ptdump.c 8.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2014, The Linux Foundation. All rights reserved.
  4. * Debug helper to dump the current kernel pagetables of the system
  5. * so that we can see what the various memory ranges are set to.
  6. *
  7. * Derived from x86 and arm implementation:
  8. * (C) Copyright 2008 Intel Corporation
  9. *
  10. * Author: Arjan van de Ven <[email protected]>
  11. */
  12. #include <linux/debugfs.h>
  13. #include <linux/errno.h>
  14. #include <linux/fs.h>
  15. #include <linux/io.h>
  16. #include <linux/init.h>
  17. #include <linux/mm.h>
  18. #include <linux/ptdump.h>
  19. #include <linux/sched.h>
  20. #include <linux/seq_file.h>
  21. #include <asm/fixmap.h>
  22. #include <asm/kasan.h>
  23. #include <asm/memory.h>
  24. #include <asm/pgtable-hwdef.h>
  25. #include <asm/ptdump.h>
  26. enum address_markers_idx {
  27. PAGE_OFFSET_NR = 0,
  28. PAGE_END_NR,
  29. #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
  30. KASAN_START_NR,
  31. #endif
  32. };
  33. static struct addr_marker address_markers[] = {
  34. { PAGE_OFFSET, "Linear Mapping start" },
  35. { 0 /* PAGE_END */, "Linear Mapping end" },
  36. #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
  37. { 0 /* KASAN_SHADOW_START */, "Kasan shadow start" },
  38. { KASAN_SHADOW_END, "Kasan shadow end" },
  39. #endif
  40. { MODULES_VADDR, "Modules start" },
  41. { MODULES_END, "Modules end" },
  42. { VMALLOC_START, "vmalloc() area" },
  43. { VMALLOC_END, "vmalloc() end" },
  44. { FIXADDR_START, "Fixmap start" },
  45. { FIXADDR_TOP, "Fixmap end" },
  46. { PCI_IO_START, "PCI I/O start" },
  47. { PCI_IO_END, "PCI I/O end" },
  48. { VMEMMAP_START, "vmemmap start" },
  49. { VMEMMAP_START + VMEMMAP_SIZE, "vmemmap end" },
  50. { -1, NULL },
  51. };
  52. #define pt_dump_seq_printf(m, fmt, args...) \
  53. ({ \
  54. if (m) \
  55. seq_printf(m, fmt, ##args); \
  56. })
  57. #define pt_dump_seq_puts(m, fmt) \
  58. ({ \
  59. if (m) \
  60. seq_printf(m, fmt); \
  61. })
  62. /*
  63. * The page dumper groups page table entries of the same type into a single
  64. * description. It uses pg_state to track the range information while
  65. * iterating over the pte entries. When the continuity is broken it then
  66. * dumps out a description of the range.
  67. */
  68. struct pg_state {
  69. struct ptdump_state ptdump;
  70. struct seq_file *seq;
  71. const struct addr_marker *marker;
  72. unsigned long start_address;
  73. int level;
  74. u64 current_prot;
  75. bool check_wx;
  76. unsigned long wx_pages;
  77. unsigned long uxn_pages;
  78. };
  79. struct prot_bits {
  80. u64 mask;
  81. u64 val;
  82. const char *set;
  83. const char *clear;
  84. };
  85. static const struct prot_bits pte_bits[] = {
  86. {
  87. .mask = PTE_VALID,
  88. .val = PTE_VALID,
  89. .set = " ",
  90. .clear = "F",
  91. }, {
  92. .mask = PTE_USER,
  93. .val = PTE_USER,
  94. .set = "USR",
  95. .clear = " ",
  96. }, {
  97. .mask = PTE_RDONLY,
  98. .val = PTE_RDONLY,
  99. .set = "ro",
  100. .clear = "RW",
  101. }, {
  102. .mask = PTE_PXN,
  103. .val = PTE_PXN,
  104. .set = "NX",
  105. .clear = "x ",
  106. }, {
  107. .mask = PTE_SHARED,
  108. .val = PTE_SHARED,
  109. .set = "SHD",
  110. .clear = " ",
  111. }, {
  112. .mask = PTE_AF,
  113. .val = PTE_AF,
  114. .set = "AF",
  115. .clear = " ",
  116. }, {
  117. .mask = PTE_NG,
  118. .val = PTE_NG,
