123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522 |
- // SPDX-License-Identifier: GPL-2.0-only
- /*
- * Based on arch/arm/mm/init.c
- *
- * Copyright (C) 1995-2005 Russell King
- * Copyright (C) 2012 ARM Ltd.
- */
- #include <linux/kernel.h>
- #include <linux/export.h>
- #include <linux/errno.h>
- #include <linux/swap.h>
- #include <linux/init.h>
- #include <linux/cache.h>
- #include <linux/mman.h>
- #include <linux/nodemask.h>
- #include <linux/initrd.h>
- #include <linux/gfp.h>
- #include <linux/memblock.h>
- #include <linux/sort.h>
- #include <linux/of.h>
- #include <linux/of_fdt.h>
- #include <linux/dma-direct.h>
- #include <linux/dma-map-ops.h>
- #include <linux/efi.h>
- #include <linux/swiotlb.h>
- #include <linux/vmalloc.h>
- #include <linux/mm.h>
- #include <linux/kexec.h>
- #include <linux/crash_dump.h>
- #include <linux/hugetlb.h>
- #include <linux/acpi_iort.h>
- #include <linux/kmemleak.h>
- #include <asm/boot.h>
- #include <asm/fixmap.h>
- #include <asm/kasan.h>
- #include <asm/kernel-pgtable.h>
- #include <asm/kvm_host.h>
- #include <asm/memory.h>
- #include <asm/numa.h>
- #include <asm/sections.h>
- #include <asm/setup.h>
- #include <linux/sizes.h>
- #include <asm/tlb.h>
- #include <asm/alternative.h>
- #include <asm/xen/swiotlb-xen.h>
- /*
- * We need to be able to catch inadvertent references to memstart_addr
- * that occur (potentially in generic code) before arm64_memblock_init()
- * executes, which assigns it its actual value. So use a default value
- * that cannot be mistaken for a real physical address.
- */
- s64 memstart_addr __ro_after_init = -1;
- EXPORT_SYMBOL(memstart_addr);
- /*
- * If the corresponding config options are enabled, we create both ZONE_DMA
- * and ZONE_DMA32. By default ZONE_DMA covers the 32-bit addressable memory
- * unless restricted on specific platforms (e.g. 30-bit on Raspberry Pi 4).
- * In such case, ZONE_DMA32 covers the rest of the 32-bit addressable memory,
- * otherwise it is empty.
- *
- * Memory reservation for crash kernel either done early or deferred
- * depending on DMA memory zones configs (ZONE_DMA) --
- *
- * In absence of ZONE_DMA configs arm64_dma_phys_limit initialized
- * here instead of max_zone_phys(). This lets early reservation of
- * crash kernel memory which has a dependency on arm64_dma_phys_limit.
- * Reserving memory early for crash kernel allows linear creation of block
- * mappings (greater than page-granularity) for all the memory bank rangs.
- * In this scheme a comparatively quicker boot is observed.
- *
- * If ZONE_DMA configs are defined, crash kernel memory reservation
- * is delayed until DMA zone memory range size initialization performed in
- * zone_sizes_init(). The defer is necessary to steer clear of DMA zone
- * memory range to avoid overlap allocation. So crash kernel memory boundaries
- * are not known when mapping all bank memory ranges, which otherwise means
- * not possible to exclude crash kernel range from creating block mappings
- * so page-granularity mappings are created for the entire memory range.
- * Hence a slightly slower boot is observed.
- *
- * Note: Page-granularity mappings are necessary for crash kernel memory
- * range for shrinking its size via /sys/kernel/kexec_crash_size interface.
- */
- #if IS_ENABLED(CONFIG_ZONE_DMA) || IS_ENABLED(CONFIG_ZONE_DMA32)
- phys_addr_t __ro_after_init arm64_dma_phys_limit;
- #else
- phys_addr_t __ro_after_init arm64_dma_phys_limit = PHYS_MASK + 1;
- #endif
- /*
- * Provide a run-time mean of disabling ZONE_DMA32 if it is enabled via
- * CONFIG_ZONE_DMA32.
