76. continue;
  77. if (lowest_paddr > phdr->p_paddr)
  78. lowest_paddr = phdr->p_paddr;
  79. if (lowest_vaddr > phdr->p_vaddr)
  80. lowest_vaddr = phdr->p_vaddr;
  81. }
  82. kbuf.image = image;
  83. kbuf.buf_min = lowest_paddr;
  84. kbuf.buf_max = ULONG_MAX;
  85. /*
  86. * Current riscv boot protocol requires 2MB alignment for
  87. * RV64 and 4MB alignment for RV32
  88. *
  89. */
  90. kbuf.buf_align = PMD_SIZE;
  91. kbuf.mem = KEXEC_BUF_MEM_UNKNOWN;
  92. kbuf.memsz = ALIGN(kernel_len, PAGE_SIZE);
  93. kbuf.top_down = false;
  94. ret = arch_kexec_locate_mem_hole(&kbuf);
  95. if (!ret) {
  96. *old_pbase = lowest_paddr;
  97. *new_pbase = kbuf.mem;
  98. image->start = ehdr->e_entry - lowest_vaddr + kbuf.mem;
  99. }
  100. return ret;
  101. }
  102. static int get_nr_ram_ranges_callback(struct resource *res, void *arg)
  103. {
  104. unsigned int *nr_ranges = arg;
  105. (*nr_ranges)++;
  106. return 0;
  107. }
  108. static int prepare_elf64_ram_headers_callback(struct resource *res, void *arg)
  109. {
  110. struct crash_mem *cmem = arg;
  111. cmem->ranges[cmem->nr_ranges].start = res->start;
  112. cmem->ranges[cmem->nr_ranges].end = res->end;
  113. cmem->nr_ranges++;
  114. return 0;
  115. }
  116. static int prepare_elf_headers(void **addr, unsigned long *sz)
  117. {
  118. struct crash_mem *cmem;
  119. unsigned int nr_ranges;
  120. int ret;
  121. nr_ranges = 1; /* For exclusion of crashkernel region */
  122. walk_system_ram_res(0, -1, &nr_ranges, get_nr_ram_ranges_callback);
  123. cmem = kmalloc(struct_size(cmem, ranges, nr_ranges), GFP_KERNEL);
  124. if (!cmem)
  125. return -ENOMEM;
  126. cmem->max_nr_ranges = nr_ranges;
  127. cmem->nr_ranges = 0;
  128. ret = walk_system_ram_res(0, -1, cmem, prepare_elf64_ram_headers_callback);
  129. if (ret)
  130. goto out;
  131. /* Exclude crashkernel region */
  132. ret = crash_exclude_mem_range(cmem, crashk_res.start, crashk_res.end);
  133. if (!ret)
  134. ret = crash_prepare_elf64_headers(cmem, true, addr, sz);
  135. out:
  136. kfree(cmem);
  137. return ret;
  138. }
  139. static char *setup_kdump_cmdline(struct kimage *image, char *cmdline,
  140. unsigned long cmdline_len)
  141. {
  142. int elfcorehdr_strlen;
  143. char *cmdline_ptr;
  144. cmdline_ptr = kzalloc(COMMAND_LINE_SIZE, GFP_KERNEL);
  145. if (!cmdline_ptr)
  146. return NULL;
  147. elfcorehdr_strlen = sprintf(cmdline_ptr, "elfcorehdr=0x%lx ",
  148. image->elf_load_addr);
  149. if (elfcorehdr_strlen + cmdline_len > COMMAND_LINE_SIZE) {
  150. pr_err("Appending elfcorehdr=<addr> exceeds cmdline size\n");
  151. kfree(cmdline_ptr);
  152. return NULL;
  153. }
  154. memcpy(cmdline_ptr + elfcorehdr_strlen, cmdline, cmdline_len);
  155. /* Ensure it's nul terminated */
  156. cmdline_ptr[COMMAND_LINE_SIZE - 1] = '\0';
  157. return cmdline_ptr;
  158. }
  159. static void *elf_kexec_load(struct kimage *image, char *kernel_buf,
  160. unsigned long kernel_len, char *initrd,
