vgic-mmio-v2.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * VGICv2 MMIO handling functions
  4. */
  5. #include <linux/irqchip/arm-gic.h>
  6. #include <linux/kvm.h>
  7. #include <linux/kvm_host.h>
  8. #include <linux/nospec.h>
  9. #include <kvm/iodev.h>
  10. #include <kvm/arm_vgic.h>
  11. #include "vgic.h"
  12. #include "vgic-mmio.h"
  13. /*
  14. * The Revision field in the IIDR have the following meanings:
  15. *
  16. * Revision 1: Report GICv2 interrupts as group 0 instead of group 1
  17. * Revision 2: Interrupt groups are guest-configurable and signaled using
  18. * their configured groups.
  19. */
  20. static unsigned long vgic_mmio_read_v2_misc(struct kvm_vcpu *vcpu,
  21. gpa_t addr, unsigned int len)
  22. {
  23. struct vgic_dist *vgic = &vcpu->kvm->arch.vgic;
  24. u32 value;
  25. switch (addr & 0x0c) {
  26. case GIC_DIST_CTRL:
  27. value = vgic->enabled ? GICD_ENABLE : 0;
  28. break;
  29. case GIC_DIST_CTR:
  30. value = vgic->nr_spis + VGIC_NR_PRIVATE_IRQS;
  31. value = (value >> 5) - 1;
  32. value |= (atomic_read(&vcpu->kvm->online_vcpus) - 1) << 5;
  33. break;
  34. case GIC_DIST_IIDR:
  35. value = (PRODUCT_ID_KVM << GICD_IIDR_PRODUCT_ID_SHIFT) |
  36. (vgic->implementation_rev << GICD_IIDR_REVISION_SHIFT) |
  37. (IMPLEMENTER_ARM << GICD_IIDR_IMPLEMENTER_SHIFT);
  38. break;
  39. default:
  40. return 0;
  41. }
  42. return value;
  43. }
  44. static void vgic_mmio_write_v2_misc(struct kvm_vcpu *vcpu,
  45. gpa_t addr, unsigned int len,
  46. unsigned long val)
  47. {
  48. struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
  49. bool was_enabled = dist->enabled;
  50. switch (addr & 0x0c) {
  51. case GIC_DIST_CTRL:
  52. dist->enabled = val & GICD_ENABLE;
  53. if (!was_enabled && dist->enabled)
  54. vgic_kick_vcpus(vcpu->kvm);
  55. break;
  56. case GIC_DIST_CTR:
  57. case GIC_DIST_IIDR:
  58. /* Nothing to do */
  59. return;
  60. }
  61. }
  62. static int vgic_mmio_uaccess_write_v2_misc(struct kvm_vcpu *vcpu,
  63. gpa_t addr, unsigned int len,
  64. unsigned long val)
  65. {
  66. struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
  67. u32 reg;
  68. switch (addr & 0x0c) {
  69. case GIC_DIST_IIDR:
  70. reg = vgic_mmio_read_v2_misc(vcpu, addr, len);
  71. if ((reg ^ val) & ~GICD_IIDR_REVISION_MASK)
  72. return -EINVAL;
  73. /*
  74. * If we observe a write to GICD_IIDR we know that userspace
  75. * has been updated and has had a chance to cope with older
  76. * kernels (VGICv2 IIDR.Revision == 0) incorrectly reporting
  77. * interrupts as group 1, and therefore we now allow groups to
  78. * be user writable. Doing this by default would break
  79. * migration from old kernels to new kernels with legacy
  80. * userspace.