- */
- static bool disable_dma32 __ro_after_init;
- /* Current arm64 boot protocol requires 2MB alignment */
- #define CRASH_ALIGN SZ_2M
- #define CRASH_ADDR_LOW_MAX arm64_dma_phys_limit
- #define CRASH_ADDR_HIGH_MAX (PHYS_MASK + 1)
- static int __init reserve_crashkernel_low(unsigned long long low_size)
- {
- unsigned long long low_base;
- low_base = memblock_phys_alloc_range(low_size, CRASH_ALIGN, 0, CRASH_ADDR_LOW_MAX);
- if (!low_base) {
- pr_err("cannot allocate crashkernel low memory (size:0x%llx).\n", low_size);
- return -ENOMEM;
- }
- pr_info("crashkernel low memory reserved: 0x%08llx - 0x%08llx (%lld MB)\n",
- low_base, low_base + low_size, low_size >> 20);
- crashk_low_res.start = low_base;
- crashk_low_res.end = low_base + low_size - 1;
- insert_resource(&iomem_resource, &crashk_low_res);
- return 0;
- }
- /*
- * reserve_crashkernel() - reserves memory for crash kernel
- *
- * This function reserves memory area given in "crashkernel=" kernel command
- * line parameter. The memory reserved is used by dump capture kernel when
- * primary kernel is crashing.
- */
- static void __init reserve_crashkernel(void)
- {
- unsigned long long crash_base, crash_size;
- unsigned long long crash_low_size = 0;
- unsigned long long crash_max = CRASH_ADDR_LOW_MAX;
- char *cmdline = boot_command_line;
- int ret;
- if (!IS_ENABLED(CONFIG_KEXEC_CORE))
- return;
- /* crashkernel=X[@offset] */
- ret = parse_crashkernel(cmdline, memblock_phys_mem_size(),
- &crash_size, &crash_base);
- if (ret == -ENOENT) {
- ret = parse_crashkernel_high(cmdline, 0, &crash_size, &crash_base);
- if (ret || !crash_size)
- return;
- /*
- * crashkernel=Y,low can be specified or not, but invalid value
- * is not allowed.
- */
- ret = parse_crashkernel_low(cmdline, 0, &crash_low_size, &crash_base);
- if (ret && (ret != -ENOENT))
- return;
- crash_max = CRASH_ADDR_HIGH_MAX;
- } else if (ret || !crash_size) {
- /* The specified value is invalid */
- return;
- }
- crash_size = PAGE_ALIGN(crash_size);
- /* User specifies base address explicitly. */
- if (crash_base)
- crash_max = crash_base + crash_size;
- crash_base = memblock_phys_alloc_range(crash_size, CRASH_ALIGN,
- crash_base, crash_max);
- if (!crash_base) {
- pr_warn("cannot allocate crashkernel (size:0x%llx)\n",
- crash_size);
- return;
- }
- if ((crash_base >= CRASH_ADDR_LOW_MAX) &&
- crash_low_size && reserve_crashkernel_low(crash_low_size)) {
- memblock_phys_free(crash_base, crash_size);
- return;
- }
- pr_info("crashkernel reserved: 0x%016llx - 0x%016llx (%lld MB)\n",
- crash_base, crash_base + crash_size, crash_size >> 20);
- /*
- * The crashkernel memory will be removed from the kernel linear
- * map. Inform kmemleak so that it won't try to access it.
- */
- kmemleak_ignore_phys(crash_base);
- if (crashk_low_res.end)
- kmemleak_ignore_phys(crashk_low_res.start);
- crashk_res.start = crash_base;
- crashk_res.end = crash_base + crash_size - 1;
- insert_resource(&iomem_resource, &crashk_res);
- }
- /*
- * Return the maximum physical address for a zone accessible by the given bits
- * limit. If DRAM starts above 32-bit, expand the zone to the maximum
- * available memory, otherwise cap it at 32-bit.
