db1000.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562
  1. // SPDX-License-Identifier: GPL-2.0-or-later
  2. /*
  3. * DBAu1000/1500/1100 PBAu1100/1500 board support
  4. *
  5. * Copyright 2000, 2008 MontaVista Software Inc.
  6. * Author: MontaVista Software, Inc. <[email protected]>
  7. */
  8. #include <linux/clk.h>
  9. #include <linux/dma-mapping.h>
  10. #include <linux/gpio.h>
  11. #include <linux/gpio/machine.h>
  12. #include <linux/init.h>
  13. #include <linux/interrupt.h>
  14. #include <linux/leds.h>
  15. #include <linux/mmc/host.h>
  16. #include <linux/platform_device.h>
  17. #include <linux/pm.h>
  18. #include <linux/spi/spi.h>
  19. #include <linux/spi/spi_gpio.h>
  20. #include <linux/spi/ads7846.h>
  21. #include <asm/mach-au1x00/au1000.h>
  22. #include <asm/mach-au1x00/gpio-au1000.h>
  23. #include <asm/mach-au1x00/au1000_dma.h>
  24. #include <asm/mach-au1x00/au1100_mmc.h>
  25. #include <asm/mach-db1x00/bcsr.h>
  26. #include <asm/reboot.h>
  27. #include <prom.h>
  28. #include "platform.h"
  29. #define F_SWAPPED (bcsr_read(BCSR_STATUS) & BCSR_STATUS_DB1000_SWAPBOOT)
  30. const char *get_system_type(void);
  31. int __init db1000_board_setup(void)
  32. {
  33. /* initialize board register space */
  34. bcsr_init(DB1000_BCSR_PHYS_ADDR,
  35. DB1000_BCSR_PHYS_ADDR + DB1000_BCSR_HEXLED_OFS);
  36. switch (BCSR_WHOAMI_BOARD(bcsr_read(BCSR_WHOAMI))) {
  37. case BCSR_WHOAMI_DB1000:
  38. case BCSR_WHOAMI_DB1500:
  39. case BCSR_WHOAMI_DB1100:
  40. case BCSR_WHOAMI_PB1500:
  41. case BCSR_WHOAMI_PB1500R2:
  42. case BCSR_WHOAMI_PB1100:
  43. pr_info("AMD Alchemy %s Board\n", get_system_type());
  44. return 0;
  45. }
  46. return -ENODEV;
  47. }
  48. static int db1500_map_pci_irq(const struct pci_dev *d, u8 slot, u8 pin)
  49. {
  50. if ((slot < 12) || (slot > 13) || pin == 0)
  51. return -1;
  52. if (slot == 12)
  53. return (pin == 1) ? AU1500_PCI_INTA : 0xff;
  54. if (slot == 13) {
  55. switch (pin) {
  56. case 1: return AU1500_PCI_INTA;
  57. case 2: return AU1500_PCI_INTB;
  58. case 3: return AU1500_PCI_INTC;
  59. case 4: return AU1500_PCI_INTD;
  60. }
  61. }
  62. return -1;
  63. }
  64. static u64 au1xxx_all_dmamask = DMA_BIT_MASK(32);
  65. static struct resource alchemy_pci_host_res[] = {
  66. [0] = {
  67. .start = AU1500_PCI_PHYS_ADDR,
  68. .end = AU1500_PCI_PHYS_ADDR + 0xfff,
  69. .flags = IORESOURCE_MEM,
  70. },
  71. };
  72. static struct alchemy_pci_platdata db1500_pci_pd = {
  73. .board_map_irq = db1500_map_pci_irq,
  74. };
  75. static struct platform_device db1500_pci_host_dev = {
  76. .dev.platform_data = &db1500_pci_pd,
  77. .name = "alchemy-pci",
  78. .id = 0,
  79. .num_resources = ARRAY_SIZE(alchemy_pci_host_res),
  80. .resource = alchemy_pci_host_res,
  81. };
  82. int __init db1500_pci_setup(void)
  83. {
