process.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Architecture-specific setup.
  4. *
  5. * Copyright (C) 1998-2003 Hewlett-Packard Co
  6. * David Mosberger-Tang <[email protected]>
  7. * 04/11/17 Ashok Raj <[email protected]> Added CPU Hotplug Support
  8. *
  9. * 2005-10-07 Keith Owens <[email protected]>
  10. * Add notify_die() hooks.
  11. */
  12. #include <linux/cpu.h>
  13. #include <linux/pm.h>
  14. #include <linux/elf.h>
  15. #include <linux/errno.h>
  16. #include <linux/kernel.h>
  17. #include <linux/mm.h>
  18. #include <linux/slab.h>
  19. #include <linux/module.h>
  20. #include <linux/notifier.h>
  21. #include <linux/personality.h>
  22. #include <linux/reboot.h>
  23. #include <linux/sched.h>
  24. #include <linux/sched/debug.h>
  25. #include <linux/sched/hotplug.h>
  26. #include <linux/sched/task.h>
  27. #include <linux/sched/task_stack.h>
  28. #include <linux/stddef.h>
  29. #include <linux/thread_info.h>
  30. #include <linux/unistd.h>
  31. #include <linux/efi.h>
  32. #include <linux/interrupt.h>
  33. #include <linux/delay.h>
  34. #include <linux/kdebug.h>
  35. #include <linux/utsname.h>
  36. #include <linux/resume_user_mode.h>
  37. #include <linux/rcupdate.h>
  38. #include <asm/cpu.h>
  39. #include <asm/delay.h>
  40. #include <asm/elf.h>
  41. #include <asm/irq.h>
  42. #include <asm/kexec.h>
  43. #include <asm/processor.h>
  44. #include <asm/sal.h>
  45. #include <asm/switch_to.h>
  46. #include <asm/tlbflush.h>
  47. #include <linux/uaccess.h>
  48. #include <asm/unwind.h>
  49. #include <asm/user.h>
  50. #include <asm/xtp.h>
  51. #include "entry.h"
  52. #include "sigframe.h"
  53. void (*ia64_mark_idle)(int);
  54. unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
  55. EXPORT_SYMBOL(boot_option_idle_override);
  56. void (*pm_power_off) (void);
  57. EXPORT_SYMBOL(pm_power_off);
  58. static void
  59. ia64_do_show_stack (struct unw_frame_info *info, void *arg)
  60. {
  61. unsigned long ip, sp, bsp;
  62. const char *loglvl = arg;
  63. printk("%s\nCall Trace:\n", loglvl);
  64. do {
  65. unw_get_ip(info, &ip);
  66. if (ip == 0)
  67. break;
  68. unw_get_sp(info, &sp);
  69. unw_get_bsp(info, &bsp);
  70. printk("%s [<%016lx>] %pS\n"
  71. " sp=%016lx bsp=%016lx\n",
  72. loglvl, ip, (void *)ip, sp, bsp);
  73. } while (unw_unwind(info) >= 0);
  74. }
  75. void
  76. show_stack (struct task_struct *task, unsigned long *sp, const char *loglvl)
  77. {
  78. if (!task)
  79. unw_init_running(ia64_do_show_stack, (void *)loglvl);
  80. else {
  81. struct unw_frame_info info;
  82. unw_init_from_blocked_task(&info, task);
  83. ia64_do_show_stack(&info, (void *)loglvl);
  84. }
  85. }
  86. void
  87. show_regs (struct pt_regs *regs)
  88. {
  89. unsigned long ip = regs->cr_iip + ia64_psr(regs)->ri;
  90. print_modules();
  91. printk("\n");
  92. show_regs_print_info(KERN_DEFAULT);
