pgtable.h 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835
  1. /* SPDX-License-Identifier: GPL-2.0-only */
  2. /*
  3. * Copyright (C) 2012 Regents of the University of California
  4. */
  5. #ifndef _ASM_RISCV_PGTABLE_H
  6. #define _ASM_RISCV_PGTABLE_H
  7. #include <linux/mmzone.h>
  8. #include <linux/sizes.h>
  9. #include <asm/pgtable-bits.h>
  10. #ifndef CONFIG_MMU
  11. #define KERNEL_LINK_ADDR PAGE_OFFSET
  12. #define KERN_VIRT_SIZE (UL(-1))
  13. #else
  14. #define ADDRESS_SPACE_END (UL(-1))
  15. #ifdef CONFIG_64BIT
  16. /* Leave 2GB for kernel and BPF at the end of the address space */
  17. #define KERNEL_LINK_ADDR (ADDRESS_SPACE_END - SZ_2G + 1)
  18. #else
  19. #define KERNEL_LINK_ADDR PAGE_OFFSET
  20. #endif
  21. /* Number of entries in the page global directory */
  22. #define PTRS_PER_PGD (PAGE_SIZE / sizeof(pgd_t))
  23. /* Number of entries in the page table */
  24. #define PTRS_PER_PTE (PAGE_SIZE / sizeof(pte_t))
  25. /*
  26. * Half of the kernel address space (half of the entries of the page global
  27. * directory) is for the direct mapping.
  28. */
  29. #define KERN_VIRT_SIZE ((PTRS_PER_PGD / 2 * PGDIR_SIZE) / 2)
  30. #define VMALLOC_SIZE (KERN_VIRT_SIZE >> 1)
  31. #define VMALLOC_END PAGE_OFFSET
  32. #define VMALLOC_START (PAGE_OFFSET - VMALLOC_SIZE)
  33. #define BPF_JIT_REGION_SIZE (SZ_128M)
  34. #ifdef CONFIG_64BIT
  35. #define BPF_JIT_REGION_START (BPF_JIT_REGION_END - BPF_JIT_REGION_SIZE)
  36. #define BPF_JIT_REGION_END (MODULES_END)
  37. #else
  38. #define BPF_JIT_REGION_START (PAGE_OFFSET - BPF_JIT_REGION_SIZE)
  39. #define BPF_JIT_REGION_END (VMALLOC_END)
  40. #endif
  41. /* Modules always live before the kernel */
  42. #ifdef CONFIG_64BIT
  43. /* This is used to define the end of the KASAN shadow region */
  44. #define MODULES_LOWEST_VADDR (KERNEL_LINK_ADDR - SZ_2G)
  45. #define MODULES_VADDR (PFN_ALIGN((unsigned long)&_end) - SZ_2G)
  46. #define MODULES_END (PFN_ALIGN((unsigned long)&_start))
  47. #endif
  48. /*
  49. * Roughly size the vmemmap space to be large enough to fit enough
  50. * struct pages to map half the virtual address space. Then
  51. * position vmemmap directly below the VMALLOC region.
  52. */
  53. #ifdef CONFIG_64BIT
  54. #define VA_BITS (pgtable_l5_enabled ? \
  55. 57 : (pgtable_l4_enabled ? 48 : 39))
  56. #else
  57. #define VA_BITS 32
  58. #endif
  59. #define VMEMMAP_SHIFT \
  60. (VA_BITS - PAGE_SHIFT - 1 + STRUCT_PAGE_MAX_SHIFT)
  61. #define VMEMMAP_SIZE BIT(VMEMMAP_SHIFT)
  62. #define VMEMMAP_END VMALLOC_START
  63. #define VMEMMAP_START (VMALLOC_START - VMEMMAP_SIZE)
  64. /*
  65. * Define vmemmap for pfn_to_page & page_to_pfn calls. Needed if kernel
  66. * is configured with CONFIG_SPARSEMEM_VMEMMAP enabled.
