8xx.c 5.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210
  1. // SPDX-License-Identifier: GPL-2.0-or-later
  2. /*
  3. * This file contains the routines for initializing the MMU
  4. * on the 8xx series of chips.
  5. * -- christophe
  6. *
  7. * Derived from arch/powerpc/mm/40x_mmu.c:
  8. */
  9. #include <linux/memblock.h>
  10. #include <linux/hugetlb.h>
  11. #include <mm/mmu_decl.h>
  12. #define IMMR_SIZE (FIX_IMMR_SIZE << PAGE_SHIFT)
  13. static unsigned long block_mapped_ram;
  14. /*
  15. * Return PA for this VA if it is in an area mapped with LTLBs or fixmap.
  16. * Otherwise, returns 0
  17. */
  18. phys_addr_t v_block_mapped(unsigned long va)
  19. {
  20. unsigned long p = PHYS_IMMR_BASE;
  21. if (va >= VIRT_IMMR_BASE && va < VIRT_IMMR_BASE + IMMR_SIZE)
  22. return p + va - VIRT_IMMR_BASE;
  23. if (va >= PAGE_OFFSET && va < PAGE_OFFSET + block_mapped_ram)
  24. return __pa(va);
  25. return 0;
  26. }
  27. /*
  28. * Return VA for a given PA mapped with LTLBs or fixmap
  29. * Return 0 if not mapped
  30. */
  31. unsigned long p_block_mapped(phys_addr_t pa)
  32. {
  33. unsigned long p = PHYS_IMMR_BASE;
  34. if (pa >= p && pa < p + IMMR_SIZE)
  35. return VIRT_IMMR_BASE + pa - p;
  36. if (pa < block_mapped_ram)
  37. return (unsigned long)__va(pa);
  38. return 0;
  39. }
  40. static pte_t __init *early_hugepd_alloc_kernel(hugepd_t *pmdp, unsigned long va)
  41. {
  42. if (hpd_val(*pmdp) == 0) {
  43. pte_t *ptep = memblock_alloc(sizeof(pte_basic_t), SZ_4K);
  44. if (!ptep)
  45. return NULL;
  46. hugepd_populate_kernel((hugepd_t *)pmdp, ptep, PAGE_SHIFT_8M);
  47. hugepd_populate_kernel((hugepd_t *)pmdp + 1, ptep, PAGE_SHIFT_8M);
  48. }
  49. return hugepte_offset(*(hugepd_t *)pmdp, va, PGDIR_SHIFT);
  50. }
  51. static int __ref __early_map_kernel_hugepage(unsigned long va, phys_addr_t pa,
  52. pgprot_t prot, int psize, bool new)
  53. {
  54. pmd_t *pmdp = pmd_off_k(va);
  55. pte_t *ptep;
  56. if (WARN_ON(psize != MMU_PAGE_512K && psize != MMU_PAGE_8M))
  57. return -EINVAL;
  58. if (new) {
  59. if (WARN_ON(slab_is_available()))
  60. return -EINVAL;
  61. if (psize == MMU_PAGE_512K)
  62. ptep = early_pte_alloc_kernel(pmdp, va);
  63. else
  64. ptep = early_hugepd_alloc_kernel((hugepd_t *)pmdp, va);
  65. } else {
  66. if (psize == MMU_PAGE_512K)
  67. ptep = pte_offset_kernel(pmdp, va);
  68. else
  69. ptep = hugepte_offset(*(hugepd_t *)pmdp, va, PGDIR_SHIFT);
  70. }
  71. if (WARN_ON(!ptep))
  72. return -ENOMEM;
  73. /* The PTE should never be already present */
  74. if (new && WARN_ON(pte_present(*ptep) && pgprot_val(prot)))
  75. return -EINVAL;
  76. set_huge_pte_at(&init_mm, va, ptep, pte_mkhuge(pfn_pte(pa >> PAGE_SHIFT, prot)));
  77. return 0;
  78. }
  79. /*
  80. * MMU_init_hw does the chip-specific initialization of the MMU hardware.
