123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868 |
- // SPDX-License-Identifier: GPL-2.0-or-later
- /*
- * The file intends to implement PE based on the information from
- * platforms. Basically, there have 3 types of PEs: PHB/Bus/Device.
- * All the PEs should be organized as hierarchy tree. The first level
- * of the tree will be associated to existing PHBs since the particular
- * PE is only meaningful in one PHB domain.
- *
- * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2012.
- */
- #include <linux/delay.h>
- #include <linux/export.h>
- #include <linux/gfp.h>
- #include <linux/kernel.h>
- #include <linux/of.h>
- #include <linux/pci.h>
- #include <linux/string.h>
- #include <asm/pci-bridge.h>
- #include <asm/ppc-pci.h>
- static int eeh_pe_aux_size = 0;
- static LIST_HEAD(eeh_phb_pe);
- /**
- * eeh_set_pe_aux_size - Set PE auxillary data size
- * @size: PE auxillary data size
- *
- * Set PE auxillary data size
- */
- void eeh_set_pe_aux_size(int size)
- {
- if (size < 0)
- return;
- eeh_pe_aux_size = size;
- }
- /**
- * eeh_pe_alloc - Allocate PE
- * @phb: PCI controller
- * @type: PE type
- *
- * Allocate PE instance dynamically.
- */
- static struct eeh_pe *eeh_pe_alloc(struct pci_controller *phb, int type)
- {
- struct eeh_pe *pe;
- size_t alloc_size;
- alloc_size = sizeof(struct eeh_pe);
- if (eeh_pe_aux_size) {
- alloc_size = ALIGN(alloc_size, cache_line_size());
- alloc_size += eeh_pe_aux_size;
- }
- /* Allocate PHB PE */
- pe = kzalloc(alloc_size, GFP_KERNEL);
- if (!pe) return NULL;
- /* Initialize PHB PE */
- pe->type = type;
- pe->phb = phb;
- INIT_LIST_HEAD(&pe->child_list);
- INIT_LIST_HEAD(&pe->edevs);
- pe->data = (void *)pe + ALIGN(sizeof(struct eeh_pe),
- cache_line_size());
- return pe;
- }
- /**
- * eeh_phb_pe_create - Create PHB PE
- * @phb: PCI controller
- *
- * The function should be called while the PHB is detected during
- * system boot or PCI hotplug in order to create PHB PE.
- */
- int eeh_phb_pe_create(struct pci_controller *phb)
- {
- struct eeh_pe *pe;
- /* Allocate PHB PE */
- pe = eeh_pe_alloc(phb, EEH_PE_PHB);
- if (!pe) {
- pr_err("%s: out of memory!\n", __func__);
- return -ENOMEM;
- }
- /* Put it into the list */
- list_add_tail(&pe->child, &eeh_phb_pe);
- pr_debug("EEH: Add PE for PHB#%x\n", phb->global_number);
- return 0;
- }
- /**
- * eeh_wait_state - Wait for PE state
- * @pe: EEH PE
- * @max_wait: maximal period in millisecond
- *
- * Wait for the state of associated PE. It might take some time
- * to retrieve the PE's state.
- */
- int eeh_wait_state(struct eeh_pe *pe, int max_wait)
- {
- int ret;
- int mwait;
- /*
- * According to PAPR, the state of PE might be temporarily
- * unavailable. Under the circumstance, we have to wait
- * for indicated time determined by firmware. The maximal
- * wait time is 5 minutes, which is acquired from the original
- * EEH implementation. Also, the original implementation
- * also defined the minimal wait time as 1 second.