  161. unsigned long initrd_len, char *cmdline,
  162. unsigned long cmdline_len)
  163. {
  164. int ret;
  165. unsigned long old_kernel_pbase = ULONG_MAX;
  166. unsigned long new_kernel_pbase = 0UL;
  167. unsigned long initrd_pbase = 0UL;
  168. unsigned long headers_sz;
  169. unsigned long kernel_start;
  170. void *fdt, *headers;
  171. struct elfhdr ehdr;
  172. struct kexec_buf kbuf;
  173. struct kexec_elf_info elf_info;
  174. char *modified_cmdline = NULL;
  175. ret = kexec_build_elf_info(kernel_buf, kernel_len, &ehdr, &elf_info);
  176. if (ret)
  177. return ERR_PTR(ret);
  178. ret = elf_find_pbase(image, kernel_len, &ehdr, &elf_info,
  179. &old_kernel_pbase, &new_kernel_pbase);
  180. if (ret)
  181. goto out;
  182. kernel_start = image->start;
  183. pr_notice("The entry point of kernel at 0x%lx\n", image->start);
  184. /* Add the kernel binary to the image */
  185. ret = riscv_kexec_elf_load(image, &ehdr, &elf_info,
  186. old_kernel_pbase, new_kernel_pbase);
  187. if (ret)
  188. goto out;
  189. kbuf.image = image;
  190. kbuf.buf_min = new_kernel_pbase + kernel_len;
  191. kbuf.buf_max = ULONG_MAX;
  192. /* Add elfcorehdr */
  193. if (image->type == KEXEC_TYPE_CRASH) {
  194. ret = prepare_elf_headers(&headers, &headers_sz);
  195. if (ret) {
  196. pr_err("Preparing elf core header failed\n");
  197. goto out;
  198. }
  199. kbuf.buffer = headers;
  200. kbuf.bufsz = headers_sz;
  201. kbuf.mem = KEXEC_BUF_MEM_UNKNOWN;
  202. kbuf.memsz = headers_sz;
  203. kbuf.buf_align = ELF_CORE_HEADER_ALIGN;
  204. kbuf.top_down = true;
  205. ret = kexec_add_buffer(&kbuf);
  206. if (ret) {
  207. vfree(headers);
  208. goto out;
  209. }
  210. image->elf_headers = headers;
  211. image->elf_load_addr = kbuf.mem;
  212. image->elf_headers_sz = headers_sz;
  213. pr_debug("Loaded elf core header at 0x%lx bufsz=0x%lx memsz=0x%lx\n",
  214. image->elf_load_addr, kbuf.bufsz, kbuf.memsz);
  215. /* Setup cmdline for kdump kernel case */
  216. modified_cmdline = setup_kdump_cmdline(image, cmdline,
  217. cmdline_len);
  218. if (!modified_cmdline) {
  219. pr_err("Setting up cmdline for kdump kernel failed\n");
  220. ret = -EINVAL;
  221. goto out;
  222. }
  223. cmdline = modified_cmdline;
  224. }
  225. #ifdef CONFIG_ARCH_HAS_KEXEC_PURGATORY
  226. /* Add purgatory to the image */
  227. kbuf.top_down = true;
  228. kbuf.mem = KEXEC_BUF_MEM_UNKNOWN;
  229. ret = kexec_load_purgatory(image, &kbuf);
  230. if (ret) {
  231. pr_err("Error loading purgatory ret=%d\n", ret);
  232. goto out;
  233. }
  234. ret = kexec_purgatory_get_set_symbol(image, "riscv_kernel_entry",
  235. &kernel_start,
  236. sizeof(kernel_start), 0);
  237. if (ret)
  238. pr_err("Error update purgatory ret=%d\n", ret);
  239. #endif /* CONFIG_ARCH_HAS_KEXEC_PURGATORY */
  240. /* Add the initrd to the image */
  241. if (initrd != NULL) {
  242. kbuf.buffer = initrd;
  243. kbuf.bufsz = kbuf.memsz = initrd_len;
  244. kbuf.buf_align = PAGE_SIZE;
  245. kbuf.top_down = true;
