process.c 7.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284
  1. // SPDX-License-Identifier: GPL-2.0-or-later
  2. /*
  3. * OpenRISC process.c
  4. *
  5. * Linux architectural port borrowing liberally from similar works of
  6. * others. All original copyrights apply as per the original source
  7. * declaration.
  8. *
  9. * Modifications for the OpenRISC architecture:
  10. * Copyright (C) 2003 Matjaz Breskvar <[email protected]>
  11. * Copyright (C) 2010-2011 Jonas Bonn <[email protected]>
  12. *
  13. * This file handles the architecture-dependent parts of process handling...
  14. */
  15. #define __KERNEL_SYSCALLS__
  16. #include <linux/errno.h>
  17. #include <linux/sched.h>
  18. #include <linux/sched/debug.h>
  19. #include <linux/sched/task.h>
  20. #include <linux/sched/task_stack.h>
  21. #include <linux/kernel.h>
  22. #include <linux/export.h>
  23. #include <linux/mm.h>
  24. #include <linux/stddef.h>
  25. #include <linux/unistd.h>
  26. #include <linux/ptrace.h>
  27. #include <linux/slab.h>
  28. #include <linux/elfcore.h>
  29. #include <linux/interrupt.h>
  30. #include <linux/delay.h>
  31. #include <linux/init_task.h>
  32. #include <linux/mqueue.h>
  33. #include <linux/fs.h>
  34. #include <linux/reboot.h>
  35. #include <linux/uaccess.h>
  36. #include <asm/io.h>
  37. #include <asm/processor.h>
  38. #include <asm/spr_defs.h>
  39. #include <linux/smp.h>
  40. /*
  41. * Pointer to Current thread info structure.
  42. *
  43. * Used at user space -> kernel transitions.
  44. */
  45. struct thread_info *current_thread_info_set[NR_CPUS] = { &init_thread_info, };
  46. void machine_restart(char *cmd)
  47. {
  48. do_kernel_restart(cmd);
  49. __asm__("l.nop 13");
  50. /* Give a grace period for failure to restart of 1s */
  51. mdelay(1000);
  52. /* Whoops - the platform was unable to reboot. Tell the user! */
  53. pr_emerg("Reboot failed -- System halted\n");
  54. while (1);
  55. }
  56. /*
  57. * This is used if pm_power_off has not been set by a power management
  58. * driver, in this case we can assume we are on a simulator. On
  59. * OpenRISC simulators l.nop 1 will trigger the simulator exit.
  60. */
  61. static void default_power_off(void)
  62. {
  63. __asm__("l.nop 1");
  64. }
  65. /*
  66. * Similar to machine_power_off, but don't shut off power. Add code
  67. * here to freeze the system for e.g. post-mortem debug purpose when
  68. * possible. This halt has nothing to do with the idle halt.
  69. */
  70. void machine_halt(void)
  71. {
  72. printk(KERN_INFO "*** MACHINE HALT ***\n");
  73. __asm__("l.nop 1");
  74. }
  75. /* If or when software power-off is implemented, add code here. */
  76. void machine_power_off(void)
  77. {
  78. printk(KERN_INFO "*** MACHINE POWER OFF ***\n");
  79. if (pm_power_off != NULL)
  80. pm_power_off();
  81. else
  82. default_power_off();
  83. }
  84. /*
  85. * Send the doze signal to the cpu if available.
  86. * Make sure, that all interrupts are enabled
  87. */
  88. void arch_cpu_idle(void)
  89. {
  90. raw_local_irq_enable();
  91. if (mfspr(SPR_UPR) & SPR_UPR_PMP)
  92. mtspr(SPR_PMR, mfspr(SPR_PMR) | SPR_PMR_DME);
  93. }
  94. void (*pm_power_off)(void) = NULL;
  95. EXPORT_SYMBOL(pm_power_off);
  96. /*
  97. * When a process does an "exec", machine state like FPU and debug
  98. * registers need to be reset. This is a hook function for that.
  99. * Currently we don't have any such state to reset, so this is empty.
  100. */
  101. void flush_thread(void)
  102. {
  103. }
  104. void show_regs(struct pt_regs *regs)
  105. {
  106. extern void show_registers(struct pt_regs *regs);
  107. show_regs_print_info(KERN_DEFAULT);
  108. /* __PHX__ cleanup this mess */
  109. show_registers(regs);
  110. }
  111. /*
  112. * Copy the thread-specific (arch specific) info from the current
  113. * process to the new one p
  114. */
  115. extern asmlinkage void ret_from_fork(void);
  116. /*
  117. * copy_thread
  118. * @clone_flags: flags
  119. * @usp: user stack pointer or fn for kernel thread
  120. * @arg: arg to fn for kernel thread; always NULL for userspace thread
  121. * @p: the newly created task
  122. * @tls: the Thread Local Storage pointer for the new process
  123. *
  124. * At the top of a newly initialized kernel stack are two stacked pt_reg
  125. * structures. The first (topmost) is the userspace context of the thread.