  93. printk("psr : %016lx ifs : %016lx ip : [<%016lx>] %s (%s)\n",
  94. regs->cr_ipsr, regs->cr_ifs, ip, print_tainted(),
  95. init_utsname()->release);
  96. printk("ip is at %pS\n", (void *)ip);
  97. printk("unat: %016lx pfs : %016lx rsc : %016lx\n",
  98. regs->ar_unat, regs->ar_pfs, regs->ar_rsc);
  99. printk("rnat: %016lx bsps: %016lx pr : %016lx\n",
  100. regs->ar_rnat, regs->ar_bspstore, regs->pr);
  101. printk("ldrs: %016lx ccv : %016lx fpsr: %016lx\n",
  102. regs->loadrs, regs->ar_ccv, regs->ar_fpsr);
  103. printk("csd : %016lx ssd : %016lx\n", regs->ar_csd, regs->ar_ssd);
  104. printk("b0 : %016lx b6 : %016lx b7 : %016lx\n", regs->b0, regs->b6, regs->b7);
  105. printk("f6 : %05lx%016lx f7 : %05lx%016lx\n",
  106. regs->f6.u.bits[1], regs->f6.u.bits[0],
  107. regs->f7.u.bits[1], regs->f7.u.bits[0]);
  108. printk("f8 : %05lx%016lx f9 : %05lx%016lx\n",
  109. regs->f8.u.bits[1], regs->f8.u.bits[0],
  110. regs->f9.u.bits[1], regs->f9.u.bits[0]);
  111. printk("f10 : %05lx%016lx f11 : %05lx%016lx\n",
  112. regs->f10.u.bits[1], regs->f10.u.bits[0],
  113. regs->f11.u.bits[1], regs->f11.u.bits[0]);
  114. printk("r1 : %016lx r2 : %016lx r3 : %016lx\n", regs->r1, regs->r2, regs->r3);
  115. printk("r8 : %016lx r9 : %016lx r10 : %016lx\n", regs->r8, regs->r9, regs->r10);
  116. printk("r11 : %016lx r12 : %016lx r13 : %016lx\n", regs->r11, regs->r12, regs->r13);
  117. printk("r14 : %016lx r15 : %016lx r16 : %016lx\n", regs->r14, regs->r15, regs->r16);
  118. printk("r17 : %016lx r18 : %016lx r19 : %016lx\n", regs->r17, regs->r18, regs->r19);
  119. printk("r20 : %016lx r21 : %016lx r22 : %016lx\n", regs->r20, regs->r21, regs->r22);
  120. printk("r23 : %016lx r24 : %016lx r25 : %016lx\n", regs->r23, regs->r24, regs->r25);
  121. printk("r26 : %016lx r27 : %016lx r28 : %016lx\n", regs->r26, regs->r27, regs->r28);
  122. printk("r29 : %016lx r30 : %016lx r31 : %016lx\n", regs->r29, regs->r30, regs->r31);
  123. if (user_mode(regs)) {
  124. /* print the stacked registers */
  125. unsigned long val, *bsp, ndirty;
  126. int i, sof, is_nat = 0;
  127. sof = regs->cr_ifs & 0x7f; /* size of frame */
  128. ndirty = (regs->loadrs >> 19);
  129. bsp = ia64_rse_skip_regs((unsigned long *) regs->ar_bspstore, ndirty);
  130. for (i = 0; i < sof; ++i) {
  131. get_user(val, (unsigned long __user *) ia64_rse_skip_regs(bsp, i));
  132. printk("r%-3u:%c%016lx%s", 32 + i, is_nat ? '*' : ' ', val,
  133. ((i == sof - 1) || (i % 3) == 2) ? "\n" : " ");
  134. }
  135. } else
  136. show_stack(NULL, NULL, KERN_DEFAULT);
  137. }
  138. /* local support for deprecated console_print */
  139. void
  140. console_print(const char *s)
  141. {
  142. printk(KERN_EMERG "%s", s);
  143. }
  144. void
  145. do_notify_resume_user(sigset_t *unused, struct sigscratch *scr, long in_syscall)
  146. {
  147. if (fsys_mode(current, &scr->pt)) {
  148. /*
  149. * defer signal-handling etc. until we return to
  150. * privilege-level 0.