  81. */
  82. void __init MMU_init_hw(void)
  83. {
  84. }
  85. static bool immr_is_mapped __initdata;
  86. void __init mmu_mapin_immr(void)
  87. {
  88. if (immr_is_mapped)
  89. return;
  90. immr_is_mapped = true;
  91. __early_map_kernel_hugepage(VIRT_IMMR_BASE, PHYS_IMMR_BASE,
  92. PAGE_KERNEL_NCG, MMU_PAGE_512K, true);
  93. }
  94. static void mmu_mapin_ram_chunk(unsigned long offset, unsigned long top,
  95. pgprot_t prot, bool new)
  96. {
  97. unsigned long v = PAGE_OFFSET + offset;
  98. unsigned long p = offset;
  99. WARN_ON(!IS_ALIGNED(offset, SZ_512K) || !IS_ALIGNED(top, SZ_512K));
  100. for (; p < ALIGN(p, SZ_8M) && p < top; p += SZ_512K, v += SZ_512K)
  101. __early_map_kernel_hugepage(v, p, prot, MMU_PAGE_512K, new);
  102. for (; p < ALIGN_DOWN(top, SZ_8M) && p < top; p += SZ_8M, v += SZ_8M)
  103. __early_map_kernel_hugepage(v, p, prot, MMU_PAGE_8M, new);
  104. for (; p < ALIGN_DOWN(top, SZ_512K) && p < top; p += SZ_512K, v += SZ_512K)
  105. __early_map_kernel_hugepage(v, p, prot, MMU_PAGE_512K, new);
  106. if (!new)
  107. flush_tlb_kernel_range(PAGE_OFFSET + v, PAGE_OFFSET + top);
  108. }
  109. unsigned long __init mmu_mapin_ram(unsigned long base, unsigned long top)
  110. {
  111. unsigned long etext8 = ALIGN(__pa(_etext), SZ_8M);
  112. unsigned long sinittext = __pa(_sinittext);
  113. bool strict_boundary = strict_kernel_rwx_enabled() || debug_pagealloc_enabled_or_kfence();
  114. unsigned long boundary = strict_boundary ? sinittext : etext8;
  115. unsigned long einittext8 = ALIGN(__pa(_einittext), SZ_8M);
  116. WARN_ON(top < einittext8);
  117. mmu_mapin_immr();
  118. mmu_mapin_ram_chunk(0, boundary, PAGE_KERNEL_TEXT, true);
  119. if (debug_pagealloc_enabled_or_kfence()) {
  120. top = boundary;
  121. } else {
  122. mmu_mapin_ram_chunk(boundary, einittext8, PAGE_KERNEL_TEXT, true);
  123. mmu_mapin_ram_chunk(einittext8, top, PAGE_KERNEL, true);
  124. }
  125. if (top > SZ_32M)
  126. memblock_set_current_limit(top);
  127. block_mapped_ram = top;
  128. return top;
  129. }
  130. void mmu_mark_initmem_nx(void)
  131. {
  132. unsigned long etext8 = ALIGN(__pa(_etext), SZ_8M);
  133. unsigned long sinittext = __pa(_sinittext);
  134. unsigned long boundary = strict_kernel_rwx_enabled() ? sinittext : etext8;
  135. unsigned long einittext8 = ALIGN(__pa(_einittext), SZ_8M);
  136. if (!debug_pagealloc_enabled_or_kfence())
  137. mmu_mapin_ram_chunk(boundary, einittext8, PAGE_KERNEL, false);
  138. mmu_pin_tlb(block_mapped_ram, false);
  139. }
  140. #ifdef CONFIG_STRICT_KERNEL_RWX
  141. void mmu_mark_rodata_ro(void)
  142. {
  143. unsigned long sinittext = __pa(_sinittext);
  144. mmu_mapin_ram_chunk(0, sinittext, PAGE_KERNEL_ROX, false);
  145. if (IS_ENABLED(CONFIG_PIN_TLB_DATA))
  146. mmu_pin_tlb(block_mapped_ram, true);
  147. }
  148. #endif
  149. void __init setup_initial_memory_limit(phys_addr_t first_memblock_base,
  150. phys_addr_t first_memblock_size)
  151. {
  152. /* We don't currently support the first MEMBLOCK not mapping 0
  153. * physical on those processors
  154. */
  155. BUG_ON(first_memblock_base != 0);
  156. /* 8xx can only access 32MB at the moment */
  157. memblock_set_current_limit(min_t(u64, first_memblock_size, SZ_32M));
  158. }
  159. int pud_clear_huge(pud_t *pud)
  160. {
  161. return 0;
  162. }
  163. int pmd_clear_huge(pmd_t *pmd)
  164. {
  165. return 0;
  166. }