- */
- #define EEH_STATE_MIN_WAIT_TIME (1000)
- #define EEH_STATE_MAX_WAIT_TIME (300 * 1000)
- while (1) {
- ret = eeh_ops->get_state(pe, &mwait);
- if (ret != EEH_STATE_UNAVAILABLE)
- return ret;
- if (max_wait <= 0) {
- pr_warn("%s: Timeout when getting PE's state (%d)\n",
- __func__, max_wait);
- return EEH_STATE_NOT_SUPPORT;
- }
- if (mwait < EEH_STATE_MIN_WAIT_TIME) {
- pr_warn("%s: Firmware returned bad wait value %d\n",
- __func__, mwait);
- mwait = EEH_STATE_MIN_WAIT_TIME;
- } else if (mwait > EEH_STATE_MAX_WAIT_TIME) {
- pr_warn("%s: Firmware returned too long wait value %d\n",
- __func__, mwait);
- mwait = EEH_STATE_MAX_WAIT_TIME;
- }
- msleep(min(mwait, max_wait));
- max_wait -= mwait;
- }
- }
- /**
- * eeh_phb_pe_get - Retrieve PHB PE based on the given PHB
- * @phb: PCI controller
- *
- * The overall PEs form hierarchy tree. The first layer of the
- * hierarchy tree is composed of PHB PEs. The function is used
- * to retrieve the corresponding PHB PE according to the given PHB.
- */
- struct eeh_pe *eeh_phb_pe_get(struct pci_controller *phb)
- {
- struct eeh_pe *pe;
- list_for_each_entry(pe, &eeh_phb_pe, child) {
- /*
- * Actually, we needn't check the type since
- * the PE for PHB has been determined when that
- * was created.
- */
- if ((pe->type & EEH_PE_PHB) && pe->phb == phb)
- return pe;
- }
- return NULL;
- }
- /**
- * eeh_pe_next - Retrieve the next PE in the tree
- * @pe: current PE
- * @root: root PE
- *
- * The function is used to retrieve the next PE in the
- * hierarchy PE tree.
- */
- struct eeh_pe *eeh_pe_next(struct eeh_pe *pe, struct eeh_pe *root)
- {
- struct list_head *next = pe->child_list.next;
- if (next == &pe->child_list) {
- while (1) {
- if (pe == root)
- return NULL;
- next = pe->child.next;
- if (next != &pe->parent->child_list)
- break;
- pe = pe->parent;
- }
- }
- return list_entry(next, struct eeh_pe, child);
- }
- /**
- * eeh_pe_traverse - Traverse PEs in the specified PHB
- * @root: root PE
- * @fn: callback
- * @flag: extra parameter to callback
- *
- * The function is used to traverse the specified PE and its
- * child PEs. The traversing is to be terminated once the
- * callback returns something other than NULL, or no more PEs
- * to be traversed.
- */
- void *eeh_pe_traverse(struct eeh_pe *root,
- eeh_pe_traverse_func fn, void *flag)
- {
- struct eeh_pe *pe;
- void *ret;
- eeh_for_each_pe(root, pe) {
- ret = fn(pe, flag);
- if (ret) return ret;
- }
- return NULL;
- }
- /**
- * eeh_pe_dev_traverse - Traverse the devices from the PE
- * @root: EEH PE
- * @fn: function callback
- * @flag: extra parameter to callback
- *
- * The function is used to traverse the devices of the specified
- * PE and its child PEs.
- */
- void eeh_pe_dev_traverse(struct eeh_pe *root,
- eeh_edev_traverse_func fn, void *flag)
- {
- struct eeh_pe *pe;
- struct eeh_dev *edev, *tmp;
- if (!root) {
- pr_warn("%s: Invalid PE %p\n",
- __func__, root);
- return;
- }
- /* Traverse root PE */
- eeh_for_each_pe(root, pe)
- eeh_pe_for_each_dev(pe, edev, tmp)
- fn(edev, flag);
- }
- /**
- * __eeh_pe_get - Check the PE address
- *
- * For one particular PE, it can be identified by PE address
- * or tranditional BDF address. BDF address is composed of
- * Bus/Device/Function number. The extra data referred by flag
- * indicates which type of address should be used.