- */
- static phys_addr_t __init max_zone_phys(unsigned int zone_bits)
- {
- phys_addr_t zone_mask = DMA_BIT_MASK(zone_bits);
- phys_addr_t phys_start = memblock_start_of_DRAM();
- if (phys_start > U32_MAX)
- zone_mask = PHYS_ADDR_MAX;
- else if (phys_start > zone_mask)
- zone_mask = U32_MAX;
- return min(zone_mask, memblock_end_of_DRAM() - 1) + 1;
- }
- static void __init zone_sizes_init(void)
- {
- unsigned long max_zone_pfns[MAX_NR_ZONES] = {0};
- unsigned int __maybe_unused acpi_zone_dma_bits;
- unsigned int __maybe_unused dt_zone_dma_bits;
- phys_addr_t __maybe_unused dma32_phys_limit = max_zone_phys(32);
- #ifdef CONFIG_ZONE_DMA
- acpi_zone_dma_bits = fls64(acpi_iort_dma_get_max_cpu_address());
- dt_zone_dma_bits = fls64(of_dma_get_max_cpu_address(NULL));
- zone_dma_bits = min3(32U, dt_zone_dma_bits, acpi_zone_dma_bits);
- arm64_dma_phys_limit = max_zone_phys(zone_dma_bits);
- max_zone_pfns[ZONE_DMA] = PFN_DOWN(arm64_dma_phys_limit);
- #endif
- #ifdef CONFIG_ZONE_DMA32
- max_zone_pfns[ZONE_DMA32] = disable_dma32 ? 0 : PFN_DOWN(dma32_phys_limit);
- if (!arm64_dma_phys_limit)
- arm64_dma_phys_limit = dma32_phys_limit;
- #endif
- max_zone_pfns[ZONE_NORMAL] = max_pfn;
- free_area_init(max_zone_pfns);
- }
- static int __init early_disable_dma32(char *buf)
- {
- if (!buf)
- return -EINVAL;
- if (!strcmp(buf, "on"))
- disable_dma32 = true;
- return 0;
- }
- early_param("disable_dma32", early_disable_dma32);
- int pfn_is_map_memory(unsigned long pfn)
- {
- phys_addr_t addr = PFN_PHYS(pfn);
- /* avoid false positives for bogus PFNs, see comment in pfn_valid() */
- if (PHYS_PFN(addr) != pfn)
- return 0;
- return memblock_is_map_memory(addr);
- }
- EXPORT_SYMBOL(pfn_is_map_memory);
- static phys_addr_t memory_limit __ro_after_init = PHYS_ADDR_MAX;
- /*
- * Limit the memory size that was specified via FDT.
- */
- static int __init early_mem(char *p)
- {
- if (!p)
- return 1;
- memory_limit = memparse(p, &p) & PAGE_MASK;
- pr_notice("Memory limited to %lldMB\n", memory_limit >> 20);
- return 0;
- }
- early_param("mem", early_mem);
- void __init arm64_memblock_init(void)
- {
- s64 linear_region_size = PAGE_END - _PAGE_OFFSET(vabits_actual);
- /*
- * Corner case: 52-bit VA capable systems running KVM in nVHE mode may
- * be limited in their ability to support a linear map that exceeds 51
- * bits of VA space, depending on the placement of the ID map. Given
- * that the placement of the ID map may be randomized, let's simply
- * limit the kernel's linear map to 51 bits as well if we detect this
- * configuration.
- */
- if (IS_ENABLED(CONFIG_KVM) && vabits_actual == 52 &&
- is_hyp_mode_available() && !is_kernel_in_hyp_mode()) {
- pr_info("Capping linear region to 51 bits for KVM in nVHE mode on LVA capable hardware.\n");
- linear_region_size = min_t(u64, linear_region_size, BIT(51));
- }
- /* Remove memory above our supported physical address size */
- memblock_remove(1ULL << PHYS_MASK_SHIFT, ULLONG_MAX);
- /*
- * Select a suitable value for the base of physical memory.