  126. * The second is the kernelspace context of the thread.
  127. *
  128. * A kernel thread will not be returning to userspace, so the topmost pt_regs
  129. * struct can be uninitialized; it _does_ need to exist, though, because
  130. * a kernel thread can become a userspace thread by doing a kernel_execve, in
  131. * which case the topmost context will be initialized and used for 'returning'
  132. * to userspace.
  133. *
  134. * The second pt_reg struct needs to be initialized to 'return' to
  135. * ret_from_fork. A kernel thread will need to set r20 to the address of
  136. * a function to call into (with arg in r22); userspace threads need to set
  137. * r20 to NULL in which case ret_from_fork will just continue a return to
  138. * userspace.
  139. *
  140. * A kernel thread 'fn' may return; this is effectively what happens when
  141. * kernel_execve is called. In that case, the userspace pt_regs must have
  142. * been initialized (which kernel_execve takes care of, see start_thread
  143. * below); ret_from_fork will then continue its execution causing the
  144. * 'kernel thread' to return to userspace as a userspace thread.
  145. */
  146. int
  147. copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
  148. {
  149. unsigned long clone_flags = args->flags;
  150. unsigned long usp = args->stack;
  151. unsigned long tls = args->tls;
  152. struct pt_regs *userregs;
  153. struct pt_regs *kregs;
  154. unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
  155. unsigned long top_of_kernel_stack;
  156. top_of_kernel_stack = sp;
  157. /* Locate userspace context on stack... */
  158. sp -= STACK_FRAME_OVERHEAD; /* redzone */
  159. sp -= sizeof(struct pt_regs);
  160. userregs = (struct pt_regs *) sp;
  161. /* ...and kernel context */
  162. sp -= STACK_FRAME_OVERHEAD; /* redzone */
  163. sp -= sizeof(struct pt_regs);
  164. kregs = (struct pt_regs *)sp;
  165. if (unlikely(args->fn)) {
  166. memset(kregs, 0, sizeof(struct pt_regs));
  167. kregs->gpr[20] = (unsigned long)args->fn;
  168. kregs->gpr[22] = (unsigned long)args->fn_arg;
  169. } else {
  170. *userregs = *current_pt_regs();
  171. if (usp)
  172. userregs->sp = usp;
  173. /*
  174. * For CLONE_SETTLS set "tp" (r10) to the TLS pointer.
  175. */
  176. if (clone_flags & CLONE_SETTLS)
  177. userregs->gpr[10] = tls;
  178. userregs->gpr[11] = 0; /* Result from fork() */
  179. kregs->gpr[20] = 0; /* Userspace thread */
  180. }
  181. /*
  182. * _switch wants the kernel stack page in pt_regs->sp so that it
  183. * can restore it to thread_info->ksp... see _switch for details.
  184. */
  185. kregs->sp = top_of_kernel_stack;
  186. kregs->gpr[9] = (unsigned long)ret_from_fork;
  187. task_thread_info(p)->ksp = (unsigned long)kregs;
  188. return 0;
  189. }
  190. /*
  191. * Set up a thread for executing a new program
  192. */
  193. void start_thread(struct pt_regs *regs, unsigned long pc, unsigned long sp)
  194. {
  195. unsigned long sr = mfspr(SPR_SR) & ~SPR_SR_SM;
  196. memset(regs, 0, sizeof(struct pt_regs));
  197. regs->pc = pc;
  198. regs->sr = sr;
  199. regs->sp = sp;
  200. }
  201. extern struct thread_info *_switch(struct thread_info *old_ti,
  202. struct thread_info *new_ti);
  203. extern int lwa_flag;
  204. struct task_struct *__switch_to(struct task_struct *old,
  205. struct task_struct *new)
  206. {
  207. struct task_struct *last;
  208. struct thread_info *new_ti, *old_ti;
  209. unsigned long flags;
  210. local_irq_save(flags);
  211. /* current_set is an array of saved current pointers
  212. * (one for each cpu). we need them at user->kernel transition,
  213. * while we save them at kernel->user transition
  214. */
  215. new_ti = new->stack;
  216. old_ti = old->stack;
  217. lwa_flag = 0;
  218. current_thread_info_set[smp_processor_id()] = new_ti;
  219. last = (_switch(old_ti, new_ti))->task;
  220. local_irq_restore(flags);
  221. return last;
  222. }
  223. /*
  224. * Write out registers in core dump format, as defined by the
  225. * struct user_regs_struct
  226. */
  227. void dump_elf_thread(elf_greg_t *dest, struct pt_regs* regs)
  228. {
  229. dest[0] = 0; /* r0 */
  230. memcpy(dest+1, regs->gpr+1, 31*sizeof(unsigned long));
  231. dest[32] = regs->pc;
  232. dest[33] = regs->sr;
  233. dest[34] = 0;
  234. dest[35] = 0;
  235. }
  236. unsigned long __get_wchan(struct task_struct *p)
  237. {
  238. /* TODO */
  239. return 0;
  240. }