- */
- static void *__eeh_pe_get(struct eeh_pe *pe, void *flag)
- {
- int *target_pe = flag;
- /* PHB PEs are special and should be ignored */
- if (pe->type & EEH_PE_PHB)
- return NULL;
- if (*target_pe == pe->addr)
- return pe;
- return NULL;
- }
- /**
- * eeh_pe_get - Search PE based on the given address
- * @phb: PCI controller
- * @pe_no: PE number
- *
- * Search the corresponding PE based on the specified address which
- * is included in the eeh device. The function is used to check if
- * the associated PE has been created against the PE address. It's
- * notable that the PE address has 2 format: traditional PE address
- * which is composed of PCI bus/device/function number, or unified
- * PE address.
- */
- struct eeh_pe *eeh_pe_get(struct pci_controller *phb, int pe_no)
- {
- struct eeh_pe *root = eeh_phb_pe_get(phb);
- return eeh_pe_traverse(root, __eeh_pe_get, &pe_no);
- }
- /**
- * eeh_pe_tree_insert - Add EEH device to parent PE
- * @edev: EEH device
- * @new_pe_parent: PE to create additional PEs under
- *
- * Add EEH device to the PE in edev->pe_config_addr. If a PE already
- * exists with that address then @edev is added to that PE. Otherwise
- * a new PE is created and inserted into the PE tree as a child of
- * @new_pe_parent.
- *
- * If @new_pe_parent is NULL then the new PE will be inserted under
- * directly under the PHB.
- */
- int eeh_pe_tree_insert(struct eeh_dev *edev, struct eeh_pe *new_pe_parent)
- {
- struct pci_controller *hose = edev->controller;
- struct eeh_pe *pe, *parent;
- /*
- * Search the PE has been existing or not according
- * to the PE address. If that has been existing, the
- * PE should be composed of PCI bus and its subordinate
- * components.
- */
- pe = eeh_pe_get(hose, edev->pe_config_addr);
- if (pe) {
- if (pe->type & EEH_PE_INVALID) {
- list_add_tail(&edev->entry, &pe->edevs);
- edev->pe = pe;
- /*
- * We're running to here because of PCI hotplug caused by
- * EEH recovery. We need clear EEH_PE_INVALID until the top.
- */
- parent = pe;
- while (parent) {
- if (!(parent->type & EEH_PE_INVALID))
- break;
- parent->type &= ~EEH_PE_INVALID;
- parent = parent->parent;
- }
- eeh_edev_dbg(edev, "Added to existing PE (parent: PE#%x)\n",
- pe->parent->addr);
- } else {
- /* Mark the PE as type of PCI bus */
- pe->type = EEH_PE_BUS;
- edev->pe = pe;
- /* Put the edev to PE */
- list_add_tail(&edev->entry, &pe->edevs);
- eeh_edev_dbg(edev, "Added to bus PE\n");
- }
- return 0;
- }
- /* Create a new EEH PE */
- if (edev->physfn)
- pe = eeh_pe_alloc(hose, EEH_PE_VF);
- else
- pe = eeh_pe_alloc(hose, EEH_PE_DEVICE);
- if (!pe) {
- pr_err("%s: out of memory!\n", __func__);
- return -ENOMEM;
- }
- pe->addr = edev->pe_config_addr;
- /*
- * Put the new EEH PE into hierarchy tree. If the parent
- * can't be found, the newly created PE will be attached
- * to PHB directly. Otherwise, we have to associate the
- * PE with its parent.
- */
- if (!new_pe_parent) {
- new_pe_parent = eeh_phb_pe_get(hose);
- if (!new_pe_parent) {
- pr_err("%s: No PHB PE is found (PHB Domain=%d)\n",
- __func__, hose->global_number);
- edev->pe = NULL;
- kfree(pe);
- return -EEXIST;
- }
- }
- /* link new PE into the tree */
- pe->parent = new_pe_parent;
- list_add_tail(&pe->child, &new_pe_parent->child_list);
- /*
- * Put the newly created PE into the child list and
- * link the EEH device accordingly.
- */
- list_add_tail(&edev->entry, &pe->edevs);
- edev->pe = pe;
- eeh_edev_dbg(edev, "Added to new (parent: PE#%x)\n",
- new_pe_parent->addr);
- return 0;
- }
- /**
- * eeh_pe_tree_remove - Remove one EEH device from the associated PE
- * @edev: EEH device
- *
- * The PE hierarchy tree might be changed when doing PCI hotplug.