  151. */
  152. if (!ia64_psr(&scr->pt)->lp)
  153. ia64_psr(&scr->pt)->lp = 1;
  154. return;
  155. }
  156. /* deal with pending signal delivery */
  157. if (test_thread_flag(TIF_SIGPENDING) ||
  158. test_thread_flag(TIF_NOTIFY_SIGNAL)) {
  159. local_irq_enable(); /* force interrupt enable */
  160. ia64_do_signal(scr, in_syscall);
  161. }
  162. if (test_thread_flag(TIF_NOTIFY_RESUME)) {
  163. local_irq_enable(); /* force interrupt enable */
  164. resume_user_mode_work(&scr->pt);
  165. }
  166. /* copy user rbs to kernel rbs */
  167. if (unlikely(test_thread_flag(TIF_RESTORE_RSE))) {
  168. local_irq_enable(); /* force interrupt enable */
  169. ia64_sync_krbs();
  170. }
  171. local_irq_disable(); /* force interrupt disable */
  172. }
  173. static int __init nohalt_setup(char * str)
  174. {
  175. cpu_idle_poll_ctrl(true);
  176. return 1;
  177. }
  178. __setup("nohalt", nohalt_setup);
  179. #ifdef CONFIG_HOTPLUG_CPU
  180. /* We don't actually take CPU down, just spin without interrupts. */
  181. static inline void play_dead(void)
  182. {
  183. unsigned int this_cpu = smp_processor_id();
  184. /* Ack it */
  185. __this_cpu_write(cpu_state, CPU_DEAD);
  186. max_xtp();
  187. local_irq_disable();
  188. idle_task_exit();
  189. ia64_jump_to_sal(&sal_boot_rendez_state[this_cpu]);
  190. /*
  191. * The above is a point of no-return, the processor is
  192. * expected to be in SAL loop now.
  193. */
  194. BUG();
  195. }
  196. #else
  197. static inline void play_dead(void)
  198. {
  199. BUG();
  200. }
  201. #endif /* CONFIG_HOTPLUG_CPU */
  202. void arch_cpu_idle_dead(void)
  203. {
  204. play_dead();
  205. }
  206. void arch_cpu_idle(void)
  207. {
  208. void (*mark_idle)(int) = ia64_mark_idle;
  209. #ifdef CONFIG_SMP
  210. min_xtp();
  211. #endif
  212. rmb();
  213. if (mark_idle)
  214. (*mark_idle)(1);
  215. raw_safe_halt();
  216. if (mark_idle)
  217. (*mark_idle)(0);
  218. #ifdef CONFIG_SMP
  219. normal_xtp();
  220. #endif
  221. }
  222. void
  223. ia64_save_extra (struct task_struct *task)
  224. {
  225. if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
  226. ia64_save_debug_regs(&task->thread.dbr[0]);
  227. }
  228. void
  229. ia64_load_extra (struct task_struct *task)
  230. {
  231. if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
  232. ia64_load_debug_regs(&task->thread.dbr[0]);
  233. }
  234. /*
  235. * Copy the state of an ia-64 thread.
  236. *
  237. * We get here through the following call chain:
  238. *
  239. * from user-level: from kernel:
  240. *
  241. * <clone syscall> <some kernel call frames>
  242. * sys_clone :
  243. * kernel_clone kernel_clone
  244. * copy_thread copy_thread
  245. *
  246. * This means that the stack layout is as follows:
  247. *
  248. * +---------------------+ (highest addr)
  249. * | struct pt_regs |
  250. * +---------------------+
  251. * | struct switch_stack |
  252. * +---------------------+
  253. * | |
  254. * | memory stack |
  255. * | | <-- sp (lowest addr)
  256. * +---------------------+
  257. *
  258. * Observe that we copy the unat values that are in pt_regs and switch_stack. Spilling an
  259. * integer to address X causes bit N in ar.unat to be set to the NaT bit of the register,
  260. * with N=(X & 0x1ff)/8. Thus, copying the unat value preserves the NaT bits ONLY if the
  261. * pt_regs structure in the parent is congruent to that of the child, modulo 512. Since
  262. * the stack is page aligned and the page size is at least 4KB, this is always the case,
  263. * so there is nothing to worry about.