  246. kbuf.mem = KEXEC_BUF_MEM_UNKNOWN;
  247. ret = kexec_add_buffer(&kbuf);
  248. if (ret)
  249. goto out;
  250. initrd_pbase = kbuf.mem;
  251. pr_notice("Loaded initrd at 0x%lx\n", initrd_pbase);
  252. }
  253. /* Add the DTB to the image */
  254. fdt = of_kexec_alloc_and_setup_fdt(image, initrd_pbase,
  255. initrd_len, cmdline, 0);
  256. if (!fdt) {
  257. pr_err("Error setting up the new device tree.\n");
  258. ret = -EINVAL;
  259. goto out;
  260. }
  261. fdt_pack(fdt);
  262. kbuf.buffer = fdt;
  263. kbuf.bufsz = kbuf.memsz = fdt_totalsize(fdt);
  264. kbuf.buf_align = PAGE_SIZE;
  265. kbuf.mem = KEXEC_BUF_MEM_UNKNOWN;
  266. kbuf.top_down = true;
  267. ret = kexec_add_buffer(&kbuf);
  268. if (ret) {
  269. pr_err("Error add DTB kbuf ret=%d\n", ret);
  270. goto out_free_fdt;
  271. }
  272. /* Cache the fdt buffer address for memory cleanup */
  273. image->arch.fdt = fdt;
  274. pr_notice("Loaded device tree at 0x%lx\n", kbuf.mem);
  275. goto out;
  276. out_free_fdt:
  277. kvfree(fdt);
  278. out:
  279. kfree(modified_cmdline);
  280. kexec_free_elf_info(&elf_info);
  281. return ret ? ERR_PTR(ret) : NULL;
  282. }
  283. #define RV_X(x, s, n) (((x) >> (s)) & ((1 << (n)) - 1))
  284. #define RISCV_IMM_BITS 12
  285. #define RISCV_IMM_REACH (1LL << RISCV_IMM_BITS)
  286. #define RISCV_CONST_HIGH_PART(x) \
  287. (((x) + (RISCV_IMM_REACH >> 1)) & ~(RISCV_IMM_REACH - 1))
  288. #define RISCV_CONST_LOW_PART(x) ((x) - RISCV_CONST_HIGH_PART(x))
  289. #define ENCODE_ITYPE_IMM(x) \
  290. (RV_X(x, 0, 12) << 20)
  291. #define ENCODE_BTYPE_IMM(x) \
  292. ((RV_X(x, 1, 4) << 8) | (RV_X(x, 5, 6) << 25) | \
  293. (RV_X(x, 11, 1) << 7) | (RV_X(x, 12, 1) << 31))
  294. #define ENCODE_UTYPE_IMM(x) \
  295. (RV_X(x, 12, 20) << 12)
  296. #define ENCODE_JTYPE_IMM(x) \
  297. ((RV_X(x, 1, 10) << 21) | (RV_X(x, 11, 1) << 20) | \
  298. (RV_X(x, 12, 8) << 12) | (RV_X(x, 20, 1) << 31))
  299. #define ENCODE_CBTYPE_IMM(x) \
  300. ((RV_X(x, 1, 2) << 3) | (RV_X(x, 3, 2) << 10) | (RV_X(x, 5, 1) << 2) | \
  301. (RV_X(x, 6, 2) << 5) | (RV_X(x, 8, 1) << 12))
  302. #define ENCODE_CJTYPE_IMM(x) \
  303. ((RV_X(x, 1, 3) << 3) | (RV_X(x, 4, 1) << 11) | (RV_X(x, 5, 1) << 2) | \
  304. (RV_X(x, 6, 1) << 7) | (RV_X(x, 7, 1) << 6) | (RV_X(x, 8, 2) << 9) | \
  305. (RV_X(x, 10, 1) << 8) | (RV_X(x, 11, 1) << 12))
  306. #define ENCODE_UJTYPE_IMM(x) \
  307. (ENCODE_UTYPE_IMM(RISCV_CONST_HIGH_PART(x)) | \
  308. (ENCODE_ITYPE_IMM(RISCV_CONST_LOW_PART(x)) << 32))
  309. #define ENCODE_UITYPE_IMM(x) \
  310. (ENCODE_UTYPE_IMM(x) | (ENCODE_ITYPE_IMM(x) << 32))
  311. #define CLEAN_IMM(type, x) \
  312. ((~ENCODE_##type##_IMM((uint64_t)(-1))) & (x))
  313. int arch_kexec_apply_relocations_add(struct purgatory_info *pi,
  314. Elf_Shdr *section,
  315. const Elf_Shdr *relsec,
  316. const Elf_Shdr *symtab)
  317. {
  318. const char *strtab, *name, *shstrtab;
  319. const Elf_Shdr *sechdrs;
  320. Elf64_Rela *relas;
  321. int i, r_type;