  119. .set = "NG",
  120. .clear = " ",
  121. }, {
  122. .mask = PTE_CONT,
  123. .val = PTE_CONT,
  124. .set = "CON",
  125. .clear = " ",
  126. }, {
  127. .mask = PTE_TABLE_BIT,
  128. .val = PTE_TABLE_BIT,
  129. .set = " ",
  130. .clear = "BLK",
  131. }, {
  132. .mask = PTE_UXN,
  133. .val = PTE_UXN,
  134. .set = "UXN",
  135. .clear = " ",
  136. }, {
  137. .mask = PTE_GP,
  138. .val = PTE_GP,
  139. .set = "GP",
  140. .clear = " ",
  141. }, {
  142. .mask = PTE_ATTRINDX_MASK,
  143. .val = PTE_ATTRINDX(MT_DEVICE_nGnRnE),
  144. .set = "DEVICE/nGnRnE",
  145. }, {
  146. .mask = PTE_ATTRINDX_MASK,
  147. .val = PTE_ATTRINDX(MT_DEVICE_nGnRE),
  148. .set = "DEVICE/nGnRE",
  149. }, {
  150. .mask = PTE_ATTRINDX_MASK,
  151. .val = PTE_ATTRINDX(MT_NORMAL_NC),
  152. .set = "MEM/NORMAL-NC",
  153. }, {
  154. .mask = PTE_ATTRINDX_MASK,
  155. .val = PTE_ATTRINDX(MT_NORMAL),
  156. .set = "MEM/NORMAL",
  157. }, {
  158. .mask = PTE_ATTRINDX_MASK,
  159. .val = PTE_ATTRINDX(MT_NORMAL_TAGGED),
  160. .set = "MEM/NORMAL-TAGGED",
  161. }
  162. };
  163. struct pg_level {
  164. const struct prot_bits *bits;
  165. const char *name;
  166. size_t num;
  167. u64 mask;
  168. };
  169. static struct pg_level pg_level[] = {
  170. { /* pgd */
  171. .name = "PGD",
  172. .bits = pte_bits,
  173. .num = ARRAY_SIZE(pte_bits),
  174. }, { /* p4d */
  175. .name = "P4D",
  176. .bits = pte_bits,
  177. .num = ARRAY_SIZE(pte_bits),
  178. }, { /* pud */
  179. .name = (CONFIG_PGTABLE_LEVELS > 3) ? "PUD" : "PGD",
  180. .bits = pte_bits,
  181. .num = ARRAY_SIZE(pte_bits),
  182. }, { /* pmd */
  183. .name = (CONFIG_PGTABLE_LEVELS > 2) ? "PMD" : "PGD",
  184. .bits = pte_bits,
  185. .num = ARRAY_SIZE(pte_bits),
  186. }, { /* pte */
  187. .name = "PTE",
  188. .bits = pte_bits,
  189. .num = ARRAY_SIZE(pte_bits),
  190. },
  191. };
  192. static void dump_prot(struct pg_state *st, const struct prot_bits *bits,
  193. size_t num)
  194. {
  195. unsigned i;
  196. for (i = 0; i < num; i++, bits++) {
  197. const char *s;
  198. if ((st->current_prot & bits->mask) == bits->val)
  199. s = bits->set;
  200. else
  201. s = bits->clear;
  202. if (s)
  203. pt_dump_seq_printf(st->seq, " %s", s);
  204. }
  205. }
  206. static void note_prot_uxn(struct pg_state *st, unsigned long addr)
  207. {
  208. if (!st->check_wx)
  209. return;
  210. if ((st->current_prot & PTE_UXN) == PTE_UXN)
  211. return;
  212. WARN_ONCE(1, "arm64/mm: Found non-UXN mapping at address %p/%pS\n",
  213. (void *)st->start_address, (void *)st->start_address);
  214. st->uxn_pages += (addr - st->start_address) / PAGE_SIZE;
  215. }
  216. static void note_prot_wx(struct pg_state *st, unsigned long addr)
  217. {
  218. if (!st->check_wx)
  219. return;
  220. if ((st->current_prot & PTE_RDONLY) == PTE_RDONLY)
  221. return;
  222. if ((st->current_prot & PTE_PXN) == PTE_PXN)
  223. return;
  224. WARN_ONCE(1, "arm64/mm: Found insecure W+X mapping at address %p/%pS\n",
  225. (void *)st->start_address, (void *)st->start_address);
  226. st->wx_pages += (addr - st->start_address) / PAGE_SIZE;
  227. }
  228. static void note_page(struct ptdump_state *pt_st, unsigned long addr, int level,
  229. u64 val)
  230. {
  231. struct pg_state *st = container_of(pt_st, struct pg_state, ptdump);
  232. static const char units[] = "KMGTPE";
  233. u64 prot = 0;
  234. if (level >= 0)
  235. prot = val & pg_level[level].mask;