- */
- memstart_addr = round_down(memblock_start_of_DRAM(),
- ARM64_MEMSTART_ALIGN);
- if ((memblock_end_of_DRAM() - memstart_addr) > linear_region_size)
- pr_warn("Memory doesn't fit in the linear mapping, VA_BITS too small\n");
- /*
- * Remove the memory that we will not be able to cover with the
- * linear mapping. Take care not to clip the kernel which may be
- * high in memory.
- */
- memblock_remove(max_t(u64, memstart_addr + linear_region_size,
- __pa_symbol(_end)), ULLONG_MAX);
- if (memstart_addr + linear_region_size < memblock_end_of_DRAM()) {
- /* ensure that memstart_addr remains sufficiently aligned */
- memstart_addr = round_up(memblock_end_of_DRAM() - linear_region_size,
- ARM64_MEMSTART_ALIGN);
- memblock_remove(0, memstart_addr);
- }
- /*
- * If we are running with a 52-bit kernel VA config on a system that
- * does not support it, we have to place the available physical
- * memory in the 48-bit addressable part of the linear region, i.e.,
- * we have to move it upward. Since memstart_addr represents the
- * physical address of PAGE_OFFSET, we have to *subtract* from it.
- */
- if (IS_ENABLED(CONFIG_ARM64_VA_BITS_52) && (vabits_actual != 52))
- memstart_addr -= _PAGE_OFFSET(48) - _PAGE_OFFSET(52);
- /*
- * Apply the memory limit if it was set. Since the kernel may be loaded
- * high up in memory, add back the kernel region that must be accessible
- * via the linear mapping.
- */
- if (memory_limit != PHYS_ADDR_MAX) {
- memblock_mem_limit_remove_map(memory_limit);
- memblock_add(__pa_symbol(_text), (u64)(_end - _text));
- }
- if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
- /*
- * Add back the memory we just removed if it results in the
- * initrd to become inaccessible via the linear mapping.
- * Otherwise, this is a no-op
- */
- u64 base = phys_initrd_start & PAGE_MASK;
- u64 size = PAGE_ALIGN(phys_initrd_start + phys_initrd_size) - base;
- /*
- * We can only add back the initrd memory if we don't end up
- * with more memory than we can address via the linear mapping.
- * It is up to the bootloader to position the kernel and the
- * initrd reasonably close to each other (i.e., within 32 GB of
- * each other) so that all granule/#levels combinations can
- * always access both.
- */
- if (WARN(base < memblock_start_of_DRAM() ||
- base + size > memblock_start_of_DRAM() +
- linear_region_size,
- "initrd not fully accessible via the linear mapping -- please check your bootloader ...\n")) {
- phys_initrd_size = 0;
- } else {
- memblock_add(base, size);
- memblock_clear_nomap(base, size);
- memblock_reserve(base, size);
- }
- }
- if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
- extern u16 memstart_offset_seed;
- u64 mmfr0 = read_cpuid(ID_AA64MMFR0_EL1);
- int parange = cpuid_feature_extract_unsigned_field(
- mmfr0, ID_AA64MMFR0_EL1_PARANGE_SHIFT);
- s64 range = linear_region_size -
- BIT(id_aa64mmfr0_parange_to_phys_shift(parange));
- /*
- * If the size of the linear region exceeds, by a sufficient
- * margin, the size of the region that the physical memory can
- * span, randomize the linear region as well.
- */
- if (memstart_offset_seed > 0 && range >= (s64)ARM64_MEMSTART_ALIGN) {
- range /= ARM64_MEMSTART_ALIGN;
- memstart_addr -= ARM64_MEMSTART_ALIGN *
- ((range * memstart_offset_seed) >> 16);
- }
- }
- /*
- * Register the kernel text, kernel data, initrd, and initial
- * pagetables with memblock.
