book3s_paired_singles.c 30 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. *
  4. * Copyright Novell Inc 2010
  5. *
  6. * Authors: Alexander Graf <[email protected]>
  7. */
  8. #include <asm/kvm.h>
  9. #include <asm/kvm_ppc.h>
  10. #include <asm/disassemble.h>
  11. #include <asm/kvm_book3s.h>
  12. #include <asm/kvm_fpu.h>
  13. #include <asm/reg.h>
  14. #include <asm/cacheflush.h>
  15. #include <asm/switch_to.h>
  16. #include <linux/vmalloc.h>
  17. /* #define DEBUG */
  18. #ifdef DEBUG
  19. #define dprintk printk
  20. #else
  21. #define dprintk(...) do { } while(0);
  22. #endif
  23. #define OP_LFS 48
  24. #define OP_LFSU 49
  25. #define OP_LFD 50
  26. #define OP_LFDU 51
  27. #define OP_STFS 52
  28. #define OP_STFSU 53
  29. #define OP_STFD 54
  30. #define OP_STFDU 55
  31. #define OP_PSQ_L 56
  32. #define OP_PSQ_LU 57
  33. #define OP_PSQ_ST 60
  34. #define OP_PSQ_STU 61
  35. #define OP_31_LFSX 535
  36. #define OP_31_LFSUX 567
  37. #define OP_31_LFDX 599
  38. #define OP_31_LFDUX 631
  39. #define OP_31_STFSX 663
  40. #define OP_31_STFSUX 695
  41. #define OP_31_STFX 727
  42. #define OP_31_STFUX 759
  43. #define OP_31_LWIZX 887
  44. #define OP_31_STFIWX 983
  45. #define OP_59_FADDS 21
  46. #define OP_59_FSUBS 20
  47. #define OP_59_FSQRTS 22
  48. #define OP_59_FDIVS 18
  49. #define OP_59_FRES 24
  50. #define OP_59_FMULS 25
  51. #define OP_59_FRSQRTES 26
  52. #define OP_59_FMSUBS 28
  53. #define OP_59_FMADDS 29
  54. #define OP_59_FNMSUBS 30
  55. #define OP_59_FNMADDS 31
  56. #define OP_63_FCMPU 0
  57. #define OP_63_FCPSGN 8
  58. #define OP_63_FRSP 12
  59. #define OP_63_FCTIW 14
  60. #define OP_63_FCTIWZ 15
  61. #define OP_63_FDIV 18
  62. #define OP_63_FADD 21
  63. #define OP_63_FSQRT 22
  64. #define OP_63_FSEL 23
  65. #define OP_63_FRE 24
  66. #define OP_63_FMUL 25
  67. #define OP_63_FRSQRTE 26
  68. #define OP_63_FMSUB 28
  69. #define OP_63_FMADD 29
  70. #define OP_63_FNMSUB 30
  71. #define OP_63_FNMADD 31
  72. #define OP_63_FCMPO 32
  73. #define OP_63_MTFSB1 38 // XXX
  74. #define OP_63_FSUB 20
  75. #define OP_63_FNEG 40
  76. #define OP_63_MCRFS 64
  77. #define OP_63_MTFSB0 70
  78. #define OP_63_FMR 72
  79. #define OP_63_MTFSFI 134
  80. #define OP_63_FABS 264
  81. #define OP_63_MFFS 583
  82. #define OP_63_MTFSF 711
  83. #define OP_4X_PS_CMPU0 0
  84. #define OP_4X_PSQ_LX 6
  85. #define OP_4XW_PSQ_STX 7
  86. #define OP_4A_PS_SUM0 10
  87. #define OP_4A_PS_SUM1 11
  88. #define OP_4A_PS_MULS0 12
  89. #define OP_4A_PS_MULS1 13
  90. #define OP_4A_PS_MADDS0 14
  91. #define OP_4A_PS_MADDS1 15
  92. #define OP_4A_PS_DIV 18
  93. #define OP_4A_PS_SUB 20
  94. #define OP_4A_PS_ADD 21
  95. #define OP_4A_PS_SEL 23
  96. #define OP_4A_PS_RES 24
  97. #define OP_4A_PS_MUL 25
  98. #define OP_4A_PS_RSQRTE 26
  99. #define OP_4A_PS_MSUB 28
  100. #define OP_4A_PS_MADD 29
  101. #define OP_4A_PS_NMSUB 30
  102. #define OP_4A_PS_NMADD 31
  103. #define OP_4X_PS_CMPO0 32
  104. #define OP_4X_PSQ_LUX 38
  105. #define OP_4XW_PSQ_STUX 39
  106. #define OP_4X_PS_NEG 40
  107. #define OP_4X_PS_CMPU1 64
  108. #define OP_4X_PS_MR 72
  109. #define OP_4X_PS_CMPO1 96
  110. #define OP_4X_PS_NABS 136
  111. #define OP_4X_PS_ABS 264
  112. #define OP_4X_PS_MERGE00 528
  113. #define OP_4X_PS_MERGE01 560
  114. #define OP_4X_PS_MERGE10 592
  115. #define OP_4X_PS_MERGE11 624
  116. #define SCALAR_NONE 0
  117. #define SCALAR_HIGH (1 << 0)
  118. #define SCALAR_LOW (1 << 1)
  119. #define SCALAR_NO_PS0 (1 << 2)
  120. #define SCALAR_NO_PS1 (1 << 3)
  121. #define GQR_ST_TYPE_MASK 0x00000007
  122. #define GQR_ST_TYPE_SHIFT 0
  123. #define GQR_ST_SCALE_MASK 0x00003f00
  124. #define GQR_ST_SCALE_SHIFT 8
  125. #define GQR_LD_TYPE_MASK 0x00070000
  126. #define GQR_LD_TYPE_SHIFT 16
  127. #define GQR_LD_SCALE_MASK 0x3f000000
  128. #define GQR_LD_SCALE_SHIFT 24
  129. #define GQR_QUANTIZE_FLOAT 0
  130. #define GQR_QUANTIZE_U8 4
  131. #define GQR_QUANTIZE_U16 5
  132. #define GQR_QUANTIZE_S8 6
  133. #define GQR_QUANTIZE_S16 7
  134. #define FPU_LS_SINGLE 0
  135. #define FPU_LS_DOUBLE 1
  136. #define FPU_LS_SINGLE_LOW 2
  137. static inline void kvmppc_sync_qpr(struct kvm_vcpu *vcpu, int rt)
  138. {
  139. kvm_cvt_df(&VCPU_FPR(vcpu, rt), &vcpu->arch.qpr[rt]);
  140. }
  141. static void kvmppc_inject_pf(struct kvm_vcpu *vcpu, ulong eaddr, bool is_store)
  142. {
  143. u32 dsisr;
  144. u64 msr = kvmppc_get_msr(vcpu);
  145. msr = kvmppc_set_field(msr, 33, 36, 0);
  146. msr = kvmppc_set_field(msr, 42, 47, 0);
  147. kvmppc_set_msr(vcpu, msr);
  148. kvmppc_set_dar(vcpu, eaddr);
  149. /* Page Fault */
  150. dsisr = kvmppc_set_field(0, 33, 33, 1);