  67. */
  68. #define vmemmap ((struct page *)VMEMMAP_START)
  69. #define PCI_IO_SIZE SZ_16M
  70. #define PCI_IO_END VMEMMAP_START
  71. #define PCI_IO_START (PCI_IO_END - PCI_IO_SIZE)
  72. #define FIXADDR_TOP PCI_IO_START
  73. #ifdef CONFIG_64BIT
  74. #define MAX_FDT_SIZE PMD_SIZE
  75. #define FIX_FDT_SIZE (MAX_FDT_SIZE + SZ_2M)
  76. #define FIXADDR_SIZE (PMD_SIZE + FIX_FDT_SIZE)
  77. #else
  78. #define MAX_FDT_SIZE PGDIR_SIZE
  79. #define FIX_FDT_SIZE MAX_FDT_SIZE
  80. #define FIXADDR_SIZE (PGDIR_SIZE + FIX_FDT_SIZE)
  81. #endif
  82. #define FIXADDR_START (FIXADDR_TOP - FIXADDR_SIZE)
  83. #endif
  84. #ifdef CONFIG_XIP_KERNEL
  85. #define XIP_OFFSET SZ_32M
  86. #define XIP_OFFSET_MASK (SZ_32M - 1)
  87. #else
  88. #define XIP_OFFSET 0
  89. #endif
  90. #ifndef __ASSEMBLY__
  91. #include <asm/page.h>
  92. #include <asm/tlbflush.h>
  93. #include <linux/mm_types.h>
  94. #define __page_val_to_pfn(_val) (((_val) & _PAGE_PFN_MASK) >> _PAGE_PFN_SHIFT)
  95. #ifdef CONFIG_64BIT
  96. #include <asm/pgtable-64.h>
  97. #else
  98. #include <asm/pgtable-32.h>
  99. #endif /* CONFIG_64BIT */
  100. #include <linux/page_table_check.h>
  101. #ifdef CONFIG_XIP_KERNEL
  102. #define XIP_FIXUP(addr) ({ \
  103. uintptr_t __a = (uintptr_t)(addr); \
  104. (__a >= CONFIG_XIP_PHYS_ADDR && \
  105. __a < CONFIG_XIP_PHYS_ADDR + XIP_OFFSET * 2) ? \
  106. __a - CONFIG_XIP_PHYS_ADDR + CONFIG_PHYS_RAM_BASE - XIP_OFFSET :\
  107. __a; \
  108. })
  109. #else
  110. #define XIP_FIXUP(addr) (addr)
  111. #endif /* CONFIG_XIP_KERNEL */
  112. struct pt_alloc_ops {
  113. pte_t *(*get_pte_virt)(phys_addr_t pa);
  114. phys_addr_t (*alloc_pte)(uintptr_t va);
  115. #ifndef __PAGETABLE_PMD_FOLDED
  116. pmd_t *(*get_pmd_virt)(phys_addr_t pa);
  117. phys_addr_t (*alloc_pmd)(uintptr_t va);
  118. pud_t *(*get_pud_virt)(phys_addr_t pa);
  119. phys_addr_t (*alloc_pud)(uintptr_t va);
  120. p4d_t *(*get_p4d_virt)(phys_addr_t pa);
  121. phys_addr_t (*alloc_p4d)(uintptr_t va);
  122. #endif
  123. };
  124. extern struct pt_alloc_ops pt_ops __initdata;
  125. #ifdef CONFIG_MMU
  126. /* Number of PGD entries that a user-mode program can use */
  127. #define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE)
  128. /* Page protection bits */
  129. #define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_USER)
  130. #define PAGE_NONE __pgprot(_PAGE_PROT_NONE | _PAGE_READ)
  131. #define PAGE_READ __pgprot(_PAGE_BASE | _PAGE_READ)
  132. #define PAGE_WRITE __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_WRITE)
  133. #define PAGE_EXEC __pgprot(_PAGE_BASE | _PAGE_EXEC)
  134. #define PAGE_READ_EXEC __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
  135. #define PAGE_WRITE_EXEC __pgprot(_PAGE_BASE | _PAGE_READ | \
  136. _PAGE_EXEC | _PAGE_WRITE)
  137. #define PAGE_COPY PAGE_READ
  138. #define PAGE_COPY_EXEC PAGE_READ_EXEC
  139. #define PAGE_SHARED PAGE_WRITE
  140. #define PAGE_SHARED_EXEC PAGE_WRITE_EXEC
  141. #define _PAGE_KERNEL (_PAGE_READ \
  142. | _PAGE_WRITE \
  143. | _PAGE_PRESENT \
  144. | _PAGE_ACCESSED \
  145. | _PAGE_DIRTY \
  146. | _PAGE_GLOBAL)
  147. #define PAGE_KERNEL __pgprot(_PAGE_KERNEL)