  264. */
  265. int
  266. copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
  267. {
  268. unsigned long clone_flags = args->flags;
  269. unsigned long user_stack_base = args->stack;
  270. unsigned long user_stack_size = args->stack_size;
  271. unsigned long tls = args->tls;
  272. extern char ia64_ret_from_clone;
  273. struct switch_stack *child_stack, *stack;
  274. unsigned long rbs, child_rbs, rbs_size;
  275. struct pt_regs *child_ptregs;
  276. struct pt_regs *regs = current_pt_regs();
  277. int retval = 0;
  278. child_ptregs = (struct pt_regs *) ((unsigned long) p + IA64_STK_OFFSET) - 1;
  279. child_stack = (struct switch_stack *) child_ptregs - 1;
  280. rbs = (unsigned long) current + IA64_RBS_OFFSET;
  281. child_rbs = (unsigned long) p + IA64_RBS_OFFSET;
  282. /* copy parts of thread_struct: */
  283. p->thread.ksp = (unsigned long) child_stack - 16;
  284. /*
  285. * NOTE: The calling convention considers all floating point
  286. * registers in the high partition (fph) to be scratch. Since
  287. * the only way to get to this point is through a system call,
  288. * we know that the values in fph are all dead. Hence, there
  289. * is no need to inherit the fph state from the parent to the
  290. * child and all we have to do is to make sure that
  291. * IA64_THREAD_FPH_VALID is cleared in the child.
  292. *
  293. * XXX We could push this optimization a bit further by
  294. * clearing IA64_THREAD_FPH_VALID on ANY system call.
  295. * However, it's not clear this is worth doing. Also, it
  296. * would be a slight deviation from the normal Linux system
  297. * call behavior where scratch registers are preserved across
  298. * system calls (unless used by the system call itself).
  299. */
  300. # define THREAD_FLAGS_TO_CLEAR (IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID \
  301. | IA64_THREAD_PM_VALID)
  302. # define THREAD_FLAGS_TO_SET 0
  303. p->thread.flags = ((current->thread.flags & ~THREAD_FLAGS_TO_CLEAR)
  304. | THREAD_FLAGS_TO_SET);
  305. ia64_drop_fpu(p); /* don't pick up stale state from a CPU's fph */
  306. if (unlikely(args->fn)) {
  307. if (unlikely(args->idle)) {
  308. /* fork_idle() called us */
  309. return 0;
  310. }
  311. memset(child_stack, 0, sizeof(*child_ptregs) + sizeof(*child_stack));
  312. child_stack->r4 = (unsigned long) args->fn;
  313. child_stack->r5 = (unsigned long) args->fn_arg;
  314. /*
  315. * Preserve PSR bits, except for bits 32-34 and 37-45,
  316. * which we can't read.
  317. */
  318. child_ptregs->cr_ipsr = ia64_getreg(_IA64_REG_PSR) | IA64_PSR_BN;
  319. /* mark as valid, empty frame */
  320. child_ptregs->cr_ifs = 1UL << 63;
  321. child_stack->ar_fpsr = child_ptregs->ar_fpsr
  322. = ia64_getreg(_IA64_REG_AR_FPSR);
  323. child_stack->pr = (1 << PRED_KERNEL_STACK);
  324. child_stack->ar_bspstore = child_rbs;
  325. child_stack->b0 = (unsigned long) &ia64_ret_from_clone;
  326. /* stop some PSR bits from being inherited.
  327. * the psr.up/psr.pp bits must be cleared on fork but inherited on execve()
  328. * therefore we must specify them explicitly here and not include them in
  329. * IA64_PSR_BITS_TO_CLEAR.
  330. */
  331. child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET)
  332. & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP));
  333. return 0;
  334. }
  335. stack = ((struct switch_stack *) regs) - 1;
  336. /* copy parent's switch_stack & pt_regs to child: */
  337. memcpy(child_stack, stack, sizeof(*child_ptregs) + sizeof(*child_stack));
  338. /* copy the parent's register backing store to the child: */
  339. rbs_size = stack->ar_bspstore - rbs;
  340. memcpy((void *) child_rbs, (void *) rbs, rbs_size);
  341. if (clone_flags & CLONE_SETTLS)
  342. child_ptregs->r13 = tls;
  343. if (user_stack_base) {
  344. child_ptregs->r12 = user_stack_base + user_stack_size - 16;
  345. child_ptregs->ar_bspstore = user_stack_base;
  346. child_ptregs->ar_rnat = 0;
  347. child_ptregs->loadrs = 0;
  348. }
  349. child_stack->ar_bspstore = child_rbs + rbs_size;
  350. child_stack->b0 = (unsigned long) &ia64_ret_from_clone;
  351. /* stop some PSR bits from being inherited.