  84. return platform_device_register(&db1500_pci_host_dev);
  85. }
  86. static struct resource au1100_lcd_resources[] = {
  87. [0] = {
  88. .start = AU1100_LCD_PHYS_ADDR,
  89. .end = AU1100_LCD_PHYS_ADDR + 0x800 - 1,
  90. .flags = IORESOURCE_MEM,
  91. },
  92. [1] = {
  93. .start = AU1100_LCD_INT,
  94. .end = AU1100_LCD_INT,
  95. .flags = IORESOURCE_IRQ,
  96. }
  97. };
  98. static struct platform_device au1100_lcd_device = {
  99. .name = "au1100-lcd",
  100. .id = 0,
  101. .dev = {
  102. .dma_mask = &au1xxx_all_dmamask,
  103. .coherent_dma_mask = DMA_BIT_MASK(32),
  104. },
  105. .num_resources = ARRAY_SIZE(au1100_lcd_resources),
  106. .resource = au1100_lcd_resources,
  107. };
  108. static struct resource alchemy_ac97c_res[] = {
  109. [0] = {
  110. .start = AU1000_AC97_PHYS_ADDR,
  111. .end = AU1000_AC97_PHYS_ADDR + 0xfff,
  112. .flags = IORESOURCE_MEM,
  113. },
  114. [1] = {
  115. .start = DMA_ID_AC97C_TX,
  116. .end = DMA_ID_AC97C_TX,
  117. .flags = IORESOURCE_DMA,
  118. },
  119. [2] = {
  120. .start = DMA_ID_AC97C_RX,
  121. .end = DMA_ID_AC97C_RX,
  122. .flags = IORESOURCE_DMA,
  123. },
  124. };
  125. static struct platform_device alchemy_ac97c_dev = {
  126. .name = "alchemy-ac97c",
  127. .id = -1,
  128. .resource = alchemy_ac97c_res,
  129. .num_resources = ARRAY_SIZE(alchemy_ac97c_res),
  130. };
  131. static struct platform_device alchemy_ac97c_dma_dev = {
  132. .name = "alchemy-pcm-dma",
  133. .id = 0,
  134. };
  135. static struct platform_device db1x00_codec_dev = {
  136. .name = "ac97-codec",
  137. .id = -1,
  138. };
  139. static struct platform_device db1x00_audio_dev = {
  140. .name = "db1000-audio",
  141. .dev = {
  142. .dma_mask = &au1xxx_all_dmamask,
  143. .coherent_dma_mask = DMA_BIT_MASK(32),
  144. },
  145. };
  146. /******************************************************************************/
  147. #ifdef CONFIG_MMC_AU1X
  148. static irqreturn_t db1100_mmc_cd(int irq, void *ptr)
  149. {
  150. mmc_detect_change(ptr, msecs_to_jiffies(500));
  151. return IRQ_HANDLED;
  152. }
  153. static int db1100_mmc_cd_setup(void *mmc_host, int en)
  154. {
  155. int ret = 0, irq;
  156. if (BCSR_WHOAMI_BOARD(bcsr_read(BCSR_WHOAMI)) == BCSR_WHOAMI_DB1100)
  157. irq = AU1100_GPIO19_INT;
  158. else
  159. irq = AU1100_GPIO14_INT; /* PB1100 SD0 CD# */
  160. if (en) {
  161. irq_set_irq_type(irq, IRQ_TYPE_EDGE_BOTH);
  162. ret = request_irq(irq, db1100_mmc_cd, 0,
  163. "sd0_cd", mmc_host);
  164. } else
  165. free_irq(irq, mmc_host);
  166. return ret;
  167. }
  168. static int db1100_mmc1_cd_setup(void *mmc_host, int en)
  169. {
  170. int ret = 0, irq;
  171. if (BCSR_WHOAMI_BOARD(bcsr_read(BCSR_WHOAMI)) == BCSR_WHOAMI_DB1100)
  172. irq = AU1100_GPIO20_INT;
  173. else
  174. irq = AU1100_GPIO15_INT; /* PB1100 SD1 CD# */
  175. if (en) {
  176. irq_set_irq_type(irq, IRQ_TYPE_EDGE_BOTH);