  148. #define PAGE_KERNEL_READ __pgprot(_PAGE_KERNEL & ~_PAGE_WRITE)
  149. #define PAGE_KERNEL_EXEC __pgprot(_PAGE_KERNEL | _PAGE_EXEC)
  150. #define PAGE_KERNEL_READ_EXEC __pgprot((_PAGE_KERNEL & ~_PAGE_WRITE) \
  151. | _PAGE_EXEC)
  152. #define PAGE_TABLE __pgprot(_PAGE_TABLE)
  153. #define _PAGE_IOREMAP ((_PAGE_KERNEL & ~_PAGE_MTMASK) | _PAGE_IO)
  154. #define PAGE_KERNEL_IO __pgprot(_PAGE_IOREMAP)
  155. extern pgd_t swapper_pg_dir[];
  156. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  157. static inline int pmd_present(pmd_t pmd)
  158. {
  159. /*
  160. * Checking for _PAGE_LEAF is needed too because:
  161. * When splitting a THP, split_huge_page() will temporarily clear
  162. * the present bit, in this situation, pmd_present() and
  163. * pmd_trans_huge() still needs to return true.
  164. */
  165. return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE | _PAGE_LEAF));
  166. }
  167. #else
  168. static inline int pmd_present(pmd_t pmd)
  169. {
  170. return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE));
  171. }
  172. #endif
  173. static inline int pmd_none(pmd_t pmd)
  174. {
  175. return (pmd_val(pmd) == 0);
  176. }
  177. static inline int pmd_bad(pmd_t pmd)
  178. {
  179. return !pmd_present(pmd) || (pmd_val(pmd) & _PAGE_LEAF);
  180. }
  181. #define pmd_leaf pmd_leaf
  182. static inline int pmd_leaf(pmd_t pmd)
  183. {
  184. return pmd_present(pmd) && (pmd_val(pmd) & _PAGE_LEAF);
  185. }
  186. static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
  187. {
  188. *pmdp = pmd;
  189. }
  190. static inline void pmd_clear(pmd_t *pmdp)
  191. {
  192. set_pmd(pmdp, __pmd(0));
  193. }
  194. static inline pgd_t pfn_pgd(unsigned long pfn, pgprot_t prot)
  195. {
  196. unsigned long prot_val = pgprot_val(prot);
  197. ALT_THEAD_PMA(prot_val);
  198. return __pgd((pfn << _PAGE_PFN_SHIFT) | prot_val);
  199. }
  200. static inline unsigned long _pgd_pfn(pgd_t pgd)
  201. {
  202. return __page_val_to_pfn(pgd_val(pgd));
  203. }
  204. static inline struct page *pmd_page(pmd_t pmd)
  205. {
  206. return pfn_to_page(__page_val_to_pfn(pmd_val(pmd)));
  207. }
  208. static inline unsigned long pmd_page_vaddr(pmd_t pmd)
  209. {
  210. return (unsigned long)pfn_to_virt(__page_val_to_pfn(pmd_val(pmd)));
  211. }
  212. static inline pte_t pmd_pte(pmd_t pmd)
  213. {
  214. return __pte(pmd_val(pmd));
  215. }
  216. static inline pte_t pud_pte(pud_t pud)
  217. {
  218. return __pte(pud_val(pud));
  219. }
  220. /* Yields the page frame number (PFN) of a page table entry */
  221. static inline unsigned long pte_pfn(pte_t pte)
  222. {
  223. return __page_val_to_pfn(pte_val(pte));
  224. }
  225. #define pte_page(x) pfn_to_page(pte_pfn(x))
  226. /* Constructs a page table entry */
  227. static inline pte_t pfn_pte(unsigned long pfn, pgprot_t prot)
  228. {
  229. unsigned long prot_val = pgprot_val(prot);
  230. ALT_THEAD_PMA(prot_val);
  231. return __pte((pfn << _PAGE_PFN_SHIFT) | prot_val);
  232. }
  233. #define mk_pte(page, prot) pfn_pte(page_to_pfn(page), prot)
  234. static inline int pte_present(pte_t pte)
  235. {
  236. return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE));