- * Also, the PCI devices or buses could be removed from the system
- * during EEH recovery. So we have to call the function remove the
- * corresponding PE accordingly if necessary.
- */
- int eeh_pe_tree_remove(struct eeh_dev *edev)
- {
- struct eeh_pe *pe, *parent, *child;
- bool keep, recover;
- int cnt;
- pe = eeh_dev_to_pe(edev);
- if (!pe) {
- eeh_edev_dbg(edev, "No PE found for device.\n");
- return -EEXIST;
- }
- /* Remove the EEH device */
- edev->pe = NULL;
- list_del(&edev->entry);
- /*
- * Check if the parent PE includes any EEH devices.
- * If not, we should delete that. Also, we should
- * delete the parent PE if it doesn't have associated
- * child PEs and EEH devices.
- */
- while (1) {
- parent = pe->parent;
- /* PHB PEs should never be removed */
- if (pe->type & EEH_PE_PHB)
- break;
- /*
- * XXX: KEEP is set while resetting a PE. I don't think it's
- * ever set without RECOVERING also being set. I could
- * be wrong though so catch that with a WARN.
- */
- keep = !!(pe->state & EEH_PE_KEEP);
- recover = !!(pe->state & EEH_PE_RECOVERING);
- WARN_ON(keep && !recover);
- if (!keep && !recover) {
- if (list_empty(&pe->edevs) &&
- list_empty(&pe->child_list)) {
- list_del(&pe->child);
- kfree(pe);
- } else {
- break;
- }
- } else {
- /*
- * Mark the PE as invalid. At the end of the recovery
- * process any invalid PEs will be garbage collected.
- *
- * We need to delay the free()ing of them since we can
- * remove edev's while traversing the PE tree which
- * might trigger the removal of a PE and we can't
- * deal with that (yet).
- */
- if (list_empty(&pe->edevs)) {
- cnt = 0;
- list_for_each_entry(child, &pe->child_list, child) {
- if (!(child->type & EEH_PE_INVALID)) {
- cnt++;
- break;
- }
- }
- if (!cnt)
- pe->type |= EEH_PE_INVALID;
- else
- break;
- }
- }
- pe = parent;
- }
- return 0;
- }
- /**
- * eeh_pe_update_time_stamp - Update PE's frozen time stamp
- * @pe: EEH PE
- *
- * We have time stamp for each PE to trace its time of getting
- * frozen in last hour. The function should be called to update
- * the time stamp on first error of the specific PE. On the other
- * handle, we needn't account for errors happened in last hour.
- */
- void eeh_pe_update_time_stamp(struct eeh_pe *pe)
- {
- time64_t tstamp;
- if (!pe) return;
- if (pe->freeze_count <= 0) {
- pe->freeze_count = 0;
- pe->tstamp = ktime_get_seconds();
- } else {
- tstamp = ktime_get_seconds();
- if (tstamp - pe->tstamp > 3600) {
- pe->tstamp = tstamp;
- pe->freeze_count = 0;
- }
- }
- }
- /**
- * eeh_pe_state_mark - Mark specified state for PE and its associated device
- * @pe: EEH PE
- *
- * EEH error affects the current PE and its child PEs. The function
- * is used to mark appropriate state for the affected PEs and the
- * associated devices.
- */
- void eeh_pe_state_mark(struct eeh_pe *root, int state)
- {
- struct eeh_pe *pe;
- eeh_for_each_pe(root, pe)
- if (!(pe->state & EEH_PE_REMOVED))
- pe->state |= state;
- }
- EXPORT_SYMBOL_GPL(eeh_pe_state_mark);
- /**
- * eeh_pe_mark_isolated
- * @pe: EEH PE
- *
- * Record that a PE has been isolated by marking the PE and it's children as
- * EEH_PE_ISOLATED (and EEH_PE_CFG_BLOCKED, if required) and their PCI devices
- * as pci_channel_io_frozen.
