sys_regs.c 79 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (C) 2012,2013 - ARM Ltd
  4. * Author: Marc Zyngier <[email protected]>
  5. *
  6. * Derived from arch/arm/kvm/coproc.c:
  7. * Copyright (C) 2012 - Virtual Open Systems and Columbia University
  8. * Authors: Rusty Russell <[email protected]>
  9. * Christoffer Dall <[email protected]>
  10. */
  11. #include <linux/bitfield.h>
  12. #include <linux/bsearch.h>
  13. #include <linux/kvm_host.h>
  14. #include <linux/mm.h>
  15. #include <linux/printk.h>
  16. #include <linux/uaccess.h>
  17. #include <asm/cacheflush.h>
  18. #include <asm/cputype.h>
  19. #include <asm/debug-monitors.h>
  20. #include <asm/esr.h>
  21. #include <asm/kvm_arm.h>
  22. #include <asm/kvm_emulate.h>
  23. #include <asm/kvm_hyp.h>
  24. #include <asm/kvm_mmu.h>
  25. #include <asm/perf_event.h>
  26. #include <asm/sysreg.h>
  27. #include <trace/events/kvm.h>
  28. #include "sys_regs.h"
  29. #include "trace.h"
  30. /*
  31. * For AArch32, we only take care of what is being trapped. Anything
  32. * that has to do with init and userspace access has to go via the
  33. * 64bit interface.
  34. */
  35. static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
  36. static bool read_from_write_only(struct kvm_vcpu *vcpu,
  37. struct sys_reg_params *params,
  38. const struct sys_reg_desc *r)
  39. {
  40. WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n");
  41. print_sys_reg_instr(params);
  42. kvm_inject_undefined(vcpu);
  43. return false;
  44. }
  45. static bool write_to_read_only(struct kvm_vcpu *vcpu,
  46. struct sys_reg_params *params,
  47. const struct sys_reg_desc *r)
  48. {
  49. WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n");
  50. print_sys_reg_instr(params);
  51. kvm_inject_undefined(vcpu);
  52. return false;
  53. }
  54. /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
  55. static u32 cache_levels;
  56. /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
  57. #define CSSELR_MAX 14
  58. /* Which cache CCSIDR represents depends on CSSELR value. */
  59. static u32 get_ccsidr(u32 csselr)
  60. {
  61. u32 ccsidr;
  62. /* Make sure noone else changes CSSELR during this! */
  63. local_irq_disable();
  64. write_sysreg(csselr, csselr_el1);
  65. isb();
  66. ccsidr = read_sysreg(ccsidr_el1);
  67. local_irq_enable();
  68. return ccsidr;
  69. }
  70. /*
  71. * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
  72. */
  73. static bool access_dcsw(struct kvm_vcpu *vcpu,
  74. struct sys_reg_params *p,
  75. const struct sys_reg_desc *r)
  76. {
  77. if (!p->is_write)
  78. return read_from_write_only(vcpu, p, r);
  79. /*
  80. * Only track S/W ops if we don't have FWB. It still indicates
  81. * that the guest is a bit broken (S/W operations should only
  82. * be done by firmware, knowing that there is only a single
  83. * CPU left in the system, and certainly not from non-secure
  84. * software).
  85. */
  86. if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
  87. kvm_set_way_flush(vcpu);
  88. return true;
  89. }
  90. static void get_access_mask(const struct sys_reg_desc *r, u64 *mask, u64 *shift)
  91. {
  92. switch (r->aarch32_map) {
  93. case AA32_LO:
  94. *mask = GENMASK_ULL(31, 0);
  95. *shift = 0;
  96. break;
  97. case AA32_HI:
  98. *mask = GENMASK_ULL(63, 32);
  99. *shift = 32;
  100. break;
  101. default:
  102. *mask = GENMASK_ULL(63, 0);
  103. *shift = 0;
  104. break;
  105. }
  106. }
  107. /*
  108. * Generic accessor for VM registers. Only called as long as HCR_TVM
  109. * is set. If the guest enables the MMU, we stop trapping the VM
  110. * sys_regs and leave it in complete control of the caches.