  237. }
  238. static inline int pte_none(pte_t pte)
  239. {
  240. return (pte_val(pte) == 0);
  241. }
  242. static inline int pte_write(pte_t pte)
  243. {
  244. return pte_val(pte) & _PAGE_WRITE;
  245. }
  246. static inline int pte_exec(pte_t pte)
  247. {
  248. return pte_val(pte) & _PAGE_EXEC;
  249. }
  250. static inline int pte_user(pte_t pte)
  251. {
  252. return pte_val(pte) & _PAGE_USER;
  253. }
  254. static inline int pte_huge(pte_t pte)
  255. {
  256. return pte_present(pte) && (pte_val(pte) & _PAGE_LEAF);
  257. }
  258. static inline int pte_dirty(pte_t pte)
  259. {
  260. return pte_val(pte) & _PAGE_DIRTY;
  261. }
  262. static inline int pte_young(pte_t pte)
  263. {
  264. return pte_val(pte) & _PAGE_ACCESSED;
  265. }
  266. static inline int pte_special(pte_t pte)
  267. {
  268. return pte_val(pte) & _PAGE_SPECIAL;
  269. }
  270. /* static inline pte_t pte_rdprotect(pte_t pte) */
  271. static inline pte_t pte_wrprotect(pte_t pte)
  272. {
  273. return __pte(pte_val(pte) & ~(_PAGE_WRITE));
  274. }
  275. /* static inline pte_t pte_mkread(pte_t pte) */
  276. static inline pte_t pte_mkwrite(pte_t pte)
  277. {
  278. return __pte(pte_val(pte) | _PAGE_WRITE);
  279. }
  280. /* static inline pte_t pte_mkexec(pte_t pte) */
  281. static inline pte_t pte_mkdirty(pte_t pte)
  282. {
  283. return __pte(pte_val(pte) | _PAGE_DIRTY);
  284. }
  285. static inline pte_t pte_mkclean(pte_t pte)
  286. {
  287. return __pte(pte_val(pte) & ~(_PAGE_DIRTY));
  288. }
  289. static inline pte_t pte_mkyoung(pte_t pte)
  290. {
  291. return __pte(pte_val(pte) | _PAGE_ACCESSED);
  292. }
  293. static inline pte_t pte_mkold(pte_t pte)
  294. {
  295. return __pte(pte_val(pte) & ~(_PAGE_ACCESSED));
  296. }
  297. static inline pte_t pte_mkspecial(pte_t pte)
  298. {
  299. return __pte(pte_val(pte) | _PAGE_SPECIAL);
  300. }
  301. static inline pte_t pte_mkhuge(pte_t pte)
  302. {
  303. return pte;
  304. }
  305. #ifdef CONFIG_NUMA_BALANCING
  306. /*
  307. * See the comment in include/asm-generic/pgtable.h
  308. */
  309. static inline int pte_protnone(pte_t pte)
  310. {
  311. return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE)) == _PAGE_PROT_NONE;
  312. }
  313. static inline int pmd_protnone(pmd_t pmd)
  314. {
  315. return pte_protnone(pmd_pte(pmd));
  316. }
  317. #endif
  318. /* Modify page protection bits */
  319. static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
  320. {
  321. unsigned long newprot_val = pgprot_val(newprot);
  322. ALT_THEAD_PMA(newprot_val);
  323. return __pte((pte_val(pte) & _PAGE_CHG_MASK) | newprot_val);
  324. }
  325. #define pgd_ERROR(e) \
  326. pr_err("%s:%d: bad pgd " PTE_FMT ".\n", __FILE__, __LINE__, pgd_val(e))
  327. /* Commit new configuration to MMU hardware */
  328. static inline void update_mmu_cache(struct vm_area_struct *vma,
  329. unsigned long address, pte_t *ptep)
  330. {
  331. /*
  332. * The kernel assumes that TLBs don't cache invalid entries, but
  333. * in RISC-V, SFENCE.VMA specifies an ordering constraint, not a
  334. * cache flush; it is necessary even after writing invalid entries.
  335. * Relying on flush_tlb_fix_spurious_fault would suffice, but
  336. * the extra traps reduce performance. So, eagerly SFENCE.VMA.
  337. */
  338. local_flush_tlb_page(address);
  339. }
  340. static inline void update_mmu_cache_pmd(struct vm_area_struct *vma,
  341. unsigned long address, pmd_t *pmdp)
  342. {
  343. pte_t *ptep = (pte_t *)pmdp;
  344. update_mmu_cache(vma, address, ptep);
  345. }
  346. #define __HAVE_ARCH_PTE_SAME
  347. static inline int pte_same(pte_t pte_a, pte_t pte_b)
  348. {
  349. return pte_val(pte_a) == pte_val(pte_b);
  350. }
  351. /*
  352. * Certain architectures need to do special things when PTEs within
  353. * a page table are directly modified. Thus, the following hook is
  354. * made available.
  355. */
  356. static inline void set_pte(pte_t *ptep, pte_t pteval)
  357. {
  358. *ptep = pteval;
  359. }
  360. void flush_icache_pte(pte_t pte);
  361. static inline void __set_pte_at(struct mm_struct *mm,
  362. unsigned long addr, pte_t *ptep, pte_t pteval)
  363. {
  364. if (pte_present(pteval) && pte_exec(pteval))
  365. flush_icache_pte(pteval);
  366. set_pte(ptep, pteval);
  367. }
  368. static inline void set_pte_at(struct mm_struct *mm,
  369. unsigned long addr, pte_t *ptep, pte_t pteval)
  370. {
  371. page_table_check_pte_set(mm, addr, ptep, pteval);
  372. __set_pte_at(mm, addr, ptep, pteval);
  373. }
  374. static inline void pte_clear(struct mm_struct *mm,
  375. unsigned long addr, pte_t *ptep)
  376. {
  377. __set_pte_at(mm, addr, ptep, __pte(0));
  378. }
  379. #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
  380. static inline int ptep_set_access_flags(struct vm_area_struct *vma,
  381. unsigned long address, pte_t *ptep,
  382. pte_t entry, int dirty)
  383. {
  384. if (!pte_same(*ptep, entry))
  385. set_pte_at(vma->vm_mm, address, ptep, entry);
  386. /*
  387. * update_mmu_cache will unconditionally execute, handling both
  388. * the case that the PTE changed and the spurious fault case.