  177. ret = request_irq(irq, db1100_mmc_cd, 0,
  178. "sd1_cd", mmc_host);
  179. } else
  180. free_irq(irq, mmc_host);
  181. return ret;
  182. }
  183. static int db1100_mmc_card_readonly(void *mmc_host)
  184. {
  185. /* testing suggests that this bit is inverted */
  186. return (bcsr_read(BCSR_STATUS) & BCSR_STATUS_SD0WP) ? 0 : 1;
  187. }
  188. static int db1100_mmc_card_inserted(void *mmc_host)
  189. {
  190. return !alchemy_gpio_get_value(19);
  191. }
  192. static void db1100_mmc_set_power(void *mmc_host, int state)
  193. {
  194. int bit;
  195. if (BCSR_WHOAMI_BOARD(bcsr_read(BCSR_WHOAMI)) == BCSR_WHOAMI_DB1100)
  196. bit = BCSR_BOARD_SD0PWR;
  197. else
  198. bit = BCSR_BOARD_PB1100_SD0PWR;
  199. if (state) {
  200. bcsr_mod(BCSR_BOARD, 0, bit);
  201. msleep(400); /* stabilization time */
  202. } else
  203. bcsr_mod(BCSR_BOARD, bit, 0);
  204. }
  205. static void db1100_mmcled_set(struct led_classdev *led, enum led_brightness b)
  206. {
  207. if (b != LED_OFF)
  208. bcsr_mod(BCSR_LEDS, BCSR_LEDS_LED0, 0);
  209. else
  210. bcsr_mod(BCSR_LEDS, 0, BCSR_LEDS_LED0);
  211. }
  212. static struct led_classdev db1100_mmc_led = {
  213. .brightness_set = db1100_mmcled_set,
  214. };
  215. static int db1100_mmc1_card_readonly(void *mmc_host)
  216. {
  217. return (bcsr_read(BCSR_BOARD) & BCSR_BOARD_SD1WP) ? 1 : 0;
  218. }
  219. static int db1100_mmc1_card_inserted(void *mmc_host)
  220. {
  221. return !alchemy_gpio_get_value(20);
  222. }
  223. static void db1100_mmc1_set_power(void *mmc_host, int state)
  224. {
  225. int bit;
  226. if (BCSR_WHOAMI_BOARD(bcsr_read(BCSR_WHOAMI)) == BCSR_WHOAMI_DB1100)
  227. bit = BCSR_BOARD_SD1PWR;
  228. else
  229. bit = BCSR_BOARD_PB1100_SD1PWR;
  230. if (state) {
  231. bcsr_mod(BCSR_BOARD, 0, bit);
  232. msleep(400); /* stabilization time */
  233. } else
  234. bcsr_mod(BCSR_BOARD, bit, 0);
  235. }
  236. static void db1100_mmc1led_set(struct led_classdev *led, enum led_brightness b)
  237. {
  238. if (b != LED_OFF)
  239. bcsr_mod(BCSR_LEDS, BCSR_LEDS_LED1, 0);
  240. else
  241. bcsr_mod(BCSR_LEDS, 0, BCSR_LEDS_LED1);
  242. }
  243. static struct led_classdev db1100_mmc1_led = {
  244. .brightness_set = db1100_mmc1led_set,
  245. };
  246. static struct au1xmmc_platform_data db1100_mmc_platdata[2] = {
  247. [0] = {
  248. .cd_setup = db1100_mmc_cd_setup,
  249. .set_power = db1100_mmc_set_power,
  250. .card_inserted = db1100_mmc_card_inserted,
  251. .card_readonly = db1100_mmc_card_readonly,
  252. .led = &db1100_mmc_led,
  253. },
  254. [1] = {
  255. .cd_setup = db1100_mmc1_cd_setup,
  256. .set_power = db1100_mmc1_set_power,
  257. .card_inserted = db1100_mmc1_card_inserted,
  258. .card_readonly = db1100_mmc1_card_readonly,
  259. .led = &db1100_mmc1_led,
  260. },
  261. };
  262. static struct resource au1100_mmc0_resources[] = {