  352. * the psr.up/psr.pp bits must be cleared on fork but inherited on execve()
  353. * therefore we must specify them explicitly here and not include them in
  354. * IA64_PSR_BITS_TO_CLEAR.
  355. */
  356. child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET)
  357. & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP));
  358. return retval;
  359. }
  360. asmlinkage long ia64_clone(unsigned long clone_flags, unsigned long stack_start,
  361. unsigned long stack_size, unsigned long parent_tidptr,
  362. unsigned long child_tidptr, unsigned long tls)
  363. {
  364. struct kernel_clone_args args = {
  365. .flags = (lower_32_bits(clone_flags) & ~CSIGNAL),
  366. .pidfd = (int __user *)parent_tidptr,
  367. .child_tid = (int __user *)child_tidptr,
  368. .parent_tid = (int __user *)parent_tidptr,
  369. .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL),
  370. .stack = stack_start,
  371. .stack_size = stack_size,
  372. .tls = tls,
  373. };
  374. return kernel_clone(&args);
  375. }
  376. static void
  377. do_copy_task_regs (struct task_struct *task, struct unw_frame_info *info, void *arg)
  378. {
  379. unsigned long mask, sp, nat_bits = 0, ar_rnat, urbs_end, cfm;
  380. unsigned long ip;
  381. elf_greg_t *dst = arg;
  382. struct pt_regs *pt;
  383. char nat;
  384. int i;
  385. memset(dst, 0, sizeof(elf_gregset_t)); /* don't leak any kernel bits to user-level */
  386. if (unw_unwind_to_user(info) < 0)
  387. return;
  388. unw_get_sp(info, &sp);
  389. pt = (struct pt_regs *) (sp + 16);
  390. urbs_end = ia64_get_user_rbs_end(task, pt, &cfm);
  391. if (ia64_sync_user_rbs(task, info->sw, pt->ar_bspstore, urbs_end) < 0)
  392. return;
  393. ia64_peek(task, info->sw, urbs_end, (long) ia64_rse_rnat_addr((long *) urbs_end),
  394. &ar_rnat);
  395. /*
  396. * coredump format:
  397. * r0-r31
  398. * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
  399. * predicate registers (p0-p63)
  400. * b0-b7
  401. * ip cfm user-mask
  402. * ar.rsc ar.bsp ar.bspstore ar.rnat
  403. * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
  404. */
  405. /* r0 is zero */
  406. for (i = 1, mask = (1UL << i); i < 32; ++i) {
  407. unw_get_gr(info, i, &dst[i], &nat);
  408. if (nat)
  409. nat_bits |= mask;
  410. mask <<= 1;
  411. }
  412. dst[32] = nat_bits;
  413. unw_get_pr(info, &dst[33]);
  414. for (i = 0; i < 8; ++i)
  415. unw_get_br(info, i, &dst[34 + i]);
  416. unw_get_rp(info, &ip);
  417. dst[42] = ip + ia64_psr(pt)->ri;
  418. dst[43] = cfm;
  419. dst[44] = pt->cr_ipsr & IA64_PSR_UM;
  420. unw_get_ar(info, UNW_AR_RSC, &dst[45]);
  421. /*
  422. * For bsp and bspstore, unw_get_ar() would return the kernel
  423. * addresses, but we need the user-level addresses instead:
  424. */
  425. dst[46] = urbs_end; /* note: by convention PT_AR_BSP points to the end of the urbs! */
  426. dst[47] = pt->ar_bspstore;
  427. dst[48] = ar_rnat;
  428. unw_get_ar(info, UNW_AR_CCV, &dst[49]);
  429. unw_get_ar(info, UNW_AR_UNAT, &dst[50]);
  430. unw_get_ar(info, UNW_AR_FPSR, &dst[51]);
  431. dst[52] = pt->ar_pfs; /* UNW_AR_PFS is == to pt->cr_ifs for interrupt frames */
  432. unw_get_ar(info, UNW_AR_LC, &dst[53]);
  433. unw_get_ar(info, UNW_AR_EC, &dst[54]);
  434. unw_get_ar(info, UNW_AR_CSD, &dst[55]);
  435. unw_get_ar(info, UNW_AR_SSD, &dst[56]);
  436. }
  437. static void
  438. do_copy_regs (struct unw_frame_info *info, void *arg)
  439. {
  440. do_copy_task_regs(current, info, arg);
  441. }
  442. void
  443. ia64_elf_core_copy_regs (struct pt_regs *pt, elf_gregset_t dst)
  444. {
  445. unw_init_running(do_copy_regs, dst);
  446. }
  447. /*
  448. * Flush thread state. This is called when a thread does an execve().