  389. */
  390. return true;
  391. }
  392. #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
  393. static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
  394. unsigned long address, pte_t *ptep)
  395. {
  396. pte_t pte = __pte(atomic_long_xchg((atomic_long_t *)ptep, 0));
  397. page_table_check_pte_clear(mm, address, pte);
  398. return pte;
  399. }
  400. #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
  401. static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
  402. unsigned long address,
  403. pte_t *ptep)
  404. {
  405. if (!pte_young(*ptep))
  406. return 0;
  407. return test_and_clear_bit(_PAGE_ACCESSED_OFFSET, &pte_val(*ptep));
  408. }
  409. #define __HAVE_ARCH_PTEP_SET_WRPROTECT
  410. static inline void ptep_set_wrprotect(struct mm_struct *mm,
  411. unsigned long address, pte_t *ptep)
  412. {
  413. atomic_long_and(~(unsigned long)_PAGE_WRITE, (atomic_long_t *)ptep);
  414. }
  415. #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
  416. static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
  417. unsigned long address, pte_t *ptep)
  418. {
  419. /*
  420. * This comment is borrowed from x86, but applies equally to RISC-V:
  421. *
  422. * Clearing the accessed bit without a TLB flush
  423. * doesn't cause data corruption. [ It could cause incorrect
  424. * page aging and the (mistaken) reclaim of hot pages, but the
  425. * chance of that should be relatively low. ]
  426. *
  427. * So as a performance optimization don't flush the TLB when
  428. * clearing the accessed bit, it will eventually be flushed by
  429. * a context switch or a VM operation anyway. [ In the rare
  430. * event of it not getting flushed for a long time the delay
  431. * shouldn't really matter because there's no real memory
  432. * pressure for swapout to react to. ]
  433. */
  434. return ptep_test_and_clear_young(vma, address, ptep);
  435. }
  436. #define pgprot_noncached pgprot_noncached
  437. static inline pgprot_t pgprot_noncached(pgprot_t _prot)
  438. {
  439. unsigned long prot = pgprot_val(_prot);
  440. prot &= ~_PAGE_MTMASK;
  441. prot |= _PAGE_IO;
  442. return __pgprot(prot);
  443. }
  444. #define pgprot_writecombine pgprot_writecombine
  445. static inline pgprot_t pgprot_writecombine(pgprot_t _prot)
  446. {
  447. unsigned long prot = pgprot_val(_prot);
  448. prot &= ~_PAGE_MTMASK;
  449. prot |= _PAGE_NOCACHE;
  450. return __pgprot(prot);
  451. }
  452. /*
  453. * THP functions
  454. */
  455. static inline pmd_t pte_pmd(pte_t pte)
  456. {
  457. return __pmd(pte_val(pte));
  458. }
  459. static inline pmd_t pmd_mkhuge(pmd_t pmd)
  460. {
  461. return pmd;
  462. }
  463. static inline pmd_t pmd_mkinvalid(pmd_t pmd)
  464. {
  465. return __pmd(pmd_val(pmd) & ~(_PAGE_PRESENT|_PAGE_PROT_NONE));
  466. }
  467. #define __pmd_to_phys(pmd) (__page_val_to_pfn(pmd_val(pmd)) << PAGE_SHIFT)
  468. static inline unsigned long pmd_pfn(pmd_t pmd)
  469. {
  470. return ((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT);
  471. }
  472. #define __pud_to_phys(pud) (__page_val_to_pfn(pud_val(pud)) << PAGE_SHIFT)
  473. static inline unsigned long pud_pfn(pud_t pud)
  474. {
  475. return ((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT);
  476. }
  477. static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
  478. {
  479. return pte_pmd(pte_modify(pmd_pte(pmd), newprot));
  480. }
  481. #define pmd_write pmd_write
  482. static inline int pmd_write(pmd_t pmd)
  483. {
  484. return pte_write(pmd_pte(pmd));
  485. }
  486. static inline int pmd_dirty(pmd_t pmd)
  487. {
  488. return pte_dirty(pmd_pte(pmd));
  489. }
  490. #define pmd_young pmd_young
  491. static inline int pmd_young(pmd_t pmd)
  492. {
  493. return pte_young(pmd_pte(pmd));
  494. }
  495. static inline int pmd_user(pmd_t pmd)
  496. {
  497. return pte_user(pmd_pte(pmd));
  498. }
  499. static inline pmd_t pmd_mkold(pmd_t pmd)
  500. {
  501. return pte_pmd(pte_mkold(pmd_pte(pmd)));
  502. }
  503. static inline pmd_t pmd_mkyoung(pmd_t pmd)
  504. {
  505. return pte_pmd(pte_mkyoung(pmd_pte(pmd)));
  506. }
  507. static inline pmd_t pmd_mkwrite(pmd_t pmd)
  508. {
  509. return pte_pmd(pte_mkwrite(pmd_pte(pmd)));
  510. }
  511. static inline pmd_t pmd_wrprotect(pmd_t pmd)