  263. [0] = {
  264. .start = AU1100_SD0_PHYS_ADDR,
  265. .end = AU1100_SD0_PHYS_ADDR + 0xfff,
  266. .flags = IORESOURCE_MEM,
  267. },
  268. [1] = {
  269. .start = AU1100_SD_INT,
  270. .end = AU1100_SD_INT,
  271. .flags = IORESOURCE_IRQ,
  272. },
  273. [2] = {
  274. .start = DMA_ID_SD0_TX,
  275. .end = DMA_ID_SD0_TX,
  276. .flags = IORESOURCE_DMA,
  277. },
  278. [3] = {
  279. .start = DMA_ID_SD0_RX,
  280. .end = DMA_ID_SD0_RX,
  281. .flags = IORESOURCE_DMA,
  282. }
  283. };
  284. static struct platform_device db1100_mmc0_dev = {
  285. .name = "au1xxx-mmc",
  286. .id = 0,
  287. .dev = {
  288. .dma_mask = &au1xxx_all_dmamask,
  289. .coherent_dma_mask = DMA_BIT_MASK(32),
  290. .platform_data = &db1100_mmc_platdata[0],
  291. },
  292. .num_resources = ARRAY_SIZE(au1100_mmc0_resources),
  293. .resource = au1100_mmc0_resources,
  294. };
  295. static struct resource au1100_mmc1_res[] = {
  296. [0] = {
  297. .start = AU1100_SD1_PHYS_ADDR,
  298. .end = AU1100_SD1_PHYS_ADDR + 0xfff,
  299. .flags = IORESOURCE_MEM,
  300. },
  301. [1] = {
  302. .start = AU1100_SD_INT,
  303. .end = AU1100_SD_INT,
  304. .flags = IORESOURCE_IRQ,
  305. },
  306. [2] = {
  307. .start = DMA_ID_SD1_TX,
  308. .end = DMA_ID_SD1_TX,
  309. .flags = IORESOURCE_DMA,
  310. },
  311. [3] = {
  312. .start = DMA_ID_SD1_RX,
  313. .end = DMA_ID_SD1_RX,
  314. .flags = IORESOURCE_DMA,
  315. }
  316. };
  317. static struct platform_device db1100_mmc1_dev = {
  318. .name = "au1xxx-mmc",
  319. .id = 1,
  320. .dev = {
  321. .dma_mask = &au1xxx_all_dmamask,
  322. .coherent_dma_mask = DMA_BIT_MASK(32),
  323. .platform_data = &db1100_mmc_platdata[1],
  324. },
  325. .num_resources = ARRAY_SIZE(au1100_mmc1_res),
  326. .resource = au1100_mmc1_res,
  327. };
  328. #endif /* CONFIG_MMC_AU1X */
  329. /******************************************************************************/
  330. static struct ads7846_platform_data db1100_touch_pd = {
  331. .model = 7846,
  332. .vref_mv = 3300,
  333. .gpio_pendown = 21,
  334. };
  335. static struct spi_gpio_platform_data db1100_spictl_pd = {
  336. .num_chipselect = 1,
  337. };
  338. static struct spi_board_info db1100_spi_info[] __initdata = {
  339. [0] = {
  340. .modalias = "ads7846",
  341. .max_speed_hz = 3250000,
  342. .bus_num = 0,
  343. .chip_select = 0,
  344. .mode = 0,
  345. .irq = AU1100_GPIO21_INT,
  346. .platform_data = &db1100_touch_pd,
  347. },
  348. };
  349. static struct platform_device db1100_spi_dev = {
  350. .name = "spi_gpio",
  351. .id = 0,
  352. .dev = {
  353. .platform_data = &db1100_spictl_pd,
  354. .dma_mask = &au1xxx_all_dmamask,
  355. .coherent_dma_mask = DMA_BIT_MASK(32),
  356. },
  357. };
  358. /*
  359. * Alchemy GPIO 2 has its base at 200 so the GPIO lines
  360. * 207 thru 210 are GPIOs at offset 7 thru 10 at this chip.