  151. if (is_store)
  152. dsisr = kvmppc_set_field(dsisr, 38, 38, 1);
  153. kvmppc_set_dsisr(vcpu, dsisr);
  154. kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_DATA_STORAGE);
  155. }
  156. static int kvmppc_emulate_fpr_load(struct kvm_vcpu *vcpu,
  157. int rs, ulong addr, int ls_type)
  158. {
  159. int emulated = EMULATE_FAIL;
  160. int r;
  161. char tmp[8];
  162. int len = sizeof(u32);
  163. if (ls_type == FPU_LS_DOUBLE)
  164. len = sizeof(u64);
  165. /* read from memory */
  166. r = kvmppc_ld(vcpu, &addr, len, tmp, true);
  167. vcpu->arch.paddr_accessed = addr;
  168. if (r < 0) {
  169. kvmppc_inject_pf(vcpu, addr, false);
  170. goto done_load;
  171. } else if (r == EMULATE_DO_MMIO) {
  172. emulated = kvmppc_handle_load(vcpu, KVM_MMIO_REG_FPR | rs,
  173. len, 1);
  174. goto done_load;
  175. }
  176. emulated = EMULATE_DONE;
  177. /* put in registers */
  178. switch (ls_type) {
  179. case FPU_LS_SINGLE:
  180. kvm_cvt_fd((u32*)tmp, &VCPU_FPR(vcpu, rs));
  181. vcpu->arch.qpr[rs] = *((u32*)tmp);
  182. break;
  183. case FPU_LS_DOUBLE:
  184. VCPU_FPR(vcpu, rs) = *((u64*)tmp);
  185. break;
  186. }
  187. dprintk(KERN_INFO "KVM: FPR_LD [0x%llx] at 0x%lx (%d)\n", *(u64*)tmp,
  188. addr, len);
  189. done_load:
  190. return emulated;
  191. }
  192. static int kvmppc_emulate_fpr_store(struct kvm_vcpu *vcpu,
  193. int rs, ulong addr, int ls_type)
  194. {
  195. int emulated = EMULATE_FAIL;
  196. int r;
  197. char tmp[8];
  198. u64 val;
  199. int len;
  200. switch (ls_type) {
  201. case FPU_LS_SINGLE:
  202. kvm_cvt_df(&VCPU_FPR(vcpu, rs), (u32*)tmp);
  203. val = *((u32*)tmp);
  204. len = sizeof(u32);
  205. break;
  206. case FPU_LS_SINGLE_LOW:
  207. *((u32*)tmp) = VCPU_FPR(vcpu, rs);
  208. val = VCPU_FPR(vcpu, rs) & 0xffffffff;
  209. len = sizeof(u32);
  210. break;
  211. case FPU_LS_DOUBLE:
  212. *((u64*)tmp) = VCPU_FPR(vcpu, rs);
  213. val = VCPU_FPR(vcpu, rs);
  214. len = sizeof(u64);
  215. break;
  216. default:
  217. val = 0;
  218. len = 0;
  219. }
  220. r = kvmppc_st(vcpu, &addr, len, tmp, true);
  221. vcpu->arch.paddr_accessed = addr;
  222. if (r < 0) {
  223. kvmppc_inject_pf(vcpu, addr, true);
  224. } else if (r == EMULATE_DO_MMIO) {
  225. emulated = kvmppc_handle_store(vcpu, val, len, 1);
  226. } else {
  227. emulated = EMULATE_DONE;
  228. }
  229. dprintk(KERN_INFO "KVM: FPR_ST [0x%llx] at 0x%lx (%d)\n",
  230. val, addr, len);
  231. return emulated;
  232. }
  233. static int kvmppc_emulate_psq_load(struct kvm_vcpu *vcpu,
  234. int rs, ulong addr, bool w, int i)
  235. {
  236. int emulated = EMULATE_FAIL;
  237. int r;
  238. float one = 1.0;
  239. u32 tmp[2];
  240. /* read from memory */
  241. if (w) {
  242. r = kvmppc_ld(vcpu, &addr, sizeof(u32), tmp, true);
  243. memcpy(&tmp[1], &one, sizeof(u32));
  244. } else {
  245. r = kvmppc_ld(vcpu, &addr, sizeof(u32) * 2, tmp, true);
  246. }
  247. vcpu->arch.paddr_accessed = addr;
  248. if (r < 0) {
  249. kvmppc_inject_pf(vcpu, addr, false);
  250. goto done_load;
  251. } else if ((r == EMULATE_DO_MMIO) && w) {
  252. emulated = kvmppc_handle_load(vcpu, KVM_MMIO_REG_FPR | rs,
  253. 4, 1);
  254. vcpu->arch.qpr[rs] = tmp[1];
  255. goto done_load;
  256. } else if (r == EMULATE_DO_MMIO) {
  257. emulated = kvmppc_handle_load(vcpu, KVM_MMIO_REG_FQPR | rs,
  258. 8, 1);
  259. goto done_load;
  260. }
  261. emulated = EMULATE_DONE;
  262. /* put in registers */
  263. kvm_cvt_fd(&tmp[0], &VCPU_FPR(vcpu, rs));
  264. vcpu->arch.qpr[rs] = tmp[1];
  265. dprintk(KERN_INFO "KVM: PSQ_LD [0x%x, 0x%x] at 0x%lx (%d)\n", tmp[0],
  266. tmp[1], addr, w ? 4 : 8);
  267. done_load:
  268. return emulated;
  269. }
  270. static int kvmppc_emulate_psq_store(struct kvm_vcpu *vcpu,
  271. int rs, ulong addr, bool w, int i)
  272. {
  273. int emulated = EMULATE_FAIL;
  274. int r;
  275. u32 tmp[2];
  276. int len = w ? sizeof(u32) : sizeof(u64);
  277. kvm_cvt_df(&VCPU_FPR(vcpu, rs), &tmp[0]);
  278. tmp[1] = vcpu->arch.qpr[rs];
  279. r = kvmppc_st(vcpu, &addr, len, tmp, true);
  280. vcpu->arch.paddr_accessed = addr;
  281. if (r < 0) {
  282. kvmppc_inject_pf(vcpu, addr, true);
  283. } else if ((r == EMULATE_DO_MMIO) && w) {
  284. emulated = kvmppc_handle_store(vcpu, tmp[0], 4, 1);
  285. } else if (r == EMULATE_DO_MMIO) {
  286. u64 val = ((u64)tmp[0] << 32) | tmp[1];
  287. emulated = kvmppc_handle_store(vcpu, val, 8, 1);
  288. } else {
  289. emulated = EMULATE_DONE;
  290. }
  291. dprintk(KERN_INFO "KVM: PSQ_ST [0x%x, 0x%x] at 0x%lx (%d)\n",
  292. tmp[0], tmp[1], addr, len);
  293. return emulated;
  294. }
  295. /*
  296. * Cuts out inst bits with ordering according to spec.