  111. */
  112. static bool access_vm_reg(struct kvm_vcpu *vcpu,
  113. struct sys_reg_params *p,
  114. const struct sys_reg_desc *r)
  115. {
  116. bool was_enabled = vcpu_has_cache_enabled(vcpu);
  117. u64 val, mask, shift;
  118. BUG_ON(!p->is_write);
  119. get_access_mask(r, &mask, &shift);
  120. if (~mask) {
  121. val = vcpu_read_sys_reg(vcpu, r->reg);
  122. val &= ~mask;
  123. } else {
  124. val = 0;
  125. }
  126. val |= (p->regval & (mask >> shift)) << shift;
  127. vcpu_write_sys_reg(vcpu, val, r->reg);
  128. kvm_toggle_cache(vcpu, was_enabled);
  129. return true;
  130. }
  131. static bool access_actlr(struct kvm_vcpu *vcpu,
  132. struct sys_reg_params *p,
  133. const struct sys_reg_desc *r)
  134. {
  135. u64 mask, shift;
  136. if (p->is_write)
  137. return ignore_write(vcpu, p);
  138. get_access_mask(r, &mask, &shift);
  139. p->regval = (vcpu_read_sys_reg(vcpu, r->reg) & mask) >> shift;
  140. return true;
  141. }
  142. /*
  143. * Trap handler for the GICv3 SGI generation system register.
  144. * Forward the request to the VGIC emulation.
  145. * The cp15_64 code makes sure this automatically works
  146. * for both AArch64 and AArch32 accesses.
  147. */
  148. static bool access_gic_sgi(struct kvm_vcpu *vcpu,
  149. struct sys_reg_params *p,
  150. const struct sys_reg_desc *r)
  151. {
  152. bool g1;
  153. if (!p->is_write)
  154. return read_from_write_only(vcpu, p, r);
  155. /*
  156. * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
  157. * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
  158. * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
  159. * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
  160. * group.
  161. */
  162. if (p->Op0 == 0) { /* AArch32 */
  163. switch (p->Op1) {
  164. default: /* Keep GCC quiet */
  165. case 0: /* ICC_SGI1R */
  166. g1 = true;
  167. break;
  168. case 1: /* ICC_ASGI1R */
  169. case 2: /* ICC_SGI0R */
  170. g1 = false;
  171. break;
  172. }
  173. } else { /* AArch64 */
  174. switch (p->Op2) {
  175. default: /* Keep GCC quiet */
  176. case 5: /* ICC_SGI1R_EL1 */
  177. g1 = true;
  178. break;
  179. case 6: /* ICC_ASGI1R_EL1 */
  180. case 7: /* ICC_SGI0R_EL1 */
  181. g1 = false;
  182. break;
  183. }
  184. }
  185. vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
  186. return true;
  187. }
  188. static bool access_gic_sre(struct kvm_vcpu *vcpu,
  189. struct sys_reg_params *p,
  190. const struct sys_reg_desc *r)
  191. {
  192. if (p->is_write)
  193. return ignore_write(vcpu, p);
  194. p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
  195. return true;
  196. }
  197. static bool trap_raz_wi(struct kvm_vcpu *vcpu,
  198. struct sys_reg_params *p,
  199. const struct sys_reg_desc *r)
  200. {
  201. if (p->is_write)
  202. return ignore_write(vcpu, p);
  203. else
  204. return read_zero(vcpu, p);
  205. }
  206. /*
  207. * ARMv8.1 mandates at least a trivial LORegion implementation, where all the
  208. * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0
  209. * system, these registers should UNDEF. LORID_EL1 being a RO register, we
  210. * treat it separately.
  211. */
  212. static bool trap_loregion(struct kvm_vcpu *vcpu,
  213. struct sys_reg_params *p,
  214. const struct sys_reg_desc *r)
  215. {
  216. u64 val = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
  217. u32 sr = reg_to_encoding(r);
  218. if (!(val & (0xfUL << ID_AA64MMFR1_EL1_LO_SHIFT))) {
  219. kvm_inject_undefined(vcpu);
  220. return false;
  221. }
  222. if (p->is_write && sr == SYS_LORID_EL1)
  223. return write_to_read_only(vcpu, p, r);
  224. return trap_raz_wi(vcpu, p, r);
  225. }
  226. static bool trap_oslar_el1(struct kvm_vcpu *vcpu,
  227. struct sys_reg_params *p,
  228. const struct sys_reg_desc *r)
  229. {
  230. u64 oslsr;
  231. if (!p->is_write)
  232. return read_from_write_only(vcpu, p, r);
  233. /* Forward the OSLK bit to OSLSR */
  234. oslsr = __vcpu_sys_reg(vcpu, OSLSR_EL1) & ~SYS_OSLSR_OSLK;
  235. if (p->regval & SYS_OSLAR_OSLK)
  236. oslsr |= SYS_OSLSR_OSLK;
  237. __vcpu_sys_reg(vcpu, OSLSR_EL1) = oslsr;
  238. return true;
  239. }
  240. static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
  241. struct sys_reg_params *p,
  242. const struct sys_reg_desc *r)
  243. {
  244. if (p->is_write)
  245. return write_to_read_only(vcpu, p, r);
  246. p->regval = __vcpu_sys_reg(vcpu, r->reg);
  247. return true;
  248. }
  249. static int set_oslsr_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
  250. u64 val)
  251. {
  252. /*
  253. * The only modifiable bit is the OSLK bit. Refuse the write if
  254. * userspace attempts to change any other bit in the register.
  255. */
  256. if ((val ^ rd->val) & ~SYS_OSLSR_OSLK)
  257. return -EINVAL;
  258. __vcpu_sys_reg(vcpu, rd->reg) = val;
  259. return 0;
  260. }
  261. static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
  262. struct sys_reg_params *p,
  263. const struct sys_reg_desc *r)
  264. {
  265. if (p->is_write) {
  266. return ignore_write(vcpu, p);
  267. } else {
  268. p->regval = read_sysreg(dbgauthstatus_el1);
  269. return true;
  270. }
  271. }
  272. /*
  273. * We want to avoid world-switching all the DBG registers all the
  274. * time:
  275. *
  276. * - If we've touched any debug register, it is likely that we're
  277. * going to touch more of them. It then makes sense to disable the
  278. * traps and start doing the save/restore dance
  279. * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
  280. * then mandatory to save/restore the registers, as the guest
  281. * depends on them.
  282. *
  283. * For this, we use a DIRTY bit, indicating the guest has modified the
  284. * debug registers, used as follow:
  285. *
  286. * On guest entry:
  287. * - If the dirty bit is set (because we're coming back from trapping),
  288. * disable the traps, save host registers, restore guest registers.
  289. * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
  290. * set the dirty bit, disable the traps, save host registers,
  291. * restore guest registers.
  292. * - Otherwise, enable the traps
  293. *
  294. * On guest exit:
  295. * - If the dirty bit is set, save guest registers, restore host
  296. * registers and clear the dirty bit. This ensure that the host can
  297. * now use the debug registers.
  298. */
  299. static bool trap_debug_regs(struct kvm_vcpu *vcpu,
  300. struct sys_reg_params *p,
  301. const struct sys_reg_desc *r)
  302. {
  303. if (p->is_write) {
  304. vcpu_write_sys_reg(vcpu, p->regval, r->reg);
  305. vcpu_set_flag(vcpu, DEBUG_DIRTY);
  306. } else {
  307. p->regval = vcpu_read_sys_reg(vcpu, r->reg);
  308. }
  309. trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
  310. return true;
  311. }
  312. /*
  313. * reg_to_dbg/dbg_to_reg
  314. *
  315. * A 32 bit write to a debug register leave top bits alone
  316. * A 32 bit read from a debug register only returns the bottom bits
  317. *
  318. * All writes will set the DEBUG_DIRTY flag to ensure the hyp code
  319. * switches between host and guest values in future.
  320. */
  321. static void reg_to_dbg(struct kvm_vcpu *vcpu,
  322. struct sys_reg_params *p,
  323. const struct sys_reg_desc *rd,
  324. u64 *dbg_reg)
  325. {
  326. u64 mask, shift, val;
  327. get_access_mask(rd, &mask, &shift);
  328. val = *dbg_reg;
  329. val &= ~mask;
  330. val |= (p->regval & (mask >> shift)) << shift;
  331. *dbg_reg = val;
  332. vcpu_set_flag(vcpu, DEBUG_DIRTY);
  333. }
  334. static void dbg_to_reg(struct kvm_vcpu *vcpu,
  335. struct sys_reg_params *p,
  336. const struct sys_reg_desc *rd,
  337. u64 *dbg_reg)
  338. {
  339. u64 mask, shift;
  340. get_access_mask(rd, &mask, &shift);
  341. p->regval = (*dbg_reg & mask) >> shift;
  342. }
  343. static bool trap_bvr(struct kvm_vcpu *vcpu,
  344. struct sys_reg_params *p,
  345. const struct sys_reg_desc *rd)
  346. {
  347. u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
  348. if (p->is_write)
  349. reg_to_dbg(vcpu, p, rd, dbg_reg);
  350. else
  351. dbg_to_reg(vcpu, p, rd, dbg_reg);
  352. trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
  353. return true;
  354. }
  355. static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
  356. u64 val)
  357. {
  358. vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = val;
  359. return 0;
  360. }
  361. static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
  362. u64 *val)
  363. {
  364. *val = vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
  365. return 0;
  366. }
  367. static void reset_bvr(struct kvm_vcpu *vcpu,
  368. const struct sys_reg_desc *rd)
  369. {
  370. vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = rd->val;
  371. }
  372. static bool trap_bcr(struct kvm_vcpu *vcpu,
  373. struct sys_reg_params *p,
  374. const struct sys_reg_desc *rd)
  375. {
  376. u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
  377. if (p->is_write)
  378. reg_to_dbg(vcpu, p, rd, dbg_reg);
  379. else
  380. dbg_to_reg(vcpu, p, rd, dbg_reg);
  381. trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
  382. return true;
  383. }
  384. static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
  385. u64 val)
  386. {
  387. vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = val;
  388. return 0;
  389. }
  390. static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
  391. u64 *val)
  392. {
  393. *val = vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
  394. return 0;
  395. }
  396. static void reset_bcr(struct kvm_vcpu *vcpu,
  397. const struct sys_reg_desc *rd)
  398. {
  399. vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = rd->val;
  400. }
  401. static bool trap_wvr(struct kvm_vcpu *vcpu,
  402. struct sys_reg_params *p,
  403. const struct sys_reg_desc *rd)
  404. {
  405. u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
  406. if (p->is_write)
  407. reg_to_dbg(vcpu, p, rd, dbg_reg);
  408. else
  409. dbg_to_reg(vcpu, p, rd, dbg_reg);
  410. trace_trap_reg(__func__, rd->CRm, p->is_write,
  411. vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]);
  412. return true;
  413. }
  414. static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
  415. u64 val)
  416. {
  417. vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = val;
  418. return 0;
  419. }
  420. static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
  421. u64 *val)
  422. {
  423. *val = vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
  424. return 0;
  425. }
  426. static void reset_wvr(struct kvm_vcpu *vcpu,
  427. const struct sys_reg_desc *rd)
  428. {
  429. vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = rd->val;
  430. }
  431. static bool trap_wcr(struct kvm_vcpu *vcpu,
  432. struct sys_reg_params *p,
  433. const struct sys_reg_desc *rd)
  434. {
  435. u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
  436. if (p->is_write)
  437. reg_to_dbg(vcpu, p, rd, dbg_reg);
  438. else
  439. dbg_to_reg(vcpu, p, rd, dbg_reg);
  440. trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
  441. return true;
  442. }
  443. static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
  444. u64 val)
  445. {
  446. vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = val;
  447. return 0;
  448. }
  449. static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
  450. u64 *val)
  451. {
  452. *val = vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
  453. return 0;
  454. }
  455. static void reset_wcr(struct kvm_vcpu *vcpu,
  456. const struct sys_reg_desc *rd)
  457. {
  458. vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = rd->val;
  459. }
  460. static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
  461. {
  462. u64 amair = read_sysreg(amair_el1);
  463. vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
  464. }
  465. static void reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
  466. {
  467. u64 actlr = read_sysreg(actlr_el1);
  468. vcpu_write_sys_reg(vcpu, actlr, ACTLR_EL1);
  469. }
  470. static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
  471. {
  472. vcpu_write_sys_reg(vcpu, calculate_mpidr(vcpu), MPIDR_EL1);
  473. }
  474. static unsigned int pmu_visibility(const struct kvm_vcpu *vcpu,
  475. const struct sys_reg_desc *r)
  476. {
  477. if (kvm_vcpu_has_pmu(vcpu))
  478. return 0;
  479. return REG_HIDDEN;
  480. }
  481. static void reset_pmu_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
  482. {
  483. u64 n, mask = BIT(ARMV8_PMU_CYCLE_IDX);
  484. /* No PMU available, any PMU reg may UNDEF... */
  485. if (!kvm_arm_support_pmu_v3())
  486. return;
  487. n = read_sysreg(pmcr_el0) >> ARMV8_PMU_PMCR_N_SHIFT;
  488. n &= ARMV8_PMU_PMCR_N_MASK;
  489. if (n)
  490. mask |= GENMASK(n - 1, 0);
  491. reset_unknown(vcpu, r);
  492. __vcpu_sys_reg(vcpu, r->reg) &= mask;
  493. }
  494. static void reset_pmevcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
  495. {
  496. reset_unknown(vcpu, r);
  497. __vcpu_sys_reg(vcpu, r->reg) &= GENMASK(31, 0);
  498. }
  499. static void reset_pmevtyper(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
  500. {
  501. reset_unknown(vcpu, r);
  502. __vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_EVTYPE_MASK;
  503. }
  504. static void reset_pmselr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
  505. {
  506. reset_unknown(vcpu, r);
  507. __vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_COUNTER_MASK;
  508. }
  509. static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
  510. {
  511. u64 pmcr, val;
  512. /* No PMU available, PMCR_EL0 may UNDEF... */
  513. if (!kvm_arm_support_pmu_v3())
  514. return;
  515. pmcr = read_sysreg(pmcr_el0);
  516. /*
  517. * Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) are reset to UNKNOWN
  518. * except PMCR.E resetting to zero.
  519. */
  520. val = ((pmcr & ~ARMV8_PMU_PMCR_MASK)
  521. | (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E);
  522. if (!kvm_supports_32bit_el0())
  523. val |= ARMV8_PMU_PMCR_LC;
  524. __vcpu_sys_reg(vcpu, r->reg) = val;
  525. }
  526. static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
  527. {
  528. u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
  529. bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
  530. if (!enabled)
  531. kvm_inject_undefined(vcpu);
  532. return !enabled;
  533. }
  534. static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
  535. {
  536. return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
  537. }
  538. static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
  539. {
  540. return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
  541. }
  542. static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
  543. {
  544. return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
  545. }
  546. static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
  547. {
  548. return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
  549. }
  550. static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
  551. const struct sys_reg_desc *r)
  552. {
  553. u64 val;
  554. if (pmu_access_el0_disabled(vcpu))
  555. return false;
  556. if (p->is_write) {
  557. /*
  558. * Only update writeable bits of PMCR (continuing into
  559. * kvm_pmu_handle_pmcr() as well)
  560. */
  561. val = __vcpu_sys_reg(vcpu, PMCR_EL0);
  562. val &= ~ARMV8_PMU_PMCR_MASK;
  563. val |= p->regval & ARMV8_PMU_PMCR_MASK;
  564. if (!kvm_supports_32bit_el0())
  565. val |= ARMV8_PMU_PMCR_LC;
  566. kvm_pmu_handle_pmcr(vcpu, val);
  567. } else {
  568. /* PMCR.P & PMCR.C are RAZ */
  569. val = __vcpu_sys_reg(vcpu, PMCR_EL0)
  570. & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
  571. p->regval = val;
  572. }
  573. return true;
  574. }
  575. static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
  576. const struct sys_reg_desc *r)
  577. {
  578. if (pmu_access_event_counter_el0_disabled(vcpu))
  579. return false;
  580. if (p->is_write)
  581. __vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
  582. else
  583. /* return PMSELR.SEL field */
  584. p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
  585. & ARMV8_PMU_COUNTER_MASK;
  586. return true;
  587. }
  588. static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
  589. const struct sys_reg_desc *r)
  590. {
  591. u64 pmceid, mask, shift;
  592. BUG_ON(p->is_write);
  593. if (pmu_access_el0_disabled(vcpu))
  594. return false;
  595. get_access_mask(r, &mask, &shift);
  596. pmceid = kvm_pmu_get_pmceid(vcpu, (p->Op2 & 1));
  597. pmceid &= mask;
  598. pmceid >>= shift;
  599. p->regval = pmceid;
  600. return true;
  601. }
  602. static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
  603. {
  604. u64 pmcr, val;
  605. pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0);
  606. val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
  607. if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
  608. kvm_inject_undefined(vcpu);
  609. return false;
  610. }
  611. return true;
  612. }
  613. static int get_pmu_evcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
  614. u64 *val)
  615. {
  616. u64 idx;
  617. if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 0)
  618. /* PMCCNTR_EL0 */
  619. idx = ARMV8_PMU_CYCLE_IDX;
  620. else
  621. /* PMEVCNTRn_EL0 */
  622. idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
  623. *val = kvm_pmu_get_counter_value(vcpu, idx);
  624. return 0;
  625. }
  626. static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
  627. struct sys_reg_params *p,
  628. const struct sys_reg_desc *r)
  629. {
  630. u64 idx = ~0UL;
  631. if (r->CRn == 9 && r->CRm == 13) {
  632. if (r->Op2 == 2) {
  633. /* PMXEVCNTR_EL0 */
  634. if (pmu_access_event_counter_el0_disabled(vcpu))
  635. return false;
  636. idx = __vcpu_sys_reg(vcpu, PMSELR_EL0)
  637. & ARMV8_PMU_COUNTER_MASK;
  638. } else if (r->Op2 == 0) {
  639. /* PMCCNTR_EL0 */
  640. if (pmu_access_cycle_counter_el0_disabled(vcpu))
  641. return false;
  642. idx = ARMV8_PMU_CYCLE_IDX;
  643. }
  644. } else if (r->CRn == 0 && r->CRm == 9) {
  645. /* PMCCNTR */
  646. if (pmu_access_event_counter_el0_disabled(vcpu))
  647. return false;
  648. idx = ARMV8_PMU_CYCLE_IDX;
  649. } else if (r->CRn == 14 && (r->CRm & 12) == 8) {
  650. /* PMEVCNTRn_EL0 */
  651. if (pmu_access_event_counter_el0_disabled(vcpu))
  652. return false;
  653. idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
  654. }
  655. /* Catch any decoding mistake */
  656. WARN_ON(idx == ~0UL);
  657. if (!pmu_counter_idx_valid(vcpu, idx))
  658. return false;
  659. if (p->is_write) {
  660. if (pmu_access_el0_disabled(vcpu))
  661. return false;
  662. kvm_pmu_set_counter_value(vcpu, idx, p->regval);
  663. } else {
  664. p->regval = kvm_pmu_get_counter_value(vcpu, idx);
  665. }
  666. return true;
  667. }
  668. static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
  669. const struct sys_reg_desc *r)
  670. {
  671. u64 idx, reