vgic-mmio-v3.c 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * VGICv3 MMIO handling functions
  4. */
  5. #include <linux/bitfield.h>
  6. #include <linux/irqchip/arm-gic-v3.h>
  7. #include <linux/kvm.h>
  8. #include <linux/kvm_host.h>
  9. #include <linux/interrupt.h>
  10. #include <kvm/iodev.h>
  11. #include <kvm/arm_vgic.h>
  12. #include <asm/kvm_emulate.h>
  13. #include <asm/kvm_arm.h>
  14. #include <asm/kvm_mmu.h>
  15. #include "vgic.h"
  16. #include "vgic-mmio.h"
  17. /* extract @num bytes at @offset bytes offset in data */
  18. unsigned long extract_bytes(u64 data, unsigned int offset,
  19. unsigned int num)
  20. {
  21. return (data >> (offset * 8)) & GENMASK_ULL(num * 8 - 1, 0);
  22. }
  23. /* allows updates of any half of a 64-bit register (or the whole thing) */
  24. u64 update_64bit_reg(u64 reg, unsigned int offset, unsigned int len,
  25. unsigned long val)
  26. {
  27. int lower = (offset & 4) * 8;
  28. int upper = lower + 8 * len - 1;
  29. reg &= ~GENMASK_ULL(upper, lower);
  30. val &= GENMASK_ULL(len * 8 - 1, 0);
  31. return reg | ((u64)val << lower);
  32. }
  33. bool vgic_has_its(struct kvm *kvm)
  34. {
  35. struct vgic_dist *dist = &kvm->arch.vgic;
  36. if (dist->vgic_model != KVM_DEV_TYPE_ARM_VGIC_V3)
  37. return false;
  38. return dist->has_its;
  39. }
  40. bool vgic_supports_direct_msis(struct kvm *kvm)
  41. {
  42. return (kvm_vgic_global_state.has_gicv4_1 ||
  43. (kvm_vgic_global_state.has_gicv4 && vgic_has_its(kvm)));
  44. }
  45. /*
  46. * The Revision field in the IIDR have the following meanings:
  47. *
  48. * Revision 2: Interrupt groups are guest-configurable and signaled using
  49. * their configured groups.
  50. */
  51. static unsigned long vgic_mmio_read_v3_misc(struct kvm_vcpu *vcpu,
  52. gpa_t addr, unsigned int len)
  53. {
  54. struct vgic_dist *vgic = &vcpu->kvm->arch.vgic;
  55. u32 value = 0;
  56. switch (addr & 0x0c) {
  57. case GICD_CTLR:
  58. if (vgic->enabled)
  59. value |= GICD_CTLR_ENABLE_SS_G1;
  60. value |= GICD_CTLR_ARE_NS | GICD_CTLR_DS;
  61. if (vgic->nassgireq)
  62. value |= GICD_CTLR_nASSGIreq;
  63. break;
  64. case GICD_TYPER:
  65. value = vgic->nr_spis + VGIC_NR_PRIVATE_IRQS;
  66. value = (value >> 5) - 1;
  67. if (vgic_has_its(vcpu->kvm)) {
  68. value |= (INTERRUPT_ID_BITS_ITS - 1) << 19;
  69. value |= GICD_TYPER_LPIS;
  70. } else {
  71. value |= (INTERRUPT_ID_BITS_SPIS - 1) << 19;
  72. }
  73. break;
  74. case GICD_TYPER2:
  75. if (kvm_vgic_global_state.has_gicv4_1 && gic_cpuif_has_vsgi())
  76. value = GICD_TYPER2_nASSGIcap;
  77. break;
  78. case GICD_IIDR:
  79. value = (PRODUCT_ID_KVM << GICD_IIDR_PRODUCT_ID_SHIFT) |
  80. (vgic->implementation_rev << GICD_IIDR_REVISION_SHIFT) |
  81. (IMPLEMENTER_ARM << GICD_IIDR_IMPLEMENTER_SHIFT);
  82. break;
  83. default:
  84. return 0;
  85. }
  86. return value;
  87. }
  88. static void vgic_mmio_write_v3_misc(struct kvm_vcpu *vcpu,
  89. gpa_t addr, unsigned int len,
  90. unsigned long val)
  91. {
  92. struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
  93. switch (addr & 0x0c) {
  94. case GICD_CTLR: {
  95. bool was_enabled, is_hwsgi;
  96. mutex_lock(&vcpu->kvm->arch.config_lock);
  97. was_enabled = dist->enabled;
  98. is_hwsgi = dist->nassgireq;
  99. dist->enabled = val & GICD_CTLR_ENABLE_SS_G1;
  100. /* Not a GICv4.1? No HW SGIs */
  101. if (!kvm_vgic_global_state.has_gicv4_1 || !gic_cpuif_has_vsgi())
  102. val &= ~GICD_CTLR_nASSGIreq;
  103. /* Dist stays enabled? nASSGIreq is RO */
  104. if (was_enabled && dist->enabled) {
  105. val &= ~GICD_CTLR_nASSGIreq;
  106. val |= FIELD_PREP(GICD_CTLR_nASSGIreq, is_hwsgi);
  107. }
  108. /* Switching HW SGIs? */
  109. dist->nassgireq = val & GICD_CTLR_nASSGIreq;
  110. if (is_hwsgi != dist->nassgireq)
  111. vgic_v4_configure_vsgis(vcpu->kvm);
  112. if (kvm_vgic_global_state.has_gicv4_1 &&
  113. was_enabled != dist->enabled)
  114. kvm_make_all_cpus_request(vcpu->kvm, KVM_REQ_RELOAD_GICv4);
  115. else if (!was_enabled && dist->enabled)
  116. vgic_kick_vcpus(vcpu->kvm);
  117. mutex_unlock(&vcpu->kvm->arch.config_lock);
  118. break;
  119. }
  120. case GICD_TYPER:
  121. case GICD_TYPER2:
  122. case GICD_IIDR:
  123. /* This is at best for documentation purposes... */
  124. return;
  125. }
  126. }
  127. static int vgic_mmio_uaccess_write_v3_misc(struct kvm_vcpu *vcpu,
  128. gpa_t addr, unsigned int len,
  129. unsigned long val)
  130. {
  131. struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
  132. u32 reg;
  133. switch (addr & 0x0c) {
  134. case GICD_TYPER2:
  135. if (val != vgic_mmio_read_v3_misc(vcpu, addr, len))
  136. return -EINVAL;
  137. return 0;
  138. case GICD_IIDR:
  139. reg = vgic_mmio_read_v3_misc(vcpu, addr, len);
  140. if ((reg ^ val) & ~GICD_IIDR_REVISION_MASK)
  141. return -EINVAL;
  142. reg = FIELD_GET(GICD_IIDR_REVISION_MASK, reg);
  143. switch (reg) {
  144. case KVM_VGIC_IMP_REV_2:
  145. case KVM_VGIC_IMP_REV_3:
  146. dist->implementation_rev = reg;
  147. return 0;
  148. default:
  149. return -EINVAL;
  150. }
  151. case GICD_CTLR:
  152. /* Not a GICv4.1? No HW SGIs */
  153. if (!kvm_vgic_global_state.has_gicv4_1)
  154. val &= ~GICD_CTLR_nASSGIreq;
  155. dist->enabled = val & GICD_CTLR_ENABLE_SS_G1;
  156. dist->nassgireq = val & GICD_CTLR_nASSGIreq;
  157. return 0;
  158. }
  159. vgic_mmio_write_v3_misc(vcpu, addr, len, val);
  160. return 0;
  161. }
  162. static unsigned long vgic_mmio_read_irouter(struct kvm_vcpu *vcpu,
  163. gpa_t addr, unsigned int len)
  164. {
  165. int intid = VGIC_ADDR_TO_INTID(addr, 64);
  166. struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, NULL, intid);
  167. unsigned long ret = 0;
  168. if (!irq)
  169. return 0;
  170. /* The upper word is RAZ for us. */
  171. if (!(addr & 4))
  172. ret = extract_bytes(READ_ONCE(irq->mpidr), addr & 7, len);
  173. vgic_put_irq(vcpu->kvm, irq);
  174. return ret;
  175. }
  176. static void vgic_mmio_write_irouter(struct kvm_vcpu *vcpu,
  177. gpa_t addr, unsigned int len,
  178. unsigned long val)
  179. {
  180. int intid = VGIC_ADDR_TO_INTID(addr, 64);
  181. struct vgic_irq *irq;
  182. unsigned long flags;
  183. /* The upper word is WI for us since we don't implement Aff3. */
  184. if (addr & 4)
  185. return;
  186. irq = vgic_get_irq(vcpu->kvm, NULL, intid);
  187. if (!irq)
  188. return;
  189. raw_spin_lock_irqsave(&irq->irq_lock, flags);
  190. /* We only care about and preserve Aff0, Aff1 and Aff2. */
  191. irq->mpidr = val & GENMASK(23, 0);
  192. irq->target_vcpu = kvm_mpidr_to_vcpu(vcpu->kvm, irq->mpidr);
  193. raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
  194. vgic_put_irq(vcpu->kvm, irq);
  195. }
  196. bool vgic_lpis_enabled(struct kvm_vcpu *vcpu)
  197. {
  198. struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
  199. return atomic_read(&vgic_cpu->ctlr) == GICR_CTLR_ENABLE_LPIS;
  200. }
  201. static unsigned long vgic_mmio_read_v3r_ctlr(struct kvm_vcpu *vcpu,
  202. gpa_t addr, unsigned int len)
  203. {
  204. struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
  205. unsigned long val;
  206. val = atomic_read(&vgic_cpu->ctlr);
  207. if (vgic_get_implementation_rev(vcpu) >= KVM_VGIC_IMP_REV_3)
  208. val |= GICR_CTLR_IR | GICR_CTLR_CES;
  209. return val;
  210. }
  211. static void vgic_mmio_write_v3r_ctlr(struct kvm_vcpu *vcpu,
  212. gpa_t addr, unsigned int len,
  213. unsigned long val)
  214. {
  215. struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
  216. u32 ctlr;
  217. if (!vgic_has_its(vcpu->kvm))
  218. return;
  219. if (!(val & GICR_CTLR_ENABLE_LPIS)) {
  220. /*
  221. * Don't disable if RWP is set, as there already an
  222. * ongoing disable. Funky guest...
  223. */
  224. ctlr = atomic_cmpxchg_acquire(&vgic_cpu->ctlr,
  225. GICR_CTLR_ENABLE_LPIS,
  226. GICR_CTLR_RWP);
  227. if (ctlr != GICR_CTLR_ENABLE_LPIS)
  228. return;
  229. vgic_flush_pending_lpis(vcpu);
  230. vgic_its_invalidate_cache(vcpu->kvm);
  231. atomic_set_release(&vgic_cpu->ctlr, 0);
  232. } else {
  233. ctlr = atomic_cmpxchg_acquire(&vgic_cpu->ctlr, 0,
  234. GICR_CTLR_ENABLE_LPIS);
  235. if (ctlr != 0)
  236. return;
  237. vgic_enable_lpis(vcpu);
  238. }
  239. }
  240. static bool vgic_mmio_vcpu_rdist_is_last(struct kvm_vcpu *vcpu)
  241. {
  242. struct vgic_dist *vgic = &vcpu->kvm->arch.vgic;
  243. struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
  244. struct vgic_redist_region *iter, *rdreg = vgic_cpu->rdreg;
  245. if (!rdreg)
  246. return false;
  247. if (vgic_cpu->rdreg_index < rdreg->free_index - 1) {
  248. return false;
  249. } else if (rdreg->count && vgic_cpu->rdreg_index == (rdreg->count - 1)) {
  250. struct list_head *rd_regions = &vgic->rd_regions;
  251. gpa_t end = rdreg->base + rdreg->count * KVM_VGIC_V3_REDIST_SIZE;
  252. /*
  253. * the rdist is the last one of the redist region,
  254. * check whether there is no other contiguous rdist region
  255. */
  256. list_for_each_entry(iter, rd_regions, list) {
  257. if (iter->base == end && iter->free_index > 0)
  258. return false;
  259. }
  260. }
  261. return true;
  262. }
  263. static unsigned long vgic_mmio_read_v3r_typer(struct kvm_vcpu *vcpu,
  264. gpa_t addr, unsigned int len)
  265. {
  266. unsigned long mpidr = kvm_vcpu_get_mpidr_aff(vcpu);
  267. int target_vcpu_id = vcpu->vcpu_id;
  268. u64 value;
  269. value = (u64)(mpidr & GENMASK(23, 0)) << 32;
  270. value |= ((target_vcpu_id & 0xffff) << 8);
  271. if (vgic_has_its(vcpu->kvm))
  272. value |= GICR_TYPER_PLPIS;
  273. if (vgic_mmio_vcpu_rdist_is_last(vcpu))
  274. value |= GICR_TYPER_LAST;
  275. return extract_bytes(value, addr & 7, len);
  276. }
  277. static unsigned long vgic_mmio_read_v3r_iidr(struct kvm_vcpu *vcpu,
  278. gpa_t addr, unsigned int len)
  279. {
  280. return (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
  281. }
  282. static unsigned long vgic_mmio_read_v3_idregs(struct kvm_vcpu *vcpu,
  283. gpa_t addr, unsigned int len)
  284. {
  285. switch (addr & 0xffff) {
  286. case GICD_PIDR2:
  287. /* report a GICv3 compliant implementation */
  288. return 0x3b;
  289. }
  290. return 0;
  291. }
  292. static int vgic_v3_uaccess_write_pending(struct kvm_vcpu *vcpu,
  293. gpa_t addr, unsigned int len,
  294. unsigned long val)
  295. {
  296. u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
  297. int i;
  298. unsigned long flags;
  299. for (i = 0; i < len * 8; i++) {
  300. struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
  301. raw_spin_lock_irqsave(&irq->irq_lock, flags);
  302. if (test_bit(i, &val)) {
  303. /*
  304. * pending_latch is set irrespective of irq type
  305. * (level or edge) to avoid dependency that VM should
  306. * restore irq config before pending info.
  307. */
  308. irq->pending_latch = true;
  309. vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
  310. } else {
  311. irq->pending_latch = false;
  312. raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
  313. }
  314. vgic_put_irq(vcpu->kvm, irq);
  315. }
  316. return 0;
  317. }
  318. /* We want to avoid outer shareable. */
  319. u64 vgic_sanitise_shareability(u64 field)
  320. {
  321. switch (field) {
  322. case GIC_BASER_OuterShareable:
  323. return GIC_BASER_InnerShareable;
  324. default:
  325. return field;
  326. }
  327. }
  328. /* Avoid any inner non-cacheable mapping. */
  329. u64 vgic_sanitise_inner_cacheability(u64 field)
  330. {
  331. switch (field) {
  332. case GIC_BASER_CACHE_nCnB:
  333. case GIC_BASER_CACHE_nC:
  334. return GIC_BASER_CACHE_RaWb;
  335. default:
  336. return field;
  337. }
  338. }
  339. /* Non-cacheable or same-as-inner are OK. */
  340. u64 vgic_sanitise_outer_cacheability(u64 field)
  341. {
  342. switch (field) {
  343. case GIC_BASER_CACHE_SameAsInner:
  344. case GIC_BASER_CACHE_nC:
  345. return field;
  346. default:
  347. return GIC_BASER_CACHE_SameAsInner;
  348. }
  349. }
  350. u64 vgic_sanitise_field(u64 reg, u64 field_mask, int field_shift,
  351. u64 (*sanitise_fn)(u64))
  352. {
  353. u64 field = (reg & field_mask) >> field_shift;
  354. field = sanitise_fn(field) << field_shift;
  355. return (reg & ~field_mask) | field;
  356. }
  357. #define PROPBASER_RES0_MASK \
  358. (GENMASK_ULL(63, 59) | GENMASK_ULL(55, 52) | GENMASK_ULL(6, 5))
  359. #define PENDBASER_RES0_MASK \
  360. (BIT_ULL(63) | GENMASK_ULL(61, 59) | GENMASK_ULL(55, 52) | \
  361. GENMASK_ULL(15, 12) | GENMASK_ULL(6, 0))
  362. static u64 vgic_sanitise_pendbaser(u64 reg)
  363. {
  364. reg = vgic_sanitise_field(reg, GICR_PENDBASER_SHAREABILITY_MASK,
  365. GICR_PENDBASER_SHAREABILITY_SHIFT,
  366. vgic_sanitise_shareability);
  367. reg = vgic_sanitise_field(reg, GICR_PENDBASER_INNER_CACHEABILITY_MASK,
  368. GICR_PENDBASER_INNER_CACHEABILITY_SHIFT,
  369. vgic_sanitise_inner_cacheability);
  370. reg = vgic_sanitise_field(reg, GICR_PENDBASER_OUTER_CACHEABILITY_MASK,
  371. GICR_PENDBASER_OUTER_CACHEABILITY_SHIFT,
  372. vgic_sanitise_outer_cacheability);
  373. reg &= ~PENDBASER_RES0_MASK;
  374. return reg;
  375. }
  376. static u64 vgic_sanitise_propbaser(u64 reg)
  377. {
  378. reg = vgic_sanitise_field(reg, GICR_PROPBASER_SHAREABILITY_MASK,
  379. GICR_PROPBASER_SHAREABILITY_SHIFT,
  380. vgic_sanitise_shareability);
  381. reg = vgic_sanitise_field(reg, GICR_PROPBASER_INNER_CACHEABILITY_MASK,
  382. GICR_PROPBASER_INNER_CACHEABILITY_SHIFT,
  383. vgic_sanitise_inner_cacheability);
  384. reg = vgic_sanitise_field(reg, GICR_PROPBASER_OUTER_CACHEABILITY_MASK,
  385. GICR_PROPBASER_OUTER_CACHEABILITY_SHIFT,
  386. vgic_sanitise_outer_cacheability);
  387. reg &= ~PROPBASER_RES0_MASK;
  388. return reg;
  389. }
  390. static unsigned long vgic_mmio_read_propbase(struct kvm_vcpu *vcpu,
  391. gpa_t addr, unsigned int len)
  392. {
  393. struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
  394. return extract_bytes(dist->propbaser, addr & 7, len);
  395. }
  396. static void vgic_mmio_write_propbase(struct kvm_vcpu *vcpu,
  397. gpa_t addr, unsigned int len,
  398. unsigned long val)
  399. {
  400. struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
  401. u64 old_propbaser, propbaser;
  402. /* Storing a value with LPIs already enabled is undefined */
  403. if (vgic_lpis_enabled(vcpu))
  404. return;
  405. do {
  406. old_propbaser = READ_ONCE(dist->propbaser);
  407. propbaser = old_propbaser;
  408. propbaser = update_64bit_reg(propbaser, addr & 4, len, val);
  409. propbaser = vgic_sanitise_propbaser(propbaser);
  410. } while (cmpxchg64(&dist->propbaser, old_propbaser,
  411. propbaser) != old_propbaser);
  412. }
  413. static unsigned long vgic_mmio_read_pendbase(struct kvm_vcpu *vcpu,
  414. gpa_t addr, unsigned int len)
  415. {
  416. struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
  417. u64 value = vgic_cpu->pendbaser;
  418. value &= ~GICR_PENDBASER_PTZ;
  419. return extract_bytes(value, addr & 7, len);
  420. }
  421. static void vgic_mmio_write_pendbase(struct kvm_vcpu *vcpu,
  422. gpa_t addr, unsigned int len,
  423. unsigned long val)
  424. {
  425. struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
  426. u64 old_pendbaser, pendbaser;
  427. /* Storing a value with LPIs already enabled is undefined */
  428. if (vgic_lpis_enabled(vcpu))
  429. return;
  430. do {
  431. old_pendbaser = READ_ONCE(vgic_cpu->pendbaser);
  432. pendbaser = old_pendbaser;
  433. pendbaser = update_64bit_reg(pendbaser, addr & 4, len, val);
  434. pendbaser = vgic_sanitise_pendbaser(pendbaser);
  435. } while (cmpxchg64(&vgic_cpu->pendbaser, old_pendbaser,
  436. pendbaser) != old_pendbaser);
  437. }
  438. static unsigned long vgic_mmio_read_sync(struct kvm_vcpu *vcpu,
  439. gpa_t addr, unsigned int len)
  440. {
  441. return !!atomic_read(&vcpu->arch.vgic_cpu.syncr_busy);
  442. }
  443. static void vgic_set_rdist_busy(struct kvm_vcpu *vcpu, bool busy)
  444. {
  445. if (busy) {
  446. atomic_inc(&vcpu->arch.vgic_cpu.syncr_busy);
  447. smp_mb__after_atomic();
  448. } else {
  449. smp_mb__before_atomic();
  450. atomic_dec(&vcpu->arch.vgic_cpu.syncr_busy);
  451. }
  452. }
  453. static void vgic_mmio_write_invlpi(struct kvm_vcpu *vcpu,
  454. gpa_t addr, unsigned int len,
  455. unsigned long val)
  456. {
  457. struct vgic_irq *irq;
  458. /*
  459. * If the guest wrote only to the upper 32bit part of the
  460. * register, drop the write on the floor, as it is only for
  461. * vPEs (which we don't support for obvious reasons).
  462. *
  463. * Also discard the access if LPIs are not enabled.
  464. */
  465. if ((addr & 4) || !vgic_lpis_enabled(vcpu))
  466. return;
  467. vgic_set_rdist_busy(vcpu, true);
  468. irq = vgic_get_irq(vcpu->kvm, NULL, lower_32_bits(val));
  469. if (irq) {
  470. vgic_its_inv_lpi(vcpu->kvm, irq);
  471. vgic_put_irq(vcpu->kvm, irq);
  472. }
  473. vgic_set_rdist_busy(vcpu, false);
  474. }
  475. static void vgic_mmio_write_invall(struct kvm_vcpu *vcpu,
  476. gpa_t addr, unsigned int len,
  477. unsigned long val)
  478. {
  479. /* See vgic_mmio_write_invlpi() for the early return rationale */
  480. if ((addr & 4) || !vgic_lpis_enabled(vcpu))
  481. return;
  482. vgic_set_rdist_busy(vcpu, true);
  483. vgic_its_invall(vcpu);
  484. vgic_set_rdist_busy(vcpu, false);
  485. }
  486. /*
  487. * The GICv3 per-IRQ registers are split to control PPIs and SGIs in the
  488. * redistributors, while SPIs are covered by registers in the distributor
  489. * block. Trying to set private IRQs in this block gets ignored.
  490. * We take some special care here to fix the calculation of the register
  491. * offset.
  492. */
  493. #define REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(off, rd, wr, ur, uw, bpi, acc) \
  494. { \
  495. .reg_offset = off, \
  496. .bits_per_irq = bpi, \
  497. .len = (bpi * VGIC_NR_PRIVATE_IRQS) / 8, \
  498. .access_flags = acc, \
  499. .read = vgic_mmio_read_raz, \
  500. .write = vgic_mmio_write_wi, \
  501. }, { \
  502. .reg_offset = off + (bpi * VGIC_NR_PRIVATE_IRQS) / 8, \
  503. .bits_per_irq = bpi, \
  504. .len = (bpi * (1024 - VGIC_NR_PRIVATE_IRQS)) / 8, \
  505. .access_flags = acc, \
  506. .read = rd, \
  507. .write = wr, \
  508. .uaccess_read = ur, \
  509. .uaccess_write = uw, \
  510. }
  511. static const struct vgic_register_region vgic_v3_dist_registers[] = {
  512. REGISTER_DESC_WITH_LENGTH_UACCESS(GICD_CTLR,
  513. vgic_mmio_read_v3_misc, vgic_mmio_write_v3_misc,
  514. NULL, vgic_mmio_uaccess_write_v3_misc,
  515. 16, VGIC_ACCESS_32bit),
  516. REGISTER_DESC_WITH_LENGTH(GICD_STATUSR,
  517. vgic_mmio_read_rao, vgic_mmio_write_wi, 4,
  518. VGIC_ACCESS_32bit),
  519. REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGROUPR,
  520. vgic_mmio_read_group, vgic_mmio_write_group, NULL, NULL, 1,
  521. VGIC_ACCESS_32bit),
  522. REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISENABLER,
  523. vgic_mmio_read_enable, vgic_mmio_write_senable,
  524. NULL, vgic_uaccess_write_senable, 1,
  525. VGIC_ACCESS_32bit),
  526. REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICENABLER,
  527. vgic_mmio_read_enable, vgic_mmio_write_cenable,
  528. NULL, vgic_uaccess_write_cenable, 1,
  529. VGIC_ACCESS_32bit),
  530. REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISPENDR,
  531. vgic_mmio_read_pending, vgic_mmio_write_spending,
  532. vgic_uaccess_read_pending, vgic_v3_uaccess_write_pending, 1,
  533. VGIC_ACCESS_32bit),
  534. REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICPENDR,
  535. vgic_mmio_read_pending, vgic_mmio_write_cpending,
  536. vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi, 1,
  537. VGIC_ACCESS_32bit),
  538. REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISACTIVER,
  539. vgic_mmio_read_active, vgic_mmio_write_sactive,
  540. vgic_uaccess_read_active, vgic_mmio_uaccess_write_sactive, 1,
  541. VGIC_ACCESS_32bit),
  542. REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICACTIVER,
  543. vgic_mmio_read_active, vgic_mmio_write_cactive,
  544. vgic_uaccess_read_active, vgic_mmio_uaccess_write_cactive,
  545. 1, VGIC_ACCESS_32bit),
  546. REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IPRIORITYR,
  547. vgic_mmio_read_priority, vgic_mmio_write_priority, NULL, NULL,
  548. 8, VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
  549. REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ITARGETSR,
  550. vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 8,
  551. VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
  552. REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICFGR,
  553. vgic_mmio_read_config, vgic_mmio_write_config, NULL, NULL, 2,
  554. VGIC_ACCESS_32bit),
  555. REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGRPMODR,
  556. vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 1,
  557. VGIC_ACCESS_32bit),
  558. REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IROUTER,
  559. vgic_mmio_read_irouter, vgic_mmio_write_irouter, NULL, NULL, 64,
  560. VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
  561. REGISTER_DESC_WITH_LENGTH(GICD_IDREGS,
  562. vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
  563. VGIC_ACCESS_32bit),
  564. };
  565. static const struct vgic_register_region vgic_v3_rd_registers[] = {
  566. /* RD_base registers */
  567. REGISTER_DESC_WITH_LENGTH(GICR_CTLR,
  568. vgic_mmio_read_v3r_ctlr, vgic_mmio_write_v3r_ctlr, 4,
  569. VGIC_ACCESS_32bit),
  570. REGISTER_DESC_WITH_LENGTH(GICR_STATUSR,
  571. vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
  572. VGIC_ACCESS_32bit),
  573. REGISTER_DESC_WITH_LENGTH(GICR_IIDR,
  574. vgic_mmio_read_v3r_iidr, vgic_mmio_write_wi, 4,
  575. VGIC_ACCESS_32bit),
  576. REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_TYPER,
  577. vgic_mmio_read_v3r_typer, vgic_mmio_write_wi,
  578. NULL, vgic_mmio_uaccess_write_wi, 8,
  579. VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
  580. REGISTER_DESC_WITH_LENGTH(GICR_WAKER,
  581. vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
  582. VGIC_ACCESS_32bit),
  583. REGISTER_DESC_WITH_LENGTH(GICR_PROPBASER,
  584. vgic_mmio_read_propbase, vgic_mmio_write_propbase, 8,
  585. VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
  586. REGISTER_DESC_WITH_LENGTH(GICR_PENDBASER,
  587. vgic_mmio_read_pendbase, vgic_mmio_write_pendbase, 8,
  588. VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
  589. REGISTER_DESC_WITH_LENGTH(GICR_INVLPIR,
  590. vgic_mmio_read_raz, vgic_mmio_write_invlpi, 8,
  591. VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
  592. REGISTER_DESC_WITH_LENGTH(GICR_INVALLR,
  593. vgic_mmio_read_raz, vgic_mmio_write_invall, 8,
  594. VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
  595. REGISTER_DESC_WITH_LENGTH(GICR_SYNCR,
  596. vgic_mmio_read_sync, vgic_mmio_write_wi, 4,
  597. VGIC_ACCESS_32bit),
  598. REGISTER_DESC_WITH_LENGTH(GICR_IDREGS,
  599. vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
  600. VGIC_ACCESS_32bit),
  601. /* SGI_base registers */
  602. REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IGROUPR0,
  603. vgic_mmio_read_group, vgic_mmio_write_group, 4,
  604. VGIC_ACCESS_32bit),
  605. REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISENABLER0,
  606. vgic_mmio_read_enable, vgic_mmio_write_senable,
  607. NULL, vgic_uaccess_write_senable, 4,
  608. VGIC_ACCESS_32bit),
  609. REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICENABLER0,
  610. vgic_mmio_read_enable, vgic_mmio_write_cenable,
  611. NULL, vgic_uaccess_write_cenable, 4,
  612. VGIC_ACCESS_32bit),
  613. REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISPENDR0,
  614. vgic_mmio_read_pending, vgic_mmio_write_spending,
  615. vgic_uaccess_read_pending, vgic_v3_uaccess_write_pending, 4,
  616. VGIC_ACCESS_32bit),
  617. REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICPENDR0,
  618. vgic_mmio_read_pending, vgic_mmio_write_cpending,
  619. vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi, 4,
  620. VGIC_ACCESS_32bit),
  621. REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISACTIVER0,
  622. vgic_mmio_read_active, vgic_mmio_write_sactive,
  623. vgic_uaccess_read_active, vgic_mmio_uaccess_write_sactive, 4,
  624. VGIC_ACCESS_32bit),
  625. REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICACTIVER0,
  626. vgic_mmio_read_active, vgic_mmio_write_cactive,
  627. vgic_uaccess_read_active, vgic_mmio_uaccess_write_cactive, 4,
  628. VGIC_ACCESS_32bit),
  629. REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IPRIORITYR0,
  630. vgic_mmio_read_priority, vgic_mmio_write_priority, 32,
  631. VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
  632. REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_ICFGR0,
  633. vgic_mmio_read_config, vgic_mmio_write_config, 8,
  634. VGIC_ACCESS_32bit),
  635. REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IGRPMODR0,
  636. vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
  637. VGIC_ACCESS_32bit),
  638. REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_NSACR,
  639. vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
  640. VGIC_ACCESS_32bit),
  641. };
  642. unsigned int vgic_v3_init_dist_iodev(struct vgic_io_device *dev)
  643. {
  644. dev->regions = vgic_v3_dist_registers;
  645. dev->nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
  646. kvm_iodevice_init(&dev->dev, &kvm_io_gic_ops);
  647. return SZ_64K;
  648. }
  649. /**
  650. * vgic_register_redist_iodev - register a single redist iodev
  651. * @vcpu: The VCPU to which the redistributor belongs
  652. *
  653. * Register a KVM iodev for this VCPU's redistributor using the address
  654. * provided.
  655. *
  656. * Return 0 on success, -ERRNO otherwise.
  657. */
  658. int vgic_register_redist_iodev(struct kvm_vcpu *vcpu)
  659. {
  660. struct kvm *kvm = vcpu->kvm;
  661. struct vgic_dist *vgic = &kvm->arch.vgic;
  662. struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
  663. struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
  664. struct vgic_redist_region *rdreg;
  665. gpa_t rd_base;
  666. int ret = 0;
  667. lockdep_assert_held(&kvm->slots_lock);
  668. mutex_lock(&kvm->arch.config_lock);
  669. if (!IS_VGIC_ADDR_UNDEF(vgic_cpu->rd_iodev.base_addr))
  670. goto out_unlock;
  671. /*
  672. * We may be creating VCPUs before having set the base address for the
  673. * redistributor region, in which case we will come back to this
  674. * function for all VCPUs when the base address is set. Just return
  675. * without doing any work for now.
  676. */
  677. rdreg = vgic_v3_rdist_free_slot(&vgic->rd_regions);
  678. if (!rdreg)
  679. goto out_unlock;
  680. if (!vgic_v3_check_base(kvm)) {
  681. ret = -EINVAL;
  682. goto out_unlock;
  683. }
  684. vgic_cpu->rdreg = rdreg;
  685. vgic_cpu->rdreg_index = rdreg->free_index;
  686. rd_base = rdreg->base + rdreg->free_index * KVM_VGIC_V3_REDIST_SIZE;
  687. kvm_iodevice_init(&rd_dev->dev, &kvm_io_gic_ops);
  688. rd_dev->base_addr = rd_base;
  689. rd_dev->iodev_type = IODEV_REDIST;
  690. rd_dev->regions = vgic_v3_rd_registers;
  691. rd_dev->nr_regions = ARRAY_SIZE(vgic_v3_rd_registers);
  692. rd_dev->redist_vcpu = vcpu;
  693. mutex_unlock(&kvm->arch.config_lock);
  694. ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, rd_base,
  695. 2 * SZ_64K, &rd_dev->dev);
  696. if (ret)
  697. return ret;
  698. /* Protected by slots_lock */
  699. rdreg->free_index++;
  700. return 0;
  701. out_unlock:
  702. mutex_unlock(&kvm->arch.config_lock);
  703. return ret;
  704. }
  705. static void vgic_unregister_redist_iodev(struct kvm_vcpu *vcpu)
  706. {
  707. struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
  708. kvm_io_bus_unregister_dev(vcpu->kvm, KVM_MMIO_BUS, &rd_dev->dev);
  709. }
  710. static int vgic_register_all_redist_iodevs(struct kvm *kvm)
  711. {
  712. struct kvm_vcpu *vcpu;
  713. unsigned long c;
  714. int ret = 0;
  715. kvm_for_each_vcpu(c, vcpu, kvm) {
  716. ret = vgic_register_redist_iodev(vcpu);
  717. if (ret)
  718. break;
  719. }
  720. if (ret) {
  721. /* The current c failed, so iterate over the previous ones. */
  722. int i;
  723. for (i = 0; i < c; i++) {
  724. vcpu = kvm_get_vcpu(kvm, i);
  725. vgic_unregister_redist_iodev(vcpu);
  726. }
  727. }
  728. return ret;
  729. }
  730. /**
  731. * vgic_v3_alloc_redist_region - Allocate a new redistributor region
  732. *
  733. * Performs various checks before inserting the rdist region in the list.
  734. * Those tests depend on whether the size of the rdist region is known
  735. * (ie. count != 0). The list is sorted by rdist region index.
  736. *
  737. * @kvm: kvm handle
  738. * @index: redist region index
  739. * @base: base of the new rdist region
  740. * @count: number of redistributors the region is made of (0 in the old style
  741. * single region, whose size is induced from the number of vcpus)
  742. *
  743. * Return 0 on success, < 0 otherwise
  744. */
  745. static int vgic_v3_alloc_redist_region(struct kvm *kvm, uint32_t index,
  746. gpa_t base, uint32_t count)
  747. {
  748. struct vgic_dist *d = &kvm->arch.vgic;
  749. struct vgic_redist_region *rdreg;
  750. struct list_head *rd_regions = &d->rd_regions;
  751. int nr_vcpus = atomic_read(&kvm->online_vcpus);
  752. size_t size = count ? count * KVM_VGIC_V3_REDIST_SIZE
  753. : nr_vcpus * KVM_VGIC_V3_REDIST_SIZE;
  754. int ret;
  755. /* cross the end of memory ? */
  756. if (base + size < base)
  757. return -EINVAL;
  758. if (list_empty(rd_regions)) {
  759. if (index != 0)
  760. return -EINVAL;
  761. } else {
  762. rdreg = list_last_entry(rd_regions,
  763. struct vgic_redist_region, list);
  764. /* Don't mix single region and discrete redist regions */
  765. if (!count && rdreg->count)
  766. return -EINVAL;
  767. if (!count)
  768. return -EEXIST;
  769. if (index != rdreg->index + 1)
  770. return -EINVAL;
  771. }
  772. /*
  773. * For legacy single-region redistributor regions (!count),
  774. * check that the redistributor region does not overlap with the
  775. * distributor's address space.
  776. */
  777. if (!count && !IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) &&
  778. vgic_dist_overlap(kvm, base, size))
  779. return -EINVAL;
  780. /* collision with any other rdist region? */
  781. if (vgic_v3_rdist_overlap(kvm, base, size))
  782. return -EINVAL;
  783. rdreg = kzalloc(sizeof(*rdreg), GFP_KERNEL_ACCOUNT);
  784. if (!rdreg)
  785. return -ENOMEM;
  786. rdreg->base = VGIC_ADDR_UNDEF;
  787. ret = vgic_check_iorange(kvm, rdreg->base, base, SZ_64K, size);
  788. if (ret)
  789. goto free;
  790. rdreg->base = base;
  791. rdreg->count = count;
  792. rdreg->free_index = 0;
  793. rdreg->index = index;
  794. list_add_tail(&rdreg->list, rd_regions);
  795. return 0;
  796. free:
  797. kfree(rdreg);
  798. return ret;
  799. }
  800. void vgic_v3_free_redist_region(struct vgic_redist_region *rdreg)
  801. {
  802. list_del(&rdreg->list);
  803. kfree(rdreg);
  804. }
  805. int vgic_v3_set_redist_base(struct kvm *kvm, u32 index, u64 addr, u32 count)
  806. {
  807. int ret;
  808. mutex_lock(&kvm->arch.config_lock);
  809. ret = vgic_v3_alloc_redist_region(kvm, index, addr, count);
  810. mutex_unlock(&kvm->arch.config_lock);
  811. if (ret)
  812. return ret;
  813. /*
  814. * Register iodevs for each existing VCPU. Adding more VCPUs
  815. * afterwards will register the iodevs when needed.
  816. */
  817. ret = vgic_register_all_redist_iodevs(kvm);
  818. if (ret) {
  819. struct vgic_redist_region *rdreg;
  820. mutex_lock(&kvm->arch.config_lock);
  821. rdreg = vgic_v3_rdist_region_from_index(kvm, index);
  822. vgic_v3_free_redist_region(rdreg);
  823. mutex_unlock(&kvm->arch.config_lock);
  824. return ret;
  825. }
  826. return 0;
  827. }
  828. int vgic_v3_has_attr_regs(struct kvm_device *dev, struct kvm_device_attr *attr)
  829. {
  830. const struct vgic_register_region *region;
  831. struct vgic_io_device iodev;
  832. struct vgic_reg_attr reg_attr;
  833. struct kvm_vcpu *vcpu;
  834. gpa_t addr;
  835. int ret;
  836. ret = vgic_v3_parse_attr(dev, attr, &reg_attr);
  837. if (ret)
  838. return ret;
  839. vcpu = reg_attr.vcpu;
  840. addr = reg_attr.addr;
  841. switch (attr->group) {
  842. case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
  843. iodev.regions = vgic_v3_dist_registers;
  844. iodev.nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
  845. iodev.base_addr = 0;
  846. break;
  847. case KVM_DEV_ARM_VGIC_GRP_REDIST_REGS:{
  848. iodev.regions = vgic_v3_rd_registers;
  849. iodev.nr_regions = ARRAY_SIZE(vgic_v3_rd_registers);
  850. iodev.base_addr = 0;
  851. break;
  852. }
  853. case KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS:
  854. return vgic_v3_has_cpu_sysregs_attr(vcpu, attr);
  855. default:
  856. return -ENXIO;
  857. }
  858. /* We only support aligned 32-bit accesses. */
  859. if (addr & 3)
  860. return -ENXIO;
  861. region = vgic_get_mmio_region(vcpu, &iodev, addr, sizeof(u32));
  862. if (!region)
  863. return -ENXIO;
  864. return 0;
  865. }
  866. /*
  867. * Compare a given affinity (level 1-3 and a level 0 mask, from the SGI
  868. * generation register ICC_SGI1R_EL1) with a given VCPU.
  869. * If the VCPU's MPIDR matches, return the level0 affinity, otherwise
  870. * return -1.
  871. */
  872. static int match_mpidr(u64 sgi_aff, u16 sgi_cpu_mask, struct kvm_vcpu *vcpu)
  873. {
  874. unsigned long affinity;
  875. int level0;
  876. /*
  877. * Split the current VCPU's MPIDR into affinity level 0 and the
  878. * rest as this is what we have to compare against.
  879. */
  880. affinity = kvm_vcpu_get_mpidr_aff(vcpu);
  881. level0 = MPIDR_AFFINITY_LEVEL(affinity, 0);
  882. affinity &= ~MPIDR_LEVEL_MASK;
  883. /* bail out if the upper three levels don't match */
  884. if (sgi_aff != affinity)
  885. return -1;
  886. /* Is this VCPU's bit set in the mask ? */
  887. if (!(sgi_cpu_mask & BIT(level0)))
  888. return -1;
  889. return level0;
  890. }
  891. /*
  892. * The ICC_SGI* registers encode the affinity differently from the MPIDR,
  893. * so provide a wrapper to use the existing defines to isolate a certain
  894. * affinity level.
  895. */
  896. #define SGI_AFFINITY_LEVEL(reg, level) \
  897. ((((reg) & ICC_SGI1R_AFFINITY_## level ##_MASK) \
  898. >> ICC_SGI1R_AFFINITY_## level ##_SHIFT) << MPIDR_LEVEL_SHIFT(level))
  899. /**
  900. * vgic_v3_dispatch_sgi - handle SGI requests from VCPUs
  901. * @vcpu: The VCPU requesting a SGI
  902. * @reg: The value written into ICC_{ASGI1,SGI0,SGI1}R by that VCPU
  903. * @allow_group1: Does the sysreg access allow generation of G1 SGIs
  904. *
  905. * With GICv3 (and ARE=1) CPUs trigger SGIs by writing to a system register.
  906. * This will trap in sys_regs.c and call this function.
  907. * This ICC_SGI1R_EL1 register contains the upper three affinity levels of the
  908. * target processors as well as a bitmask of 16 Aff0 CPUs.
  909. * If the interrupt routing mode bit is not set, we iterate over all VCPUs to
  910. * check for matching ones. If this bit is set, we signal all, but not the
  911. * calling VCPU.
  912. */
  913. void vgic_v3_dispatch_sgi(struct kvm_vcpu *vcpu, u64 reg, bool allow_group1)
  914. {
  915. struct kvm *kvm = vcpu->kvm;
  916. struct kvm_vcpu *c_vcpu;
  917. u16 target_cpus;
  918. u64 mpidr;
  919. int sgi;
  920. int vcpu_id = vcpu->vcpu_id;
  921. bool broadcast;
  922. unsigned long c, flags;
  923. sgi = (reg & ICC_SGI1R_SGI_ID_MASK) >> ICC_SGI1R_SGI_ID_SHIFT;
  924. broadcast = reg & BIT_ULL(ICC_SGI1R_IRQ_ROUTING_MODE_BIT);
  925. target_cpus = (reg & ICC_SGI1R_TARGET_LIST_MASK) >> ICC_SGI1R_TARGET_LIST_SHIFT;
  926. mpidr = SGI_AFFINITY_LEVEL(reg, 3);
  927. mpidr |= SGI_AFFINITY_LEVEL(reg, 2);
  928. mpidr |= SGI_AFFINITY_LEVEL(reg, 1);
  929. /*
  930. * We iterate over all VCPUs to find the MPIDRs matching the request.
  931. * If we have handled one CPU, we clear its bit to detect early
  932. * if we are already finished. This avoids iterating through all
  933. * VCPUs when most of the times we just signal a single VCPU.
  934. */
  935. kvm_for_each_vcpu(c, c_vcpu, kvm) {
  936. struct vgic_irq *irq;
  937. /* Exit early if we have dealt with all requested CPUs */
  938. if (!broadcast && target_cpus == 0)
  939. break;
  940. /* Don't signal the calling VCPU */
  941. if (broadcast && c == vcpu_id)
  942. continue;
  943. if (!broadcast) {
  944. int level0;
  945. level0 = match_mpidr(mpidr, target_cpus, c_vcpu);
  946. if (level0 == -1)
  947. continue;
  948. /* remove this matching VCPU from the mask */
  949. target_cpus &= ~BIT(level0);
  950. }
  951. irq = vgic_get_irq(vcpu->kvm, c_vcpu, sgi);
  952. raw_spin_lock_irqsave(&irq->irq_lock, flags);
  953. /*
  954. * An access targeting Group0 SGIs can only generate
  955. * those, while an access targeting Group1 SGIs can
  956. * generate interrupts of either group.
  957. */
  958. if (!irq->group || allow_group1) {
  959. if (!irq->hw) {
  960. irq->pending_latch = true;
  961. vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
  962. } else {
  963. /* HW SGI? Ask the GIC to inject it */
  964. int err;
  965. err = irq_set_irqchip_state(irq->host_irq,
  966. IRQCHIP_STATE_PENDING,
  967. true);
  968. WARN_RATELIMIT(err, "IRQ %d", irq->host_irq);
  969. raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
  970. }
  971. } else {
  972. raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
  973. }
  974. vgic_put_irq(vcpu->kvm, irq);
  975. }
  976. }
  977. int vgic_v3_dist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
  978. int offset, u32 *val)
  979. {
  980. struct vgic_io_device dev = {
  981. .regions = vgic_v3_dist_registers,
  982. .nr_regions = ARRAY_SIZE(vgic_v3_dist_registers),
  983. };
  984. return vgic_uaccess(vcpu, &dev, is_write, offset, val);
  985. }
  986. int vgic_v3_redist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
  987. int offset, u32 *val)
  988. {
  989. struct vgic_io_device rd_dev = {
  990. .regions = vgic_v3_rd_registers,
  991. .nr_regions = ARRAY_SIZE(vgic_v3_rd_registers),
  992. };
  993. return vgic_uaccess(vcpu, &rd_dev, is_write, offset, val);
  994. }
  995. int vgic_v3_line_level_info_uaccess(struct kvm_vcpu *vcpu, bool is_write,
  996. u32 intid, u32 *val)
  997. {
  998. if (intid % 32)
  999. return -EINVAL;
  1000. if (is_write)
  1001. vgic_write_irq_line_level_info(vcpu, intid, *val);
  1002. else
  1003. *val = vgic_read_irq_line_level_info(vcpu, intid);
  1004. return 0;
  1005. }