  297. * That means the leftmost bit is zero. All given bits are included.
  298. */
  299. static inline u32 inst_get_field(u32 inst, int msb, int lsb)
  300. {
  301. return kvmppc_get_field(inst, msb + 32, lsb + 32);
  302. }
  303. static bool kvmppc_inst_is_paired_single(struct kvm_vcpu *vcpu, u32 inst)
  304. {
  305. if (!(vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE))
  306. return false;
  307. switch (get_op(inst)) {
  308. case OP_PSQ_L:
  309. case OP_PSQ_LU:
  310. case OP_PSQ_ST:
  311. case OP_PSQ_STU:
  312. case OP_LFS:
  313. case OP_LFSU:
  314. case OP_LFD:
  315. case OP_LFDU:
  316. case OP_STFS:
  317. case OP_STFSU:
  318. case OP_STFD:
  319. case OP_STFDU:
  320. return true;
  321. case 4:
  322. /* X form */
  323. switch (inst_get_field(inst, 21, 30)) {
  324. case OP_4X_PS_CMPU0:
  325. case OP_4X_PSQ_LX:
  326. case OP_4X_PS_CMPO0:
  327. case OP_4X_PSQ_LUX:
  328. case OP_4X_PS_NEG:
  329. case OP_4X_PS_CMPU1:
  330. case OP_4X_PS_MR:
  331. case OP_4X_PS_CMPO1:
  332. case OP_4X_PS_NABS:
  333. case OP_4X_PS_ABS:
  334. case OP_4X_PS_MERGE00:
  335. case OP_4X_PS_MERGE01:
  336. case OP_4X_PS_MERGE10:
  337. case OP_4X_PS_MERGE11:
  338. return true;
  339. }
  340. /* XW form */
  341. switch (inst_get_field(inst, 25, 30)) {
  342. case OP_4XW_PSQ_STX:
  343. case OP_4XW_PSQ_STUX:
  344. return true;
  345. }
  346. /* A form */
  347. switch (inst_get_field(inst, 26, 30)) {
  348. case OP_4A_PS_SUM1:
  349. case OP_4A_PS_SUM0:
  350. case OP_4A_PS_MULS0:
  351. case OP_4A_PS_MULS1:
  352. case OP_4A_PS_MADDS0:
  353. case OP_4A_PS_MADDS1:
  354. case OP_4A_PS_DIV:
  355. case OP_4A_PS_SUB:
  356. case OP_4A_PS_ADD:
  357. case OP_4A_PS_SEL:
  358. case OP_4A_PS_RES:
  359. case OP_4A_PS_MUL:
  360. case OP_4A_PS_RSQRTE:
  361. case OP_4A_PS_MSUB:
  362. case OP_4A_PS_MADD:
  363. case OP_4A_PS_NMSUB:
  364. case OP_4A_PS_NMADD:
  365. return true;
  366. }
  367. break;
  368. case 59:
  369. switch (inst_get_field(inst, 21, 30)) {
  370. case OP_59_FADDS:
  371. case OP_59_FSUBS:
  372. case OP_59_FDIVS:
  373. case OP_59_FRES:
  374. case OP_59_FRSQRTES:
  375. return true;
  376. }
  377. switch (inst_get_field(inst, 26, 30)) {
  378. case OP_59_FMULS:
  379. case OP_59_FMSUBS:
  380. case OP_59_FMADDS:
  381. case OP_59_FNMSUBS:
  382. case OP_59_FNMADDS:
  383. return true;
  384. }
  385. break;
  386. case 63:
  387. switch (inst_get_field(inst, 21, 30)) {
  388. case OP_63_MTFSB0:
  389. case OP_63_MTFSB1:
  390. case OP_63_MTFSF:
  391. case OP_63_MTFSFI:
  392. case OP_63_MCRFS:
  393. case OP_63_MFFS:
  394. case OP_63_FCMPU:
  395. case OP_63_FCMPO:
  396. case OP_63_FNEG:
  397. case OP_63_FMR:
  398. case OP_63_FABS:
  399. case OP_63_FRSP:
  400. case OP_63_FDIV:
  401. case OP_63_FADD:
  402. case OP_63_FSUB:
  403. case OP_63_FCTIW:
  404. case OP_63_FCTIWZ:
  405. case OP_63_FRSQRTE:
  406. case OP_63_FCPSGN:
  407. return true;
  408. }
  409. switch (inst_get_field(inst, 26, 30)) {
  410. case OP_63_FMUL:
  411. case OP_63_FSEL:
  412. case OP_63_FMSUB:
  413. case OP_63_FMADD:
  414. case OP_63_FNMSUB:
  415. case OP_63_FNMADD:
  416. return true;
  417. }
  418. break;
  419. case 31:
  420. switch (inst_get_field(inst, 21, 30)) {
  421. case OP_31_LFSX:
  422. case OP_31_LFSUX:
  423. case OP_31_LFDX:
  424. case OP_31_LFDUX:
  425. case OP_31_STFSX:
  426. case OP_31_STFSUX:
  427. case OP_31_STFX:
  428. case OP_31_STFUX:
  429. case OP_31_STFIWX:
  430. return true;
  431. }
  432. break;
  433. }
  434. return false;
  435. }
  436. static int get_d_signext(u32 inst)
  437. {
  438. int d = inst & 0x8ff;
  439. if (d & 0x800)
  440. return -(d & 0x7ff);
  441. return (d & 0x7ff);
  442. }
  443. static int kvmppc_ps_three_in(struct kvm_vcpu *vcpu, bool rc,
  444. int reg_out, int reg_in1, int reg_in2,
  445. int reg_in3, int scalar,
  446. void (*func)(u64 *fpscr,
  447. u32 *dst, u32 *src1,
  448. u32 *src2, u32 *src3))
  449. {
  450. u32 *qpr = vcpu->arch.qpr;
  451. u32 ps0_out;
  452. u32 ps0_in1, ps0_in2, ps0_in3;
  453. u32 ps1_in1, ps1_in2, ps1_in3;
  454. /* RC */
  455. WARN_ON(rc);
  456. /* PS0 */
  457. kvm_cvt_df(&VCPU_FPR(vcpu, reg_in1), &ps0_in1);
  458. kvm_cvt_df(&VCPU_FPR(vcpu, reg_in2), &ps0_in2);
  459. kvm_cvt_df(&VCPU_FPR(vcpu, reg_in3), &ps0_in3);
  460. if (scalar & SCALAR_LOW)
  461. ps0_in2 = qpr[reg_in2];
  462. func(&vcpu->arch.fp.fpscr, &ps0_out, &ps0_in1, &ps0_in2, &ps0_in3);
  463. dprintk(KERN_INFO "PS3 ps0 -> f(0x%x, 0x%x, 0x%x) = 0x%x\n",
  464. ps0_in1, ps0_in2, ps0_in3, ps0_out);
  465. if (!(scalar & SCALAR_NO_PS0))
  466. kvm_cvt_fd(&ps0_out, &VCPU_FPR(vcpu, reg_out));
  467. /* PS1 */
  468. ps1_in1 = qpr[reg_in1];
  469. ps1_in2 = qpr[reg_in2];
  470. ps1_in3 = qpr[reg_in3];
  471. if (scalar & SCALAR_HIGH)
  472. ps1_in2 = ps0_in2;
  473. if (!(scalar & SCALAR_NO_PS1))
  474. func(&vcpu->arch.fp.fpscr, &qpr[reg_out], &ps1_in1, &ps1_in2, &ps1_in3);
  475. dprintk(KERN_INFO "PS3 ps1 -> f(0x%x, 0x%x, 0x%x) = 0x%x\n",
  476. ps1_in1, ps1_in2, ps1_in3, qpr[reg_out]);
  477. return EMULATE_DONE;
  478. }
  479. static int kvmppc_ps_two_in(struct kvm_vcpu *vcpu, bool rc,
  480. int reg_out, int reg_in1, int reg_in2,
  481. int scalar,
  482. void (*func)(u64 *fpscr,
  483. u32 *dst, u32 *src1,
  484. u32 *src2))
  485. {
  486. u32 *qpr = vcpu->arch.qpr;
  487. u32 ps0_out;
  488. u32 ps0_in1, ps0_in2;
  489. u32 ps1_out;
  490. u32 ps1_in1, ps1_in2;
  491. /* RC */
  492. WARN_ON(rc);
  493. /* PS0 */
  494. kvm_cvt_df(&VCPU_FPR(vcpu, reg_in1), &ps0_in1);
  495. if (scalar & SCALAR_LOW)
  496. ps0_in2 = qpr[reg_in2];
  497. else
  498. kvm_cvt_df(&VCPU_FPR(vcpu, reg_in2), &ps0_in2);
  499. func(&vcpu->arch.fp.fpscr, &ps0_out, &ps0_in1, &ps0_in2);
  500. if (!(scalar & SCALAR_NO_PS0)) {
  501. dprintk(KERN_INFO "PS2 ps0 -> f(0x%x, 0x%x) = 0x%x\n",
  502. ps0_in1, ps0_in2, ps0_out);
  503. kvm_cvt_fd(&ps0_out, &VCPU_FPR(vcpu, reg_out));
  504. }
  505. /* PS1 */
  506. ps1_in1 = qpr[reg_in1];
  507. ps1_in2 = qpr[reg_in2];
  508. if (scalar & SCALAR_HIGH)
  509. ps1_in2 = ps0_in2;
  510. func(&vcpu->arch.fp.fpscr, &ps1_out, &ps1_in1, &ps1_in2);
  511. if (!(scalar & SCALAR_NO_PS1)) {
  512. qpr[reg_out] = ps1_out;
  513. dprintk(KERN_INFO "PS2 ps1 -> f(0x%x, 0x%x) = 0x%x\n",
  514. ps1_in1, ps1_in2, qpr[reg_out]);
  515. }
  516. return EMULATE_DONE;
  517. }
  518. static int kvmppc_ps_one_in(struct kvm_vcpu *vcpu, bool rc,
  519. int reg_out, int reg_in,
  520. void (*func)(u64 *t,
  521. u32 *dst, u32 *src1))
  522. {
  523. u32 *qpr = vcpu->arch.qpr;
  524. u32 ps0_out, ps0_in;
  525. u32 ps1_in;
  526. /* RC */
  527. WARN_ON(rc);
  528. /* PS0 */
  529. kvm_cvt_df(&VCPU_FPR(vcpu, reg_in), &ps0_in);
  530. func(&vcpu->arch.fp.fpscr, &ps0_out, &ps0_in);
  531. dprintk(KERN_INFO "PS1 ps0 -> f(0x%x) = 0x%x\n",
  532. ps0_in, ps0_out);
  533. kvm_cvt_fd(&ps0_out, &VCPU_FPR(vcpu, reg_out));
  534. /* PS1 */
  535. ps1_in = qpr[reg_in];
  536. func(&vcpu->arch.fp.fpscr, &qpr[reg_out], &ps1_in);
  537. dprintk(KERN_INFO "PS1 ps1 -> f(0x%x) = 0x%x\n",
  538. ps1_in, qpr[reg_out]);
  539. return EMULATE_DONE;
  540. }
  541. int kvmppc_emulate_paired_single(struct kvm_vcpu *vcpu)
  542. {
  543. u32 inst;
  544. enum emulation_result emulated = EMULATE_DONE;
  545. int ax_rd, ax_ra, ax_rb, ax_rc;
  546. short full_d;
  547. u64 *fpr_d, *fpr_a, *fpr_b, *fpr_c;
  548. bool rcomp;
  549. u32 cr;
  550. #ifdef DEBUG
  551. int i;
  552. #endif
  553. emulated = kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst);
  554. if (emulated != EMULATE_DONE)
  555. return emulated;
  556. ax_rd = inst_get_field(inst, 6, 10);
  557. ax_ra = inst_get_field(inst, 11, 15);
  558. ax_rb = inst_get_field(inst, 16, 20);
  559. ax_rc = inst_get_field(inst, 21, 25);
  560. full_d = inst_get_field(inst, 16, 31);
  561. fpr_d = &VCPU_FPR(vcpu, ax_rd);
  562. fpr_a = &VCPU_FPR(vcpu, ax_ra);
  563. fpr_b = &VCPU_FPR(vcpu, ax_rb);
  564. fpr_c = &VCPU_FPR(vcpu, ax_rc);
  565. rcomp = (inst & 1) ? true : false;
  566. cr = kvmppc_get_cr(vcpu);
  567. if (!kvmppc_inst_is_paired_single(vcpu, inst))
  568. return EMULATE_FAIL;
  569. if (!(kvmppc_get_msr(vcpu) & MSR_FP)) {
  570. kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL);
  571. return EMULATE_AGAIN;
  572. }
  573. kvmppc_giveup_ext(vcpu, MSR_FP);
  574. preempt_disable();
  575. enable_kernel_fp();
  576. /* Do we need to clear FE0 / FE1 here? Don't think so. */
  577. #ifdef DEBUG
  578. for (i = 0; i < ARRAY_SIZE(vcpu->arch.fp.fpr); i++) {
  579. u32 f;
  580. kvm_cvt_df(&VCPU_FPR(vcpu, i), &f);
  581. dprintk(KERN_INFO "FPR[%d] = 0x%x / 0x%llx QPR[%d] = 0x%x\n",
  582. i, f, VCPU_FPR(vcpu, i), i, vcpu->arch.qpr[i]);
  583. }
  584. #endif
  585. switch (get_op(inst)) {
  586. case OP_PSQ_L:
  587. {
  588. ulong addr = ax_ra ? kvmppc_get_gpr(vcpu, ax_ra) : 0;
  589. bool w = inst_get_field(inst, 16, 16) ? true : false;
  590. int i = inst_get_field(inst, 17, 19);
  591. addr += get_d_signext(inst);
  592. emulated = kvmppc_emulate_psq_load(vcpu, ax_rd, addr, w, i);
  593. break;
  594. }
  595. case OP_PSQ_LU:
  596. {
  597. ulong addr = kvmppc_get_gpr(vcpu, ax_ra);
  598. bool w = inst_get_field(inst, 16, 16) ? true : false;
  599. int i = inst_get_field(inst, 17, 19);
  600. addr += get_d_signext(inst);
  601. emulated = kvmppc_emulate_psq_load(vcpu, ax_rd, addr, w, i);
  602. if (emulated == EMULATE_DONE)
  603. kvmppc_set_gpr(vcpu, ax_ra, addr);
  604. break;
  605. }
  606. case OP_PSQ_ST:
  607. {
  608. ulong addr = ax_ra ? kvmppc_get_gpr(vcpu, ax_ra) : 0;
  609. bool w = inst_get_field(inst, 16, 16) ? true : false;
  610. int i = inst_get_field(inst, 17, 19);
  611. addr += get_d_signext(inst);
  612. emulated = kvmppc_emulate_psq_store(vcpu, ax_rd, addr, w, i);
  613. break;
  614. }
  615. case OP_PSQ_STU:
  616. {
  617. ulong addr = kvmppc_get_gpr(vcpu, ax_ra);
  618. bool w = inst_get_field(inst, 16, 16) ? true : false;
  619. int i = inst_get_field(inst, 17, 19);
  620. addr += get_d_signext(inst);
  621. emulated = kvmppc_emulate_psq_store(vcpu, ax_rd, addr, w, i);
  622. if (emulated == EMULATE_DONE)
  623. kvmppc_set_gpr(vcpu, ax_ra, addr);
  624. break;
  625. }
  626. case 4:
  627. /* X form */
  628. switch (inst_get_field(inst, 21, 30)) {
  629. case OP_4X_PS_CMPU0:
  630. /* XXX */
  631. emulated = EMULATE_FAIL;
  632. break;
  633. case OP_4X_PSQ_LX:
  634. {
  635. ulong addr = ax_ra ? kvmppc_get_gpr(vcpu, ax_ra) : 0;
  636. bool w = inst_get_field(inst, 21, 21) ? true : false;
  637. int i = inst_get_field(inst, 22, 24);
  638. addr += kvmppc_get_gpr(vcpu, ax_rb);
  639. emulated = kvmppc_emulate_psq_load(vcpu, ax_rd, addr, w, i);
  640. break;
  641. }
  642. case OP_4X_PS_CMPO0:
  643. /* XXX */
  644. emulated = EMULATE_FAIL;
  645. break;
  646. case OP_4X_PSQ_LUX:
  647. {
  648. ulong addr = kvmppc_get_gpr(vcpu, ax_ra);
  649. bool w = inst_get_field(inst, 21, 21) ? true : false;
  650. int i = inst_get_field(inst, 22, 24);
  651. addr += kvmppc_get_gpr(vcpu, ax_rb);
  652. emulated = kvmppc_emulate_psq_load(vcpu, ax_rd, addr, w, i);
  653. if (emulated == EMULATE_DONE)
  654. kvmppc_set_gpr(vcpu, ax_ra, addr);
  655. break;
  656. }
  657. case OP_4X_PS_NEG:
  658. VCPU_FPR(vcpu, ax_rd) = VCPU_FPR(vcpu, ax_rb);
  659. VCPU_FPR(vcpu, ax_rd) ^= 0x8000000000000000ULL;
  660. vcpu->arch.qpr[ax_rd] = vcpu->arch.qpr[ax_rb];
  661. vcpu->arch.qpr[ax_rd] ^= 0x80000000;
  662. break;
  663. case OP_4X_PS_CMPU1:
  664. /* XXX */
  665. emulated = EMULATE_FAIL;
  666. break;
  667. case OP_4X_PS_MR:
  668. WARN_ON(rcomp);
  669. VCPU_FPR(vcpu, ax_rd) = VCPU_FPR(vcpu, ax_rb);
  670. vcpu->arch.qpr[ax_rd] = vcpu->arch.qpr[ax_rb];
  671. break;
  672. case OP_4X_PS_CMPO1:
  673. /* XXX */
  674. emulated = EMULATE_FAIL;
  675. break;
  676. case OP_4X_PS_NABS:
  677. WARN_ON(rcomp);
  678. VCPU_FPR(vcpu, ax_rd) = VCPU_FPR(vcpu, ax_rb);
  679. VCPU_FPR(vcpu, ax_rd) |= 0x8000000000000000ULL;
  680. vcpu->arch.qpr[ax_rd] = vcpu->arch.qpr[ax_rb];
  681. vcpu->arch.qpr[ax_rd] |= 0x80000000;
  682. break;
  683. case OP_4X_PS_ABS:
  684. WARN_ON(rcomp);
  685. VCPU_FPR(vcpu, ax_rd) = VCPU_FPR(vcpu, ax_rb);
  686. VCPU_FPR(vcpu, ax_rd) &= ~0x8000000000000000ULL;
  687. vcpu->arch.qpr[ax_rd] = vcpu->arch.qpr[ax_rb];
  688. vcpu->arch.qpr[ax_rd] &= ~0x80000000;
  689. break;
  690. case OP_4X_PS_MERGE00:
  691. WARN_ON(rcomp);
  692. VCPU_FPR(vcpu, ax_rd) = VCPU_FPR(vcpu, ax_ra);
  693. /* vcpu->arch.qpr[ax_rd] = VCPU_FPR(vcpu, ax_rb); */
  694. kvm_cvt_df(&VCPU_FPR(vcpu, ax_rb),
  695. &vcpu->arch.qpr[ax_rd]);
  696. break;
  697. case OP_4X_PS_MERGE01:
  698. WARN_ON(rcomp);
  699. VCPU_FPR(vcpu, ax_rd) = VCPU_FPR(vcpu, ax_ra);
  700. vcpu->arch.qpr[ax_rd] = vcpu->arch.qpr[ax_rb];
  701. break;
  702. case OP_4X_PS_MERGE10:
  703. WARN_ON(rcomp);
  704. /* VCPU_FPR(vcpu, ax_rd) = vcpu->arch.qpr[ax_ra]; */
  705. kvm_cvt_fd(&vcpu->arch.qpr[ax_ra],
  706. &VCPU_FPR(vcpu, ax_rd));
  707. /* vcpu->arch.qpr[ax_rd] = VCPU_FPR(vcpu, ax_rb); */
  708. kvm_cvt_df(&VCPU_FPR(vcpu, ax_rb),
  709. &vcpu->arch.qpr[ax_rd]);
  710. break;
  711. case OP_4X_PS_MERGE11:
  712. WARN_ON(rcomp);
  713. /* VCPU_FPR(vcpu, ax_rd) = vcpu->arch.qpr[ax_ra]; */
  714. kvm_cvt_fd(&vcpu->arch.qpr[ax_ra],
  715. &VCPU_FPR(vcpu, ax_rd));
  716. vcpu->arch.qpr[ax_rd] = vcpu->arch.qpr[ax_rb];
  717. break;
  718. }
  719. /* XW form */
  720. switch (inst_get_field(inst, 25, 30)) {
  721. case OP_4XW_PSQ_STX:
  722. {
  723. ulong addr = ax_ra ? kvmppc_get_gpr(vcpu, ax_ra) : 0;
  724. bool w = inst_get_field(inst, 21, 21) ? true : false;
  725. int i = inst_get_field(inst, 22, 24);
  726. addr += kvmppc_get_gpr(vcpu, ax_rb);
  727. emulated = kvmppc_emulate_psq_store(vcpu, ax_rd, addr, w, i);
  728. break;
  729. }
  730. case OP_4XW_PSQ_STUX:
  731. {
  732. ulong addr = kvmppc_get_gpr(vcpu, ax_ra);
  733. bool w = inst_get_field(inst, 21, 21) ? true : false;
  734. int i = inst_get_field(inst, 22, 24);
  735. addr += kvmppc_get_gpr(vcpu, ax_rb);
  736. emulated = kvmppc_emulate_psq_store(vcpu, ax_rd, addr, w, i);
  737. if (emulated == EMULATE_DONE)
  738. kvmppc_set_gpr(vcpu, ax_ra, addr);
  739. break;
  740. }
  741. }
  742. /* A form */
  743. switch (inst_get_field(inst, 26, 30)) {
  744. case OP_4A_PS_SUM1:
  745. emulated = kvmppc_ps_two_in(vcpu, rcomp, ax_rd,
  746. ax_rb, ax_ra, SCALAR_NO_PS0 | SCALAR_HIGH, fps_fadds);
  747. VCPU_FPR(vcpu, ax_rd) = VCPU_FPR(vcpu, ax_rc);
  748. break;
  749. case OP_4A_PS_SUM0:
  750. emulated = kvmppc_ps_two_in(vcpu, rcomp, ax_rd,
  751. ax_ra, ax_rb, SCALAR_NO_PS1 | SCALAR_LOW, fps_fadds);
  752. vcpu->arch.qpr[ax_rd] = vcpu->arch.qpr[ax_rc];
  753. break;
  754. case OP_4A_PS_MULS0:
  755. emulated = kvmppc_ps_two_in(vcpu, rcomp, ax_rd,
  756. ax_ra, ax_rc, SCALAR_HIGH, fps_fmuls);
  757. break;
  758. case OP_4A_PS_MULS1:
  759. emulated = kvmppc_ps_two_in(vcpu, rcomp, ax_rd,
  760. ax_ra, ax_rc, SCALAR_LOW, fps_fmuls);
  761. break;
  762. case OP_4A_PS_MADDS0:
  763. emulated = kvmppc_ps_three_in(vcpu, rcomp, ax_rd,
  764. ax_ra, ax_rc, ax_rb, SCALAR_HIGH, fps_fmadds);
  765. break;
  766. case OP_4A_PS_MADDS1:
  767. emulated = kvmppc_ps_three_in(vcpu, rcomp, ax_rd,
  768. ax_ra, ax_rc, ax_rb, SCALAR_LOW, fps_fmadds);
  769. break;
  770. case OP_4A_PS_DIV:
  771. emulated = kvmppc_ps_two_in(vcpu, rcomp, ax_rd,
  772. ax_ra, ax_rb, SCALAR_NONE, fps_fdivs);
  773. break;
  774. case OP_4A_PS_SUB:
  775. emulated = kvmppc_ps_two_in(vcpu, rcomp, ax_rd,
  776. ax_ra, ax_rb, SCALAR_NONE, fps_fsubs);
  777. break;
  778. case OP_4A_PS_ADD:
  779. emulated = kvmppc_ps_two_in(vcpu, rcomp, ax_rd,
  780. ax_ra, ax_rb, SCALAR_NONE, fps_fadds);
  781. break;
  782. case OP_4A_PS_SEL:
  783. emulated = kvmppc_ps_three_in(vcpu, rcomp, ax_rd,
  784. ax_ra, ax_rc, ax_rb, SCALAR_NONE, fps_fsel);
  785. break;
  786. case OP_4A_PS_RES:
  787. emulated = kvmppc_ps_one_in(vcpu, rcomp, ax_rd,
  788. ax_rb, fps_fres);
  789. break;
  790. case OP_4A_PS_MUL:
  791. emulated = kvmppc_ps_two_in(vcpu, rcomp, ax_rd,
  792. ax_ra, ax_rc, SCALAR_NONE, fps_fmuls);
  793. break;
  794. case OP_4A_PS_RSQRTE:
  795. emulated = kvmppc_ps_one_in(vcpu, rcomp, ax_rd,
  796. ax_rb, fps_frsqrte);
  797. break;
  798. case OP_4A_PS_MSUB:
  799. emulated = kvmppc_ps_three_in(vcpu, rcomp, ax_rd,
  800. ax_ra, ax_rc, ax_rb, SCALAR_NONE, fps_fmsubs);
  801. break;
  802. case OP_4A_PS_MADD:
  803. emulated = kvmppc_ps_three_in(vcpu, rcomp, ax_rd,
  804. ax_ra, ax_rc, ax_rb, SCALAR_NONE, fps_fmadds);
  805. break;
  806. case OP_4A_PS_NMSUB:
  807. emulated = kvmppc_ps_three_in(vcpu, rcomp, ax_rd,
  808. ax_ra, ax_rc, ax_rb, SCALAR_NONE, fps_fnmsubs);
  809. break;
  810. case OP_4A_PS_NMADD:
  811. emulated = kvmppc_ps_three_in(vcpu, rcomp, ax_rd,
  812. ax_ra, ax_rc, ax_rb, SCALAR_NONE, fps_fnmadds);
  813. break;
  814. }
  815. break;
  816. /* Real FPU operations */
  817. case OP_LFS:
  818. {
  819. ulong addr = (ax_ra ? kvmppc_get_gpr(vcpu, ax_ra) : 0) + full_d;
  820. emulated = kvmppc_emulate_fpr_load(vcpu, ax_rd, addr,
  821. FPU_LS_SINGLE);
  822. break;
  823. }
  824. case OP_LFSU:
  825. {
  826. ulong addr = kvmppc_get_gpr(vcpu, ax_ra) + full_d;
  827. emulated = kvmppc_emulate_fpr_load(vcpu, ax_rd, addr,
  828. FPU_LS_SINGLE);
  829. if (emulated == EMULATE_DONE)
  830. kvmppc_set_gpr(vcpu, ax_ra, addr);
  831. break;
  832. }
  833. case OP_LFD:
  834. {
  835. ulong addr = (ax_ra ? kvmppc_get_gpr(vcpu, ax_ra) : 0) + full_d;
  836. emulated = kvmppc_emulate_fpr_load(vcpu, ax_rd, addr,
  837. FPU_LS_DOUBLE);
  838. break;
  839. }
  840. case OP_LFDU:
  841. {
  842. ulong addr = kvmppc_get_gpr(vcpu, ax_ra) + full_d;
  843. emulated = kvmppc_emulate_fpr_load(vcpu, ax_rd, addr,
  844. FPU_LS_DOUBLE);
  845. if (emulated == EMULATE_DONE)
  846. kvmppc_set_gpr(vcpu, ax_ra, addr);
  847. break;
  848. }
  849. case OP_STFS:
  850. {
  851. ulong addr = (ax_ra ? kvmppc_get_gpr(vcpu, ax_ra) : 0) + full_d;
  852. emulated = kvmppc_emulate_fpr_store(vcpu, ax_rd, addr,
  853. FPU_LS_SINGLE);
  854. break;
  855. }
  856. case OP_STFSU:
  857. {
  858. ulong addr = kvmppc_get_gpr(vcpu, ax_ra) + full_d;
  859. emulated = kvmppc_emulate_fpr_store(vcpu, ax_rd, addr,
  860. FPU_LS_SINGLE);
  861. if (emulated == EMULATE_DONE)
  862. kvmppc_set_gpr(vcpu, ax_ra, addr);
  863. break;
  864. }
  865. case OP_STFD:
  866. {
  867. ulong addr = (ax_ra ? kvmppc_get_gpr(vcpu, ax_ra) : 0) + full_d;
  868. emulated = kvmppc_emulate_fpr_store(vcpu, ax_rd, addr,
  869. FPU_LS_DOUBLE);
  870. break;
  871. }
  872. case OP_STFDU:
  873. {
  874. ulong addr = kvmppc_get_gpr(vcpu, ax_ra) + full_d;
  875. emulated = kvmppc_emulate_fpr_store(vcpu, ax_rd, addr,
  876. FPU_LS_DOUBLE);
  877. if (emulated == EMULATE_DONE)
  878. kvmppc_set_gpr(vcpu, ax_ra, addr);
  879. break;
  880. }
  881. case 31:
  882. switch (inst_get_field(inst, 21, 30)) {
  883. case OP_31_LFSX:
  884. {
  885. ulong addr = ax_ra ? kvmppc_get_gpr(vcpu, ax_ra) : 0;
  886. addr += kvmppc_get_gpr(vcpu, ax_rb);
  887. emulated = kvmppc_emulate_fpr_load(vcpu, ax_rd,
  888. addr, FPU_LS_SINGLE);
  889. break;
  890. }
  891. case OP_31_LFSUX:
  892. {
  893. ulong addr = kvmppc_get_gpr(vcpu, ax_ra) +
  894. kvmppc_get_gpr(vcpu, ax_rb);
  895. emulated = kvmppc_emulate_fpr_load(vcpu, ax_rd,
  896. addr, FPU_LS_SINGLE);
  897. if (emulated == EMULATE_DONE)
  898. kvmppc_set_gpr(vcpu, ax_ra, addr);
  899. break;
  900. }
  901. case OP_31_LFDX:
  902. {
  903. ulong addr = (ax_ra ? kvmppc_get_gpr(vcpu, ax_ra) : 0) +
  904. kvmppc_get_gpr(vcpu, ax_rb);
  905. emulated = kvmppc_emulate_fpr_load(vcpu, ax_rd,
  906. addr, FPU_LS_DOUBLE);
  907. break;
  908. }
  909. case OP_31_LFDUX:
  910. {
  911. ulong addr = kvmppc_get_gpr(vcpu, ax_ra) +
  912. kvmppc_get_gpr(vcpu, ax_rb);
  913. emulated = kvmppc_emulate_fpr_load(vcpu, ax_rd,
  914. addr, FPU_LS_DOUBLE);
  915. if (emulated == EMULATE_DONE)
  916. kvmppc_set_gpr(vcpu, ax_ra, addr);
  917. break;
  918. }
  919. case OP_31_STFSX:
  920. {
  921. ulong addr = (ax_ra ? kvmppc_get_gpr(vcpu, ax_ra) : 0) +
  922. kvmppc_get_gpr(vcpu, ax_rb);
  923. emulated = kvmppc_emulate_fpr_store(vcpu, ax_rd,
  924. addr, FPU_LS_SINGLE);
  925. break;
  926. }
  927. case OP_31_STFSUX:
  928. {
  929. ulong addr = kvmppc_get_gpr(vcpu, ax_ra) +
  930. kvmppc_get_gpr(vcpu, ax_rb);
  931. emulated = kvmppc_emulate_fpr_store(vcpu, ax_rd,
  932. addr, FPU_LS_SINGLE);
  933. if (emulated == EMULATE_DONE)
  934. kvmppc_set_gpr(vcpu, ax_ra, addr);
  935. break;
  936. }
  937. case OP_31_STFX:
  938. {
  939. ulong addr = (ax_ra ? kvmppc_get_gpr(vcpu, ax_ra) : 0) +
  940. kvmppc_get_gpr(vcpu, ax_rb);
  941. emulated = kvmppc_emulate_fpr_store(vcpu, ax_rd,
  942. addr, FPU_LS_DOUBLE);
  943. break;
  944. }
  945. case OP_31_STFUX:
  946. {
  947. ulong addr = kvmppc_get_gpr(vcpu, ax_ra) +
  948. kvmppc_get_gpr(vcpu, ax_rb);
  949. emulated = kvmppc_emulate_fpr_store(vcpu, ax_rd,
  950. addr, FPU_LS_DOUBLE);
  951. if (emulated == EMULATE_DONE)
  952. kvmppc_set_gpr(vcpu, ax_ra, addr);
  953. break;
  954. }
  955. case OP_31_STFIWX:
  956. {
  957. ulong addr = (ax_ra ? kvmppc_get_gpr(vcpu, ax_ra) : 0) +
  958. kvmppc_get_gpr(vcpu, ax_rb);
  959. emulated = kvmppc_emulate_fpr_store(vcpu, ax_rd,
  960. addr,
  961. FPU_LS_SINGLE_LOW);
  962. break;
  963. }
  964. break;
  965. }
  966. break;
  967. case 59:
  968. switch (inst_get_field(inst, 21, 30)) {
  969. case OP_59_FADDS:
  970. fpd_fadds(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_a, fpr_b);
  971. kvmppc_sync_qpr(vcpu, ax_rd);
  972. break;
  973. case OP_59_FSUBS:
  974. fpd_fsubs(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_a, fpr_b);
  975. kvmppc_sync_qpr(vcpu, ax_rd);
  976. break;
  977. case OP_59_FDIVS:
  978. fpd_fdivs(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_a, fpr_b);
  979. kvmppc_sync_qpr(vcpu, ax_rd);
  980. break;
  981. case OP_59_FRES:
  982. fpd_fres(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_b);
  983. kvmppc_sync_qpr(vcpu, ax_rd);
  984. break;
  985. case OP_59_FRSQRTES:
  986. fpd_frsqrtes(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_b);
  987. kvmppc_sync_qpr(vcpu, ax_rd);
  988. break;
  989. }
  990. switch (inst_get_field(inst, 26, 30)) {
  991. case OP_59_FMULS:
  992. fpd_fmuls(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_a, fpr_c);
  993. kvmppc_sync_qpr(vcpu, ax_rd);
  994. break;
  995. case OP_59_FMSUBS:
  996. fpd_fmsubs(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_a, fpr_c, fpr_b);
  997. kvmppc_sync_qpr(vcpu, ax_rd);
  998. break;
  999. case OP_59_FMADDS:
  1000. fpd_fmadds(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_a, fpr_c, fpr_b);
  1001. kvmppc_sync_qpr(vcpu, ax_rd);
  1002. break;
  1003. case OP_59_FNMSUBS:
  1004. fpd_fnmsubs(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_a, fpr_c, fpr_b);
  1005. kvmppc_sync_qpr(vcpu, ax_rd);
  1006. break;
  1007. case OP_59_FNMADDS:
  1008. fpd_fnmadds(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_a, fpr_c, fpr_b);
  1009. kvmppc_sync_qpr(vcpu, ax_rd);
  1010. break;
  1011. }
  1012. break;
  1013. case 63:
  1014. switch (inst_get_field(inst, 21, 30)) {
  1015. case OP_63_MTFSB0:
  1016. case OP_63_MTFSB1:
  1017. case OP_63_MCRFS:
  1018. case OP_63_MTFSFI:
  1019. /* XXX need to implement */
  1020. break;
  1021. case OP_63_MFFS:
  1022. /* XXX missing CR */
  1023. *fpr_d = vcpu->arch.fp.fpscr;
  1024. break;
  1025. case OP_63_MTFSF:
  1026. /* XXX missing fm bits */
  1027. /* XXX missing CR */
  1028. vcpu->arch.fp.fpscr = *fpr_b;
  1029. break;
  1030. case OP_63_FCMPU:
  1031. {
  1032. u32 tmp_cr;
  1033. u32 cr0_mask = 0xf0000000;
  1034. u32 cr_shift = inst_get_field(inst, 6, 8) * 4;
  1035. fpd_fcmpu(&vcpu->arch.fp.fpscr, &tmp_cr, fpr_a, fpr_b);
  1036. cr &= ~(cr0_mask >> cr_shift);
  1037. cr |= (cr & cr0_mask) >> cr_shift;
  1038. break;
  1039. }
  1040. case OP_63_FCMPO:
  1041. {
  1042. u32 tmp_cr;
  1043. u32 cr0_mask = 0xf0000000;
  1044. u32 cr_shift = inst_get_field(inst, 6, 8) * 4;
  1045. fpd_fcmpo(&vcpu->arch.fp.fpscr, &tmp_cr, fpr_a, fpr_b);
  1046. cr &= ~(cr0_mask >> cr_shift);
  1047. cr |= (cr & cr0_mask) >> cr_shift;
  1048. break;
  1049. }
  1050. case OP_63_FNEG:
  1051. fpd_fneg(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_b);
  1052. break;
  1053. case OP_63_FMR:
  1054. *fpr_d = *fpr_b;
  1055. break;
  1056. case OP_63_FABS:
  1057. fpd_fabs(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_b);
  1058. break;
  1059. case OP_63_FCPSGN:
  1060. fpd_fcpsgn(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_a, fpr_b);
  1061. break;
  1062. case OP_63_FDIV:
  1063. fpd_fdiv(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_a, fpr_b);
  1064. break;
  1065. case OP_63_FADD:
  1066. fpd_fadd(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_a, fpr_b);
  1067. break;
  1068. case OP_63_FSUB:
  1069. fpd_fsub(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_a, fpr_b);
  1070. break;
  1071. case OP_63_FCTIW:
  1072. fpd_fctiw(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_b);
  1073. break;
  1074. case OP_63_FCTIWZ:
  1075. fpd_fctiwz(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_b);
  1076. break;
  1077. case OP_63_FRSP:
  1078. fpd_frsp(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_b);
  1079. kvmppc_sync_qpr(vcpu, ax_rd);
  1080. break;
  1081. case OP_63_FRSQRTE:
  1082. {
  1083. double one = 1.0f;
  1084. /* fD = sqrt(fB) */
  1085. fpd_fsqrt(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_b);
  1086. /* fD = 1.0f / fD */
  1087. fpd_fdiv(&vcpu->arch.fp.fpscr, &cr, fpr_d, (u64*)&one, fpr_d);
  1088. break;
  1089. }
  1090. }
  1091. switch (inst_get_field(inst, 26, 30)) {
  1092. case OP_63_FMUL:
  1093. fpd_fmul(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_a, fpr_c);
  1094. break;
  1095. case OP_63_FSEL:
  1096. fpd_fsel(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_a, fpr_c, fpr_b);
  1097. break;
  1098. case OP_63_FMSUB:
  1099. fpd_fmsub(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_a, fpr_c, fpr_b);
  1100. break;
  1101. case OP_63_FMADD:
  1102. fpd_fmadd(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_a, fpr_c, fpr_b);
  1103. break;
  1104. case OP_63_FNMSUB:
  1105. fpd_fnmsub(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_a, fpr_c, fpr_b);
  1106. break;
  1107. case OP_63_FNMADD:
  1108. fpd_fnmadd(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_a, fpr_c, fpr_b);
  1109. break;
  1110. }
  1111. break;
  1112. }
  1113. #ifdef DEBUG
  1114. for (i = 0; i < ARRAY_SIZE(vcpu->arch.fp.fpr); i++) {
  1115. u32 f;
  1116. kvm_cvt_df(&VCPU_FPR(vcpu, i), &f);
  1117. dprintk(KERN_INFO "FPR[%d] = 0x%x\n", i, f);
  1118. }
  1119. #endif
  1120. if (rcomp)
  1121. kvmppc_set_cr(vcpu, cr);
  1122. disable_kernel_fp();
  1123. preempt_enable();
  1124. return emulated;
  1125. }