  361. */
  362. static struct gpiod_lookup_table db1100_spi_gpiod_table = {
  363. .dev_id = "spi_gpio",
  364. .table = {
  365. GPIO_LOOKUP("alchemy-gpio2", 9,
  366. "sck", GPIO_ACTIVE_HIGH),
  367. GPIO_LOOKUP("alchemy-gpio2", 8,
  368. "mosi", GPIO_ACTIVE_HIGH),
  369. GPIO_LOOKUP("alchemy-gpio2", 7,
  370. "miso", GPIO_ACTIVE_HIGH),
  371. GPIO_LOOKUP("alchemy-gpio2", 10,
  372. "cs", GPIO_ACTIVE_HIGH),
  373. { },
  374. },
  375. };
  376. static struct platform_device *db1x00_devs[] = {
  377. &db1x00_codec_dev,
  378. &alchemy_ac97c_dma_dev,
  379. &alchemy_ac97c_dev,
  380. &db1x00_audio_dev,
  381. };
  382. static struct platform_device *db1100_devs[] = {
  383. &au1100_lcd_device,
  384. #ifdef CONFIG_MMC_AU1X
  385. &db1100_mmc0_dev,
  386. &db1100_mmc1_dev,
  387. #endif
  388. };
  389. int __init db1000_dev_setup(void)
  390. {
  391. int board = BCSR_WHOAMI_BOARD(bcsr_read(BCSR_WHOAMI));
  392. int c0, c1, d0, d1, s0, s1, flashsize = 32, twosocks = 1;
  393. unsigned long pfc;
  394. struct clk *c, *p;
  395. if (board == BCSR_WHOAMI_DB1500) {
  396. c0 = AU1500_GPIO2_INT;
  397. c1 = AU1500_GPIO5_INT;
  398. d0 = 0; /* GPIO number, NOT irq! */
  399. d1 = 3; /* GPIO number, NOT irq! */
  400. s0 = AU1500_GPIO1_INT;
  401. s1 = AU1500_GPIO4_INT;
  402. } else if (board == BCSR_WHOAMI_DB1100) {
  403. c0 = AU1100_GPIO2_INT;
  404. c1 = AU1100_GPIO5_INT;
  405. d0 = 0; /* GPIO number, NOT irq! */
  406. d1 = 3; /* GPIO number, NOT irq! */
  407. s0 = AU1100_GPIO1_INT;
  408. s1 = AU1100_GPIO4_INT;
  409. gpio_request(19, "sd0_cd");
  410. gpio_request(20, "sd1_cd");
  411. gpio_direction_input(19); /* sd0 cd# */
  412. gpio_direction_input(20); /* sd1 cd# */
  413. /* spi_gpio on SSI0 pins */
  414. pfc = alchemy_rdsys(AU1000_SYS_PINFUNC);
  415. pfc |= (1 << 0); /* SSI0 pins as GPIOs */
  416. alchemy_wrsys(pfc, AU1000_SYS_PINFUNC);
  417. spi_register_board_info(db1100_spi_info,
  418. ARRAY_SIZE(db1100_spi_info));
  419. /* link LCD clock to AUXPLL */
  420. p = clk_get(NULL, "auxpll_clk");
  421. c = clk_get(NULL, "lcd_intclk");
  422. if (!IS_ERR(c) && !IS_ERR(p)) {
  423. clk_set_parent(c, p);
  424. clk_set_rate(c, clk_get_rate(p));
  425. }
  426. if (!IS_ERR(c))
  427. clk_put(c);
  428. if (!IS_ERR(p))
  429. clk_put(p);
  430. platform_add_devices(db1100_devs, ARRAY_SIZE(db1100_devs));
  431. gpiod_add_lookup_table(&db1100_spi_gpiod_table);
  432. platform_device_register(&db1100_spi_dev);
  433. } else if (board == BCSR_WHOAMI_DB1000) {
  434. c0 = AU1000_GPIO2_INT;