  81. */
  82. reg = FIELD_GET(GICD_IIDR_REVISION_MASK, reg);
  83. switch (reg) {
  84. case KVM_VGIC_IMP_REV_2:
  85. case KVM_VGIC_IMP_REV_3:
  86. vcpu->kvm->arch.vgic.v2_groups_user_writable = true;
  87. dist->implementation_rev = reg;
  88. return 0;
  89. default:
  90. return -EINVAL;
  91. }
  92. }
  93. vgic_mmio_write_v2_misc(vcpu, addr, len, val);
  94. return 0;
  95. }
  96. static int vgic_mmio_uaccess_write_v2_group(struct kvm_vcpu *vcpu,
  97. gpa_t addr, unsigned int len,
  98. unsigned long val)
  99. {
  100. if (vcpu->kvm->arch.vgic.v2_groups_user_writable)
  101. vgic_mmio_write_group(vcpu, addr, len, val);
  102. return 0;
  103. }
  104. static void vgic_mmio_write_sgir(struct kvm_vcpu *source_vcpu,
  105. gpa_t addr, unsigned int len,
  106. unsigned long val)
  107. {
  108. int nr_vcpus = atomic_read(&source_vcpu->kvm->online_vcpus);
  109. int intid = val & 0xf;
  110. int targets = (val >> 16) & 0xff;
  111. int mode = (val >> 24) & 0x03;
  112. struct kvm_vcpu *vcpu;
  113. unsigned long flags, c;
  114. switch (mode) {
  115. case 0x0: /* as specified by targets */
  116. break;
  117. case 0x1:
  118. targets = (1U << nr_vcpus) - 1; /* all, ... */
  119. targets &= ~(1U << source_vcpu->vcpu_id); /* but self */
  120. break;
  121. case 0x2: /* this very vCPU only */
  122. targets = (1U << source_vcpu->vcpu_id);
  123. break;
  124. case 0x3: /* reserved */
  125. return;
  126. }
  127. kvm_for_each_vcpu(c, vcpu, source_vcpu->kvm) {
  128. struct vgic_irq *irq;
  129. if (!(targets & (1U << c)))
  130. continue;
  131. irq = vgic_get_irq(source_vcpu->kvm, vcpu, intid);
  132. raw_spin_lock_irqsave(&irq->irq_lock, flags);
  133. irq->pending_latch = true;
  134. irq->source |= 1U << source_vcpu->vcpu_id;
  135. vgic_queue_irq_unlock(source_vcpu->kvm, irq, flags);
  136. vgic_put_irq(source_vcpu->kvm, irq);
  137. }
  138. }
  139. static unsigned long vgic_mmio_read_target(struct kvm_vcpu *vcpu,
  140. gpa_t addr, unsigned int len)
  141. {
  142. u32 intid = VGIC_ADDR_TO_INTID(addr, 8);
  143. int i;
  144. u64 val = 0;
  145. for (i = 0; i < len; i++) {
  146. struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
  147. val |= (u64)irq->targets << (i * 8);
  148. vgic_put_irq(vcpu->kvm, irq);
  149. }
  150. return val;
  151. }
  152. static void vgic_mmio_write_target(struct kvm_vcpu *vcpu,
  153. gpa_t addr, unsigned int len,
  154. unsigned long val)
  155. {
  156. u32 intid = VGIC_ADDR_TO_INTID(addr, 8);
  157. u8 cpu_mask = GENMASK(atomic_read(&vcpu->kvm->online_vcpus) - 1, 0);
  158. int i;
  159. unsigned long flags;
  160. /* GICD_ITARGETSR[0-7] are read-only */
  161. if (intid < VGIC_NR_PRIVATE_IRQS)
  162. return;
  163. for (i = 0; i < len; i++) {
  164. struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, NULL, intid + i);
  165. int target;
  166. raw_spin_lock_irqsave(&irq->irq_lock, flags);
  167. irq->targets = (val >> (i * 8)) & cpu_mask;
  168. target = irq->targets ? __ffs(irq->targets) : 0;
  169. irq->target_vcpu = kvm_get_vcpu(vcpu->kvm, target);
  170. raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
  171. vgic_put_irq(vcpu->kvm, irq);
  172. }
  173. }
  174. static unsigned long vgic_mmio_read_sgipend(struct kvm_vcpu *vcpu,
  175. gpa_t addr, unsigned int len)
  176. {
  177. u32 intid = addr & 0x0f;
  178. int i;
  179. u64 val = 0;
  180. for (i = 0; i < len; i++) {
  181. struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
  182. val |= (u64)irq->source << (i * 8);
  183. vgic_put_irq(vcpu->kvm, irq);
  184. }
  185. return val;
  186. }
  187. static void vgic_mmio_write_sgipendc(struct kvm_vcpu *vcpu,
  188. gpa_t addr, unsigned int len,
  189. unsigned long val)
  190. {
  191. u32 intid = addr & 0x0f;
  192. int i;
  193. unsigned long flags;
  194. for (i = 0; i < len; i++) {
  195. struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
  196. raw_spin_lock_irqsave(&irq->irq_lock, flags);
  197. irq->source &= ~((val >> (i * 8)) & 0xff);
  198. if (!irq->source)
  199. irq->pending_latch = false;
  200. raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
  201. vgic_put_irq(vcpu->kvm, irq);
  202. }
  203. }
  204. static void vgic_mmio_write_sgipends(struct kvm_vcpu *vcpu,
  205. gpa_t addr, unsigned int len,
  206. unsigned long val)
  207. {
  208. u32 intid = addr & 0x0f;
  209. int i;
  210. unsigned long flags;
  211. for (i = 0; i < len; i++) {
  212. struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
  213. raw_spin_lock_irqsave(&irq->irq_lock, flags);
  214. irq->source |= (val >> (i * 8)) & 0xff;
  215. if (irq->source) {
  216. irq->pending_latch = true;
  217. vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
  218. } else {
  219. raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
  220. }
  221. vgic_put_irq(vcpu->kvm, irq);
  222. }
  223. }
  224. #define GICC_ARCH_VERSION_V2 0x2
  225. /* These are for userland accesses only, there is no guest-facing emulation. */
  226. static unsigned long vgic_mmio_read_vcpuif(struct kvm_vcpu *vcpu,
  227. gpa_t addr, unsigned int len)
  228. {
  229. struct vgic_vmcr vmcr;
  230. u32 val;
  231. vgic_get_vmcr(vcpu, &vmcr);
  232. switch (addr & 0xff) {
  233. case GIC_CPU_CTRL:
  234. val = vmcr.grpen0 << GIC_CPU_CTRL_EnableGrp0_SHIFT;
  235. val |= vmcr.grpen1 << GIC_CPU_CTRL_EnableGrp1_SHIFT;
  236. val |= vmcr.ackctl << GIC_CPU_CTRL_AckCtl_SHIFT;
  237. val |= vmcr.fiqen << GIC_CPU_CTRL_FIQEn_SHIFT;
  238. val |= vmcr.cbpr << GIC_CPU_CTRL_CBPR_SHIFT;
  239. val |= vmcr.eoim << GIC_CPU_CTRL_EOImodeNS_SHIFT;
  240. break;
  241. case GIC_CPU_PRIMASK:
  242. /*
  243. * Our KVM_DEV_TYPE_ARM_VGIC_V2 device ABI exports the
  244. * PMR field as GICH_VMCR.VMPriMask rather than
  245. * GICC_PMR.Priority, so we expose the upper five bits of
  246. * priority mask to userspace using the lower bits in the
  247. * unsigned long.
  248. */
  249. val = (vmcr.pmr & GICV_PMR_PRIORITY_MASK) >>
  250. GICV_PMR_PRIORITY_SHIFT;
  251. break;
  252. case GIC_CPU_BINPOINT:
  253. val = vmcr.bpr;
  254. break;
  255. case GIC_CPU_ALIAS_BINPOINT:
  256. val = vmcr.abpr;
  257. break;
  258. case GIC_CPU_IDENT:
  259. val = ((PRODUCT_ID_KVM << 20) |
  260. (GICC_ARCH_VERSION_V2 << 16) |
  261. IMPLEMENTER_ARM);
  262. break;
  263. default:
  264. return 0;
  265. }
  266. return val;
  267. }
  268. static void vgic_mmio_write_vcpuif(struct kvm_vcpu *vcpu,
  269. gpa_t addr, unsigned int len,
  270. unsigned long val)
  271. {
  272. struct vgic_vmcr vmcr;
  273. vgic_get_vmcr(vcpu, &vmcr);
  274. switch (addr & 0xff) {
  275. case GIC_CPU_CTRL:
  276. vmcr.grpen0 = !!(val & GIC_CPU_CTRL_EnableGrp0);
  277. vmcr.grpen1 = !!(val & GIC_CPU_CTRL_EnableGrp1);
  278. vmcr.ackctl = !!(val & GIC_CPU_CTRL_AckCtl);
  279. vmcr.fiqen = !!(val & GIC_CPU_CTRL_FIQEn);
  280. vmcr.cbpr = !!(val & GIC_CPU_CTRL_CBPR);
  281. vmcr.eoim = !!(val & GIC_CPU_CTRL_EOImodeNS);
  282. break;
  283. case GIC_CPU_PRIMASK:
  284. /*
  285. * Our KVM_DEV_TYPE_ARM_VGIC_V2 device ABI exports the
  286. * PMR field as GICH_VMCR.VMPriMask rather than
  287. * GICC_PMR.Priority, so we expose the upper five bits of
  288. * priority mask to userspace using the lower bits in the
  289. * unsigned long.
  290. */
  291. vmcr.pmr = (val << GICV_PMR_PRIORITY_SHIFT) &
  292. GICV_PMR_PRIORITY_MASK;
  293. break;
  294. case GIC_CPU_BINPOINT:
  295. vmcr.bpr = val;
  296. break;
  297. case GIC_CPU_ALIAS_BINPOINT:
  298. vmcr.abpr = val;
  299. break;
  300. }
  301. vgic_set_vmcr(vcpu, &vmcr);
  302. }
  303. static unsigned long vgic_mmio_read_apr(struct kvm_vcpu *vcpu,
  304. gpa_t addr, unsigned int len)
  305. {
  306. int n; /* which APRn is this */
  307. n = (addr >> 2) & 0x3;
  308. if (kvm_vgic_global_state.type == VGIC_V2) {
  309. /* GICv2 hardware systems support max. 32 groups */
  310. if (n != 0)
  311. return 0;
  312. return vcpu->arch.vgic_cpu.vgic_v2.vgic_apr;
  313. } else {
  314. struct vgic_v3_cpu_if *vgicv3 = &vcpu->arch.vgic_cpu.vgic_v3;
  315. if (n > vgic_v3_max_apr_idx(vcpu))
  316. return 0;
  317. n = array_index_nospec(n, 4);
  318. /* GICv3 only uses ICH_AP1Rn for memory mapped (GICv2) guests */
  319. return vgicv3->vgic_ap1r[n];
  320. }
  321. }
  322. static void vgic_mmio_write_apr(struct kvm_vcpu *vcpu,
  323. gpa_t addr, unsigned int len,
  324. unsigned long val)
  325. {
  326. int n; /* which APRn is this */
  327. n = (addr >> 2) & 0x3;
  328. if (kvm_vgic_global_state.type == VGIC_V2) {
  329. /* GICv2 hardware systems support max. 32 groups */
  330. if (n != 0)
  331. return;
  332. vcpu->arch.vgic_cpu.vgic_v2.vgic_apr = val;
  333. } else {
  334. struct vgic_v3_cpu_if *vgicv3 = &vcpu->arch.vgic_cpu.vgic_v3;
  335. if (n > vgic_v3_max_apr_idx(vcpu))
  336. return;
  337. n = array_index_nospec(n, 4);
  338. /* GICv3 only uses ICH_AP1Rn for memory mapped (GICv2) guests */
  339. vgicv3->vgic_ap1r[n] = val;
  340. }
  341. }
  342. static const struct vgic_register_region vgic_v2_dist_registers[] = {
  343. REGISTER_DESC_WITH_LENGTH_UACCESS(GIC_DIST_CTRL,
  344. vgic_mmio_read_v2_misc, vgic_mmio_write_v2_misc,
  345. NULL, vgic_mmio_uaccess_write_v2_misc,
  346. 12, VGIC_ACCESS_32bit),
  347. REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_IGROUP,
  348. vgic_mmio_read_group, vgic_mmio_write_group,
  349. NULL, vgic_mmio_uaccess_write_v2_group, 1,
  350. VGIC_ACCESS_32bit),
  351. REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_ENABLE_SET,
  352. vgic_mmio_read_enable, vgic_mmio_write_senable,
  353. NULL, vgic_uaccess_write_senable, 1,
  354. VGIC_ACCESS_32bit),
  355. REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_ENABLE_CLEAR,
  356. vgic_mmio_read_enable, vgic_mmio_write_cenable,
  357. NULL, vgic_uaccess_write_cenable, 1,
  358. VGIC_ACCESS_32bit),
  359. REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_PENDING_SET,
  360. vgic_mmio_read_pending, vgic_mmio_write_spending,
  361. vgic_uaccess_read_pending, vgic_uaccess_write_spending, 1,
  362. VGIC_ACCESS_32bit),
  363. REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_PENDING_CLEAR,
  364. vgic_mmio_read_pending, vgic_mmio_write_cpending,
  365. vgic_uaccess_read_pending, vgic_uaccess_write_cpending, 1,
  366. VGIC_ACCESS_32bit),
  367. REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_ACTIVE_SET,
  368. vgic_mmio_read_active, vgic_mmio_write_sactive,
  369. vgic_uaccess_read_active, vgic_mmio_uaccess_write_sactive, 1,
  370. VGIC_ACCESS_32bit),
  371. REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_ACTIVE_CLEAR,
  372. vgic_mmio_read_active, vgic_mmio_write_cactive,
  373. vgic_uaccess_read_active, vgic_mmio_uaccess_write_cactive, 1,
  374. VGIC_ACCESS_32bit),
  375. REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_PRI,
  376. vgic_mmio_read_priority, vgic_mmio_write_priority, NULL, NULL,
  377. 8, VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
  378. REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_TARGET,
  379. vgic_mmio_read_target, vgic_mmio_write_target, NULL, NULL, 8,
  380. VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
  381. REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_CONFIG,
  382. vgic_mmio_read_config, vgic_mmio_write_config, NULL, NULL, 2,
  383. VGIC_ACCESS_32bit),
  384. REGISTER_DESC_WITH_LENGTH(GIC_DIST_SOFTINT,
  385. vgic_mmio_read_raz, vgic_mmio_write_sgir, 4,
  386. VGIC_ACCESS_32bit),
  387. REGISTER_DESC_WITH_LENGTH(GIC_DIST_SGI_PENDING_CLEAR,
  388. vgic_mmio_read_sgipend, vgic_mmio_write_sgipendc, 16,
  389. VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
  390. REGISTER_DESC_WITH_LENGTH(GIC_DIST_SGI_PENDING_SET,
  391. vgic_mmio_read_sgipend, vgic_mmio_write_sgipends, 16,
  392. VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
  393. };
  394. static const struct vgic_register_region vgic_v2_cpu_registers[] = {
  395. REGISTER_DESC_WITH_LENGTH(GIC_CPU_CTRL,
  396. vgic_mmio_read_vcpuif, vgic_mmio_write_vcpuif, 4,
  397. VGIC_ACCESS_32bit),
  398. REGISTER_DESC_WITH_LENGTH(GIC_CPU_PRIMASK,
  399. vgic_mmio_read_vcpuif, vgic_mmio_write_vcpuif, 4,
  400. VGIC_ACCESS_32bit),
  401. REGISTER_DESC_WITH_LENGTH(GIC_CPU_BINPOINT,
  402. vgic_mmio_read_vcpuif, vgic_mmio_write_vcpuif, 4,
  403. VGIC_ACCESS_32bit),
  404. REGISTER_DESC_WITH_LENGTH(GIC_CPU_ALIAS_BINPOINT,
  405. vgic_mmio_read_vcpuif, vgic_mmio_write_vcpuif, 4,
  406. VGIC_ACCESS_32bit),
  407. REGISTER_DESC_WITH_LENGTH(GIC_CPU_ACTIVEPRIO,
  408. vgic_mmio_read_apr, vgic_mmio_write_apr, 16,
  409. VGIC_ACCESS_32bit),
  410. REGISTER_DESC_WITH_LENGTH(GIC_CPU_IDENT,
  411. vgic_mmio_read_vcpuif, vgic_mmio_write_vcpuif, 4,
  412. VGIC_ACCESS_32bit),
  413. };
  414. unsigned int vgic_v2_init_dist_iodev(struct vgic_io_device *dev)
  415. {
  416. dev->regions = vgic_v2_dist_registers;
  417. dev->nr_regions = ARRAY_SIZE(vgic_v2_dist_registers);
  418. kvm_iodevice_init(&dev->dev, &kvm_io_gic_ops);
  419. return SZ_4K;
  420. }
  421. int vgic_v2_has_attr_regs(struct kvm_device *dev, struct kvm_device_attr *attr)
  422. {
  423. const struct vgic_register_region *region;
  424. struct vgic_io_device iodev;
  425. struct vgic_reg_attr reg_attr;
  426. struct kvm_vcpu *vcpu;
  427. gpa_t addr;
  428. int ret;
  429. ret = vgic_v2_parse_attr(dev, attr, &reg_attr);
  430. if (ret)
  431. return ret;
  432. vcpu = reg_attr.vcpu;
  433. addr = reg_attr.addr;
  434. switch (attr->group) {
  435. case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
  436. iodev.regions = vgic_v2_dist_registers;
  437. iodev.nr_regions = ARRAY_SIZE(vgic_v2_dist_registers);
  438. iodev.base_addr = 0;
  439. break;
  440. case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
  441. iodev.regions = vgic_v2_cpu_registers;
  442. iodev.nr_regions = ARRAY_SIZE(vgic_v2_cpu_registers);
  443. iodev.base_addr = 0;
  444. break;
  445. default:
  446. return -ENXIO;
  447. }
  448. /* We only support aligned 32-bit accesses. */
  449. if (addr & 3)
  450. return -ENXIO;
  451. region = vgic_get_mmio_region(vcpu, &iodev, addr, sizeof(u32));
  452. if (!region)
  453. return -ENXIO;
  454. return 0;
  455. }
  456. int vgic_v2_cpuif_uaccess(struct kvm_vcpu *vcpu, bool is_write,
  457. int offset, u32 *val)
  458. {
  459. struct vgic_io_device dev = {
  460. .regions = vgic_v2_cpu_registers,
  461. .nr_regions = ARRAY_SIZE(vgic_v2_cpu_registers),
  462. .iodev_type = IODEV_CPUIF,
  463. };
  464. return vgic_uaccess(vcpu, &dev, is_write, offset, val);
  465. }
  466. int vgic_v2_dist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
  467. int offset, u32 *val)
  468. {
  469. struct vgic_io_device dev = {
  470. .regions = vgic_v2_dist_registers,
  471. .nr_regions = ARRAY_SIZE(vgic_v2_dist_registers),
  472. .iodev_type = IODEV_DIST,
  473. };
  474. return vgic_uaccess(vcpu, &dev, is_write, offset, val);
  475. }