  236. if (st->level == -1) {
  237. st->level = level;
  238. st->current_prot = prot;
  239. st->start_address = addr;
  240. pt_dump_seq_printf(st->seq, "---[ %s ]---\n", st->marker->name);
  241. } else if (prot != st->current_prot || level != st->level ||
  242. addr >= st->marker[1].start_address) {
  243. const char *unit = units;
  244. unsigned long delta;
  245. if (st->current_prot) {
  246. note_prot_uxn(st, addr);
  247. note_prot_wx(st, addr);
  248. }
  249. pt_dump_seq_printf(st->seq, "0x%016lx-0x%016lx ",
  250. st->start_address, addr);
  251. delta = (addr - st->start_address) >> 10;
  252. while (!(delta & 1023) && unit[1]) {
  253. delta >>= 10;
  254. unit++;
  255. }
  256. pt_dump_seq_printf(st->seq, "%9lu%c %s", delta, *unit,
  257. pg_level[st->level].name);
  258. if (st->current_prot && pg_level[st->level].bits)
  259. dump_prot(st, pg_level[st->level].bits,
  260. pg_level[st->level].num);
  261. pt_dump_seq_puts(st->seq, "\n");
  262. if (addr >= st->marker[1].start_address) {
  263. st->marker++;
  264. pt_dump_seq_printf(st->seq, "---[ %s ]---\n", st->marker->name);
  265. }
  266. st->start_address = addr;
  267. st->current_prot = prot;
  268. st->level = level;
  269. }
  270. if (addr >= st->marker[1].start_address) {
  271. st->marker++;
  272. pt_dump_seq_printf(st->seq, "---[ %s ]---\n", st->marker->name);
  273. }
  274. }
  275. void ptdump_walk(struct seq_file *s, struct ptdump_info *info)
  276. {
  277. unsigned long end = ~0UL;
  278. struct pg_state st;
  279. if (info->base_addr < TASK_SIZE_64)
  280. end = TASK_SIZE_64;
  281. st = (struct pg_state){
  282. .seq = s,
  283. .marker = info->markers,
  284. .level = -1,
  285. .ptdump = {
  286. .note_page = note_page,
  287. .range = (struct ptdump_range[]){
  288. {info->base_addr, end},
  289. {0, 0}
  290. }
  291. }
  292. };
  293. ptdump_walk_pgd(&st.ptdump, info->mm, NULL);
  294. }
  295. static void __init ptdump_initialize(void)
  296. {
  297. unsigned i, j;
  298. for (i = 0; i < ARRAY_SIZE(pg_level); i++)
  299. if (pg_level[i].bits)
  300. for (j = 0; j < pg_level[i].num; j++)
  301. pg_level[i].mask |= pg_level[i].bits[j].mask;
  302. }
  303. static struct ptdump_info kernel_ptdump_info = {
  304. .mm = &init_mm,
  305. .markers = address_markers,
  306. .base_addr = PAGE_OFFSET,
  307. };
  308. void ptdump_check_wx(void)
  309. {
  310. struct pg_state st = {
  311. .seq = NULL,
  312. .marker = (struct addr_marker[]) {
  313. { 0, NULL},
  314. { -1, NULL},
  315. },
  316. .level = -1,
  317. .check_wx = true,
  318. .ptdump = {
  319. .note_page = note_page,
  320. .range = (struct ptdump_range[]) {
  321. {PAGE_OFFSET, ~0UL},
  322. {0, 0}
  323. }
  324. }
  325. };
  326. ptdump_walk_pgd(&st.ptdump, &init_mm, NULL);
  327. if (st.wx_pages || st.uxn_pages)
  328. pr_warn("Checked W+X mappings: FAILED, %lu W+X pages found, %lu non-UXN pages found\n",
  329. st.wx_pages, st.uxn_pages);
  330. else
  331. pr_info("Checked W+X mappings: passed, no W+X pages found\n");
  332. }
  333. static int __init ptdump_init(void)
  334. {
  335. address_markers[PAGE_END_NR].start_address = PAGE_END;
  336. #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
  337. address_markers[KASAN_START_NR].start_address = KASAN_SHADOW_START;
  338. #endif
  339. ptdump_initialize();
  340. ptdump_debugfs_register(&kernel_ptdump_info, "kernel_page_tables");
  341. return 0;
  342. }
  343. device_initcall(ptdump_init);