  435. c1 = AU1000_GPIO5_INT;
  436. d0 = 0; /* GPIO number, NOT irq! */
  437. d1 = 3; /* GPIO number, NOT irq! */
  438. s0 = AU1000_GPIO1_INT;
  439. s1 = AU1000_GPIO4_INT;
  440. } else if ((board == BCSR_WHOAMI_PB1500) ||
  441. (board == BCSR_WHOAMI_PB1500R2)) {
  442. c0 = AU1500_GPIO203_INT;
  443. d0 = 1; /* GPIO number, NOT irq! */
  444. s0 = AU1500_GPIO202_INT;
  445. twosocks = 0;
  446. flashsize = 64;
  447. /* RTC and daughtercard irqs */
  448. irq_set_irq_type(AU1500_GPIO204_INT, IRQ_TYPE_LEVEL_LOW);
  449. irq_set_irq_type(AU1500_GPIO205_INT, IRQ_TYPE_LEVEL_LOW);
  450. /* EPSON S1D13806 0x1b000000
  451. * SRAM 1MB/2MB 0x1a000000
  452. * DS1693 RTC 0x0c000000
  453. */
  454. } else if (board == BCSR_WHOAMI_PB1100) {
  455. c0 = AU1100_GPIO11_INT;
  456. d0 = 9; /* GPIO number, NOT irq! */
  457. s0 = AU1100_GPIO10_INT;
  458. twosocks = 0;
  459. flashsize = 64;
  460. /* pendown, rtc, daughtercard irqs */
  461. irq_set_irq_type(AU1100_GPIO8_INT, IRQ_TYPE_LEVEL_LOW);
  462. irq_set_irq_type(AU1100_GPIO12_INT, IRQ_TYPE_LEVEL_LOW);
  463. irq_set_irq_type(AU1100_GPIO13_INT, IRQ_TYPE_LEVEL_LOW);
  464. /* EPSON S1D13806 0x1b000000
  465. * SRAM 1MB/2MB 0x1a000000
  466. * DiskOnChip 0x0d000000
  467. * DS1693 RTC 0x0c000000
  468. */
  469. platform_add_devices(db1100_devs, ARRAY_SIZE(db1100_devs));
  470. } else
  471. return 0; /* unknown board, no further dev setup to do */
  472. irq_set_irq_type(c0, IRQ_TYPE_LEVEL_LOW);
  473. irq_set_irq_type(s0, IRQ_TYPE_LEVEL_LOW);
  474. db1x_register_pcmcia_socket(
  475. AU1000_PCMCIA_ATTR_PHYS_ADDR,
  476. AU1000_PCMCIA_ATTR_PHYS_ADDR + 0x000400000 - 1,
  477. AU1000_PCMCIA_MEM_PHYS_ADDR,
  478. AU1000_PCMCIA_MEM_PHYS_ADDR + 0x000400000 - 1,
  479. AU1000_PCMCIA_IO_PHYS_ADDR,
  480. AU1000_PCMCIA_IO_PHYS_ADDR + 0x000010000 - 1,
  481. c0, d0, /*s0*/0, 0, 0);
  482. if (twosocks) {
  483. irq_set_irq_type(c1, IRQ_TYPE_LEVEL_LOW);
  484. irq_set_irq_type(s1, IRQ_TYPE_LEVEL_LOW);
  485. db1x_register_pcmcia_socket(
  486. AU1000_PCMCIA_ATTR_PHYS_ADDR + 0x004000000,
  487. AU1000_PCMCIA_ATTR_PHYS_ADDR + 0x004400000 - 1,
  488. AU1000_PCMCIA_MEM_PHYS_ADDR + 0x004000000,
  489. AU1000_PCMCIA_MEM_PHYS_ADDR + 0x004400000 - 1,
  490. AU1000_PCMCIA_IO_PHYS_ADDR + 0x004000000,
  491. AU1000_PCMCIA_IO_PHYS_ADDR + 0x004010000 - 1,
  492. c1, d1, /*s1*/0, 0, 1);
  493. }
  494. platform_add_devices(db1x00_devs, ARRAY_SIZE(db1x00_devs));
  495. db1x_register_norflash(flashsize << 20, 4 /* 32bit */, F_SWAPPED);
  496. return 0;
  497. }