  322. /* String & section header string table */
  323. sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
  324. strtab = (char *)pi->ehdr + sechdrs[symtab->sh_link].sh_offset;
  325. shstrtab = (char *)pi->ehdr + sechdrs[pi->ehdr->e_shstrndx].sh_offset;
  326. relas = (void *)pi->ehdr + relsec->sh_offset;
  327. for (i = 0; i < relsec->sh_size / sizeof(*relas); i++) {
  328. const Elf_Sym *sym; /* symbol to relocate */
  329. unsigned long addr; /* final location after relocation */
  330. unsigned long val; /* relocated symbol value */
  331. unsigned long sec_base; /* relocated symbol value */
  332. void *loc; /* tmp location to modify */
  333. sym = (void *)pi->ehdr + symtab->sh_offset;
  334. sym += ELF64_R_SYM(relas[i].r_info);
  335. if (sym->st_name)
  336. name = strtab + sym->st_name;
  337. else
  338. name = shstrtab + sechdrs[sym->st_shndx].sh_name;
  339. loc = pi->purgatory_buf;
  340. loc += section->sh_offset;
  341. loc += relas[i].r_offset;
  342. if (sym->st_shndx == SHN_ABS)
  343. sec_base = 0;
  344. else if (sym->st_shndx >= pi->ehdr->e_shnum) {
  345. pr_err("Invalid section %d for symbol %s\n",
  346. sym->st_shndx, name);
  347. return -ENOEXEC;
  348. } else
  349. sec_base = pi->sechdrs[sym->st_shndx].sh_addr;
  350. val = sym->st_value;
  351. val += sec_base;
  352. val += relas[i].r_addend;
  353. addr = section->sh_addr + relas[i].r_offset;
  354. r_type = ELF64_R_TYPE(relas[i].r_info);
  355. switch (r_type) {
  356. case R_RISCV_BRANCH:
  357. *(u32 *)loc = CLEAN_IMM(BTYPE, *(u32 *)loc) |
  358. ENCODE_BTYPE_IMM(val - addr);
  359. break;
  360. case R_RISCV_JAL:
  361. *(u32 *)loc = CLEAN_IMM(JTYPE, *(u32 *)loc) |
  362. ENCODE_JTYPE_IMM(val - addr);
  363. break;
  364. /*
  365. * With no R_RISCV_PCREL_LO12_S, R_RISCV_PCREL_LO12_I
  366. * sym is expected to be next to R_RISCV_PCREL_HI20
  367. * in purgatory relsec. Handle it like R_RISCV_CALL
  368. * sym, instead of searching the whole relsec.
  369. */
  370. case R_RISCV_PCREL_HI20:
  371. case R_RISCV_CALL_PLT:
  372. case R_RISCV_CALL:
  373. *(u64 *)loc = CLEAN_IMM(UITYPE, *(u64 *)loc) |
  374. ENCODE_UJTYPE_IMM(val - addr);
  375. break;
  376. case R_RISCV_RVC_BRANCH:
  377. *(u32 *)loc = CLEAN_IMM(CBTYPE, *(u32 *)loc) |
  378. ENCODE_CBTYPE_IMM(val - addr);
  379. break;
  380. case R_RISCV_RVC_JUMP:
  381. *(u32 *)loc = CLEAN_IMM(CJTYPE, *(u32 *)loc) |
  382. ENCODE_CJTYPE_IMM(val - addr);
  383. break;
  384. case R_RISCV_ADD32:
  385. *(u32 *)loc += val;
  386. break;
  387. case R_RISCV_SUB32:
  388. *(u32 *)loc -= val;
  389. break;
  390. /* It has been applied by R_RISCV_PCREL_HI20 sym */
  391. case R_RISCV_PCREL_LO12_I:
  392. case R_RISCV_ALIGN:
  393. case R_RISCV_RELAX:
  394. break;
  395. default:
  396. pr_err("Unknown rela relocation: %d\n", r_type);
  397. return -ENOEXEC;
  398. }
  399. }
  400. return 0;
  401. }
  402. const struct kexec_file_ops elf_kexec_ops = {
  403. .probe = kexec_elf_probe,
  404. .load = elf_kexec_load,
  405. };