  449. */
  450. void
  451. flush_thread (void)
  452. {
  453. /* drop floating-point and debug-register state if it exists: */
  454. current->thread.flags &= ~(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID);
  455. ia64_drop_fpu(current);
  456. }
  457. /*
  458. * Clean up state associated with a thread. This is called when
  459. * the thread calls exit().
  460. */
  461. void
  462. exit_thread (struct task_struct *tsk)
  463. {
  464. ia64_drop_fpu(tsk);
  465. }
  466. unsigned long
  467. __get_wchan (struct task_struct *p)
  468. {
  469. struct unw_frame_info info;
  470. unsigned long ip;
  471. int count = 0;
  472. /*
  473. * Note: p may not be a blocked task (it could be current or
  474. * another process running on some other CPU. Rather than
  475. * trying to determine if p is really blocked, we just assume
  476. * it's blocked and rely on the unwind routines to fail
  477. * gracefully if the process wasn't really blocked after all.
  478. * --davidm 99/12/15
  479. */
  480. unw_init_from_blocked_task(&info, p);
  481. do {
  482. if (task_is_running(p))
  483. return 0;
  484. if (unw_unwind(&info) < 0)
  485. return 0;
  486. unw_get_ip(&info, &ip);
  487. if (!in_sched_functions(ip))
  488. return ip;
  489. } while (count++ < 16);
  490. return 0;
  491. }
  492. void
  493. cpu_halt (void)
  494. {
  495. pal_power_mgmt_info_u_t power_info[8];
  496. unsigned long min_power;
  497. int i, min_power_state;
  498. if (ia64_pal_halt_info(power_info) != 0)
  499. return;
  500. min_power_state = 0;
  501. min_power = power_info[0].pal_power_mgmt_info_s.power_consumption;
  502. for (i = 1; i < 8; ++i)
  503. if (power_info[i].pal_power_mgmt_info_s.im
  504. && power_info[i].pal_power_mgmt_info_s.power_consumption < min_power) {
  505. min_power = power_info[i].pal_power_mgmt_info_s.power_consumption;
  506. min_power_state = i;
  507. }
  508. while (1)
  509. ia64_pal_halt(min_power_state);
  510. }
  511. void machine_shutdown(void)
  512. {
  513. smp_shutdown_nonboot_cpus(reboot_cpu);
  514. #ifdef CONFIG_KEXEC
  515. kexec_disable_iosapic();
  516. #endif
  517. }
  518. void
  519. machine_restart (char *restart_cmd)
  520. {
  521. (void) notify_die(DIE_MACHINE_RESTART, restart_cmd, NULL, 0, 0, 0);
  522. efi_reboot(REBOOT_WARM, NULL);
  523. }
  524. void
  525. machine_halt (void)
  526. {
  527. (void) notify_die(DIE_MACHINE_HALT, "", NULL, 0, 0, 0);
  528. cpu_halt();
  529. }
  530. void
  531. machine_power_off (void)
  532. {
  533. do_kernel_power_off();
  534. machine_halt();
  535. }
  536. EXPORT_SYMBOL(ia64_delay_loop);