- */
- memblock_reserve(__pa_symbol(_stext), _end - _stext);
- if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
- /* the generic initrd code expects virtual addresses */
- initrd_start = __phys_to_virt(phys_initrd_start);
- initrd_end = initrd_start + phys_initrd_size;
- }
- early_init_fdt_scan_reserved_mem();
- if (!defer_reserve_crashkernel())
- reserve_crashkernel();
- high_memory = __va(memblock_end_of_DRAM() - 1) + 1;
- }
- void __init bootmem_init(void)
- {
- unsigned long min, max;
- min = PFN_UP(memblock_start_of_DRAM());
- max = PFN_DOWN(memblock_end_of_DRAM());
- early_memtest(min << PAGE_SHIFT, max << PAGE_SHIFT);
- max_pfn = max_low_pfn = max;
- min_low_pfn = min;
- arch_numa_init();
- /*
- * must be done after arch_numa_init() which calls numa_init() to
- * initialize node_online_map that gets used in hugetlb_cma_reserve()
- * while allocating required CMA size across online nodes.
- */
- #if defined(CONFIG_HUGETLB_PAGE) && defined(CONFIG_CMA)
- arm64_hugetlb_cma_reserve();
- #endif
- dma_pernuma_cma_reserve();
- kvm_hyp_reserve();
- /*
- * sparse_init() tries to allocate memory from memblock, so must be
- * done after the fixed reservations
- */
- sparse_init();
- zone_sizes_init();
- /*
- * Reserve the CMA area after arm64_dma_phys_limit was initialised.
- */
- dma_contiguous_reserve(arm64_dma_phys_limit);
- /*
- * request_standard_resources() depends on crashkernel's memory being
- * reserved, so do it here.
- */
- if (defer_reserve_crashkernel())
- reserve_crashkernel();
- memblock_dump_all();
- }
- /*
- * mem_init() marks the free areas in the mem_map and tells us how much memory
- * is free. This is done after various parts of the system have claimed their
- * memory after the kernel image.
- */
- void __init mem_init(void)
- {
- swiotlb_init(max_pfn > PFN_DOWN(arm64_dma_phys_limit), SWIOTLB_VERBOSE);
- /* this will put all unused low memory onto the freelists */
- memblock_free_all();
- /*
- * Check boundaries twice: Some fundamental inconsistencies can be
- * detected at build time already.
- */
- #ifdef CONFIG_COMPAT
- BUILD_BUG_ON(TASK_SIZE_32 > DEFAULT_MAP_WINDOW_64);
- #endif
- /*
- * Selected page table levels should match when derived from
- * scratch using the virtual address range and page size.
- */
- BUILD_BUG_ON(ARM64_HW_PGTABLE_LEVELS(CONFIG_ARM64_VA_BITS) !=
- CONFIG_PGTABLE_LEVELS);
- if (PAGE_SIZE >= 16384 && get_num_physpages() <= 128) {
- extern int sysctl_overcommit_memory;
- /*
- * On a machine this small we won't get anywhere without
- * overcommit, so turn it on by default.
- */
- sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
- }
- }
- void free_initmem(void)
- {
- free_reserved_area(lm_alias(__init_begin),
- lm_alias(__init_end),
- POISON_FREE_INITMEM, "unused kernel");
- /*
- * Unmap the __init region but leave the VM area in place. This
- * prevents the region from being reused for kernel modules, which
- * is not supported by kallsyms.
- */
- vunmap_range((u64)__init_begin, (u64)__init_end);
- }
- void dump_mem_limit(void)
- {
- if (memory_limit != PHYS_ADDR_MAX) {
- pr_emerg("Memory Limit: %llu MB\n", memory_limit >> 20);
- } else {
- pr_emerg("Memory Limit: none\n");
- }
- }
|