  512. {
  513. return pte_pmd(pte_wrprotect(pmd_pte(pmd)));
  514. }
  515. static inline pmd_t pmd_mkclean(pmd_t pmd)
  516. {
  517. return pte_pmd(pte_mkclean(pmd_pte(pmd)));
  518. }
  519. static inline pmd_t pmd_mkdirty(pmd_t pmd)
  520. {
  521. return pte_pmd(pte_mkdirty(pmd_pte(pmd)));
  522. }
  523. static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
  524. pmd_t *pmdp, pmd_t pmd)
  525. {
  526. page_table_check_pmd_set(mm, addr, pmdp, pmd);
  527. return __set_pte_at(mm, addr, (pte_t *)pmdp, pmd_pte(pmd));
  528. }
  529. static inline void set_pud_at(struct mm_struct *mm, unsigned long addr,
  530. pud_t *pudp, pud_t pud)
  531. {
  532. page_table_check_pud_set(mm, addr, pudp, pud);
  533. return __set_pte_at(mm, addr, (pte_t *)pudp, pud_pte(pud));
  534. }
  535. #ifdef CONFIG_PAGE_TABLE_CHECK
  536. static inline bool pte_user_accessible_page(pte_t pte)
  537. {
  538. return pte_present(pte) && pte_user(pte);
  539. }
  540. static inline bool pmd_user_accessible_page(pmd_t pmd)
  541. {
  542. return pmd_leaf(pmd) && pmd_user(pmd);
  543. }
  544. static inline bool pud_user_accessible_page(pud_t pud)
  545. {
  546. return pud_leaf(pud) && pud_user(pud);
  547. }
  548. #endif
  549. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  550. static inline int pmd_trans_huge(pmd_t pmd)
  551. {
  552. return pmd_leaf(pmd);
  553. }
  554. #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
  555. static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
  556. unsigned long address, pmd_t *pmdp,
  557. pmd_t entry, int dirty)
  558. {
  559. return ptep_set_access_flags(vma, address, (pte_t *)pmdp, pmd_pte(entry), dirty);
  560. }
  561. #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
  562. static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
  563. unsigned long address, pmd_t *pmdp)
  564. {
  565. return ptep_test_and_clear_young(vma, address, (pte_t *)pmdp);
  566. }
  567. #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
  568. static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
  569. unsigned long address, pmd_t *pmdp)
  570. {
  571. pmd_t pmd = __pmd(atomic_long_xchg((atomic_long_t *)pmdp, 0));
  572. page_table_check_pmd_clear(mm, address, pmd);
  573. return pmd;
  574. }
  575. #define __HAVE_ARCH_PMDP_SET_WRPROTECT
  576. static inline void pmdp_set_wrprotect(struct mm_struct *mm,
  577. unsigned long address, pmd_t *pmdp)
  578. {
  579. ptep_set_wrprotect(mm, address, (pte_t *)pmdp);
  580. }
  581. #define pmdp_establish pmdp_establish
  582. static inline pmd_t pmdp_establish(struct vm_area_struct *vma,
  583. unsigned long address, pmd_t *pmdp, pmd_t pmd)
  584. {
  585. page_table_check_pmd_set(vma->vm_mm, address, pmdp, pmd);
  586. return __pmd(atomic_long_xchg((atomic_long_t *)pmdp, pmd_val(pmd)));
  587. }
  588. #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
  589. /*
  590. * Encode and decode a swap entry
  591. *
  592. * Format of swap PTE:
  593. * bit 0: _PAGE_PRESENT (zero)
  594. * bit 1 to 3: _PAGE_LEAF (zero)
  595. * bit 5: _PAGE_PROT_NONE (zero)
  596. * bits 6 to 10: swap type
  597. * bits 10 to XLEN-1: swap offset
  598. */
  599. #define __SWP_TYPE_SHIFT 6
  600. #define __SWP_TYPE_BITS 5
  601. #define __SWP_TYPE_MASK ((1UL << __SWP_TYPE_BITS) - 1)
  602. #define __SWP_OFFSET_SHIFT (__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
  603. #define MAX_SWAPFILES_CHECK() \
  604. BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
  605. #define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
  606. #define __swp_offset(x) ((x).val >> __SWP_OFFSET_SHIFT)
  607. #define __swp_entry(type, offset) ((swp_entry_t) \
  608. { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
  609. #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
  610. #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
  611. #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
  612. #define __pmd_to_swp_entry(pmd) ((swp_entry_t) { pmd_val(pmd) })
  613. #define __swp_entry_to_pmd(swp) __pmd((swp).val)
  614. #endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */
  615. /*
  616. * In the RV64 Linux scheme, we give the user half of the virtual-address space
  617. * and give the kernel the other (upper) half.
  618. */
  619. #ifdef CONFIG_64BIT
  620. #define KERN_VIRT_START (-(BIT(VA_BITS)) + TASK_SIZE)
  621. #else
  622. #define KERN_VIRT_START FIXADDR_START
  623. #endif
  624. /*
  625. * Task size is 0x4000000000 for RV64 or 0x9fc00000 for RV32.
  626. * Note that PGDIR_SIZE must evenly divide TASK_SIZE.
  627. * Task size is:
  628. * - 0x9fc00000 (~2.5GB) for RV32.
  629. * - 0x4000000000 ( 256GB) for RV64 using SV39 mmu
  630. * - 0x800000000000 ( 128TB) for RV64 using SV48 mmu
  631. *
  632. * Note that PGDIR_SIZE must evenly divide TASK_SIZE since "RISC-V
  633. * Instruction Set Manual Volume II: Privileged Architecture" states that
  634. * "load and store effective addresses, which are 64bits, must have bits
  635. * 63–48 all equal to bit 47, or else a page-fault exception will occur."
  636. */
  637. #ifdef CONFIG_64BIT
  638. #define TASK_SIZE_64 (PGDIR_SIZE * PTRS_PER_PGD / 2)
  639. #define TASK_SIZE_MIN (PGDIR_SIZE_L3 * PTRS_PER_PGD / 2)
  640. #ifdef CONFIG_COMPAT
  641. #define TASK_SIZE_32 (_AC(0x80000000, UL) - PAGE_SIZE)
  642. #define TASK_SIZE (test_thread_flag(TIF_32BIT) ? \
  643. TASK_SIZE_32 : TASK_SIZE_64)
  644. #else
  645. #define TASK_SIZE TASK_SIZE_64
  646. #endif
  647. #else
  648. #define TASK_SIZE FIXADDR_START
  649. #define TASK_SIZE_MIN TASK_SIZE
  650. #endif
  651. #else /* CONFIG_MMU */
  652. #define PAGE_SHARED __pgprot(0)
  653. #define PAGE_KERNEL __pgprot(0)
  654. #define swapper_pg_dir NULL
  655. #define TASK_SIZE 0xffffffffUL
  656. #define VMALLOC_START 0
  657. #define VMALLOC_END TASK_SIZE
  658. #endif /* !CONFIG_MMU */
  659. #define kern_addr_valid(addr) (1) /* FIXME */
  660. extern char _start[];
  661. extern void *_dtb_early_va;
  662. extern uintptr_t _dtb_early_pa;
  663. #if defined(CONFIG_XIP_KERNEL) && defined(CONFIG_MMU)
  664. #define dtb_early_va (*(void **)XIP_FIXUP(&_dtb_early_va))
  665. #define dtb_early_pa (*(uintptr_t *)XIP_FIXUP(&_dtb_early_pa))
  666. #else
  667. #define dtb_early_va _dtb_early_va
  668. #define dtb_early_pa _dtb_early_pa
  669. #endif /* CONFIG_XIP_KERNEL */
  670. extern u64 satp_mode;
  671. extern bool pgtable_l4_enabled;
  672. void paging_init(void);
  673. void misc_mem_init(void);
  674. /*
  675. * ZERO_PAGE is a global shared page that is always zero,
  676. * used for zero-mapped memory areas, etc.
  677. */
  678. extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)];
  679. #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
  680. #endif /* !__ASSEMBLY__ */
  681. #endif /* _ASM_RISCV_PGTABLE_H */