- */
- void eeh_pe_mark_isolated(struct eeh_pe *root)
- {
- struct eeh_pe *pe;
- struct eeh_dev *edev;
- struct pci_dev *pdev;
- eeh_pe_state_mark(root, EEH_PE_ISOLATED);
- eeh_for_each_pe(root, pe) {
- list_for_each_entry(edev, &pe->edevs, entry) {
- pdev = eeh_dev_to_pci_dev(edev);
- if (pdev)
- pdev->error_state = pci_channel_io_frozen;
- }
- /* Block PCI config access if required */
- if (pe->state & EEH_PE_CFG_RESTRICTED)
- pe->state |= EEH_PE_CFG_BLOCKED;
- }
- }
- EXPORT_SYMBOL_GPL(eeh_pe_mark_isolated);
- static void __eeh_pe_dev_mode_mark(struct eeh_dev *edev, void *flag)
- {
- int mode = *((int *)flag);
- edev->mode |= mode;
- }
- /**
- * eeh_pe_dev_state_mark - Mark state for all device under the PE
- * @pe: EEH PE
- *
- * Mark specific state for all child devices of the PE.
- */
- void eeh_pe_dev_mode_mark(struct eeh_pe *pe, int mode)
- {
- eeh_pe_dev_traverse(pe, __eeh_pe_dev_mode_mark, &mode);
- }
- /**
- * eeh_pe_state_clear - Clear state for the PE
- * @data: EEH PE
- * @state: state
- * @include_passed: include passed-through devices?
- *
- * The function is used to clear the indicated state from the
- * given PE. Besides, we also clear the check count of the PE
- * as well.
- */
- void eeh_pe_state_clear(struct eeh_pe *root, int state, bool include_passed)
- {
- struct eeh_pe *pe;
- struct eeh_dev *edev, *tmp;
- struct pci_dev *pdev;
- eeh_for_each_pe(root, pe) {
- /* Keep the state of permanently removed PE intact */
- if (pe->state & EEH_PE_REMOVED)
- continue;
- if (!include_passed && eeh_pe_passed(pe))
- continue;
- pe->state &= ~state;
- /*
- * Special treatment on clearing isolated state. Clear
- * check count since last isolation and put all affected
- * devices to normal state.
- */
- if (!(state & EEH_PE_ISOLATED))
- continue;
- pe->check_count = 0;
- eeh_pe_for_each_dev(pe, edev, tmp) {
- pdev = eeh_dev_to_pci_dev(edev);
- if (!pdev)
- continue;
- pdev->error_state = pci_channel_io_normal;
- }
- /* Unblock PCI config access if required */
- if (pe->state & EEH_PE_CFG_RESTRICTED)
- pe->state &= ~EEH_PE_CFG_BLOCKED;
- }
- }
- /*
- * Some PCI bridges (e.g. PLX bridges) have primary/secondary
- * buses assigned explicitly by firmware, and we probably have
- * lost that after reset. So we have to delay the check until
- * the PCI-CFG registers have been restored for the parent
- * bridge.
- *
- * Don't use normal PCI-CFG accessors, which probably has been
- * blocked on normal path during the stage. So we need utilize
- * eeh operations, which is always permitted.
- */
- static void eeh_bridge_check_link(struct eeh_dev *edev)
- {
- int cap;
- uint32_t val;
- int timeout = 0;
- /*
- * We only check root port and downstream ports of
- * PCIe switches
- */
- if (!(edev->mode & (EEH_DEV_ROOT_PORT | EEH_DEV_DS_PORT)))
- return;
- eeh_edev_dbg(edev, "Checking PCIe link...\n");
- /* Check slot status */
- cap = edev->pcie_cap;
- eeh_ops->read_config(edev, cap + PCI_EXP_SLTSTA, 2, &val);
- if (!(val & PCI_EXP_SLTSTA_PDS)) {
- eeh_edev_dbg(edev, "No card in the slot (0x%04x) !\n", val);
- return;
- }
- /* Check power status if we have the capability */
- eeh_ops->read_config(edev, cap + PCI_EXP_SLTCAP, 2, &val);
- if (val & PCI_EXP_SLTCAP_PCP) {
- eeh_ops->read_config(edev, cap + PCI_EXP_SLTCTL, 2, &val);
- if (val & PCI_EXP_SLTCTL_PCC) {
- eeh_edev_dbg(edev, "In power-off state, power it on ...\n");
- val &= ~(PCI_EXP_SLTCTL_PCC | PCI_EXP_SLTCTL_PIC);
- val |= (0x0100 & PCI_EXP_SLTCTL_PIC);
- eeh_ops->write_config(edev, cap + PCI_EXP_SLTCTL, 2, val);
- msleep(2 * 1000);
- }
- }
- /* Enable link */
- eeh_ops->read_config(edev, cap + PCI_EXP_LNKCTL, 2, &val);
- val &= ~PCI_EXP_LNKCTL_LD;
- eeh_ops->write_config(edev, cap + PCI_EXP_LNKCTL, 2, val);
- /* Check link */
- eeh_ops->read_config(edev, cap + PCI_EXP_LNKCAP, 4, &val);
- if (!(val & PCI_EXP_LNKCAP_DLLLARC)) {
- eeh_edev_dbg(edev, "No link reporting capability (0x%08x) \n", val);
- msleep(1000);
- return;
- }
- /* Wait the link is up until timeout (5s) */
- timeout = 0;
- while (timeout < 5000) {
- msleep(20);
- timeout += 20;
- eeh_ops->read_config(edev, cap + PCI_EXP_LNKSTA, 2, &val);
- if (val & PCI_EXP_LNKSTA_DLLLA)
- break;
- }
- if (val & PCI_EXP_LNKSTA_DLLLA)
- eeh_edev_dbg(edev, "Link up (%s)\n",
- (val & PCI_EXP_LNKSTA_CLS_2_5GB) ? "2.5GB" : "5GB");
- else
- eeh_edev_dbg(edev, "Link not ready (0x%04x)\n", val);
- }
- #define BYTE_SWAP(OFF) (8*((OFF)/4)+3-(OFF))
- #define SAVED_BYTE(OFF) (((u8 *)(edev->config_space))[BYTE_SWAP(OFF)])
- static void eeh_restore_bridge_bars(struct eeh_dev *edev)
- {
- int i;
- /*
- * Device BARs: 0x10 - 0x18
- * Bus numbers and windows: 0x18 - 0x30
- */
- for (i = 4; i < 13; i++)
- eeh_ops->write_config(edev, i*4, 4, edev->config_space[i]);
- /* Rom: 0x38 */
- eeh_ops->write_config(edev, 14*4, 4, edev->config_space[14]);
- /* Cache line & Latency timer: 0xC 0xD */
- eeh_ops->write_config(edev, PCI_CACHE_LINE_SIZE, 1,
- SAVED_BYTE(PCI_CACHE_LINE_SIZE));
- eeh_ops->write_config(edev, PCI_LATENCY_TIMER, 1,
- SAVED_BYTE(PCI_LATENCY_TIMER));
- /* Max latency, min grant, interrupt ping and line: 0x3C */
- eeh_ops->write_config(edev, 15*4, 4, edev->config_space[15]);
- /* PCI Command: 0x4 */
- eeh_ops->write_config(edev, PCI_COMMAND, 4, edev->config_space[1] |
- PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
- /* Check the PCIe link is ready */
- eeh_bridge_check_link(edev);
- }
- static void eeh_restore_device_bars(struct eeh_dev *edev)
- {
- int i;
- u32 cmd;
- for (i = 4; i < 10; i++)
- eeh_ops->write_config(edev, i*4, 4, edev->config_space[i]);
- /* 12 == Expansion ROM Address */
- eeh_ops->write_config(edev, 12*4, 4, edev->config_space[12]);
- eeh_ops->write_config(edev, PCI_CACHE_LINE_SIZE, 1,
- SAVED_BYTE(PCI_CACHE_LINE_SIZE));
- eeh_ops->write_config(edev, PCI_LATENCY_TIMER, 1,
- SAVED_BYTE(PCI_LATENCY_TIMER));
- /* max latency, min grant, interrupt pin and line */
- eeh_ops->write_config(edev, 15*4, 4, edev->config_space[15]);
- /*
- * Restore PERR & SERR bits, some devices require it,
- * don't touch the other command bits
- */
- eeh_ops->read_config(edev, PCI_COMMAND, 4, &cmd);
- if (edev->config_space[1] & PCI_COMMAND_PARITY)
- cmd |= PCI_COMMAND_PARITY;
- else
- cmd &= ~PCI_COMMAND_PARITY;
- if (edev->config_space[1] & PCI_COMMAND_SERR)
- cmd |= PCI_COMMAND_SERR;
- else
- cmd &= ~PCI_COMMAND_SERR;
- eeh_ops->write_config(edev, PCI_COMMAND, 4, cmd);
- }
- /**
- * eeh_restore_one_device_bars - Restore the Base Address Registers for one device
- * @data: EEH device
- * @flag: Unused
- *
- * Loads the PCI configuration space base address registers,
- * the expansion ROM base address, the latency timer, and etc.
- * from the saved values in the device node.
- */
- static void eeh_restore_one_device_bars(struct eeh_dev *edev, void *flag)
- {
- /* Do special restore for bridges */
- if (edev->mode & EEH_DEV_BRIDGE)
- eeh_restore_bridge_bars(edev);
- else
- eeh_restore_device_bars(edev);
- if (eeh_ops->restore_config)
- eeh_ops->restore_config(edev);
- }
- /**
- * eeh_pe_restore_bars - Restore the PCI config space info
- * @pe: EEH PE
- *
- * This routine performs a recursive walk to the children
- * of this device as well.
- */
- void eeh_pe_restore_bars(struct eeh_pe *pe)
- {
- /*
- * We needn't take the EEH lock since eeh_pe_dev_traverse()
- * will take that.
- */
- eeh_pe_dev_traverse(pe, eeh_restore_one_device_bars, NULL);
- }
- /**
- * eeh_pe_loc_get - Retrieve location code binding to the given PE
- * @pe: EEH PE
- *
- * Retrieve the location code of the given PE. If the primary PE bus
- * is root bus, we will grab location code from PHB device tree node
- * or root port. Otherwise, the upstream bridge's device tree node
- * of the primary PE bus will be checked for the location code.
- */
- const char *eeh_pe_loc_get(struct eeh_pe *pe)
- {
- struct pci_bus *bus = eeh_pe_bus_get(pe);
- struct device_node *dn;
- const char *loc = NULL;
- while (bus) {
- dn = pci_bus_to_OF_node(bus);
- if (!dn) {
- bus = bus->parent;
- continue;
- }
- if (pci_is_root_bus(bus))
- loc = of_get_property(dn, "ibm,io-base-loc-code", NULL);
- else
- loc = of_get_property(dn, "ibm,slot-location-code",
- NULL);
- if (loc)
- return loc;
- bus = bus->parent;
- }
- return "N/A";
- }
- /**
- * eeh_pe_bus_get - Retrieve PCI bus according to the given PE
- * @pe: EEH PE
- *
- * Retrieve the PCI bus according to the given PE. Basically,
- * there're 3 types of PEs: PHB/Bus/Device. For PHB PE, the
- * primary PCI bus will be retrieved. The parent bus will be
- * returned for BUS PE. However, we don't have associated PCI
- * bus for DEVICE PE.
- */
- struct pci_bus *eeh_pe_bus_get(struct eeh_pe *pe)
- {
- struct eeh_dev *edev;
- struct pci_dev *pdev;
- if (pe->type & EEH_PE_PHB)
- return pe->phb->bus;
- /* The primary bus might be cached during probe time */
- if (pe->state & EEH_PE_PRI_BUS)
- return pe->bus;
- /* Retrieve the parent PCI bus of first (top) PCI device */
- edev = list_first_entry_or_null(&pe->edevs, struct eeh_dev, entry);
- pdev = eeh_dev_to_pci_dev(edev);
- if (pdev)
- return pdev->bus;
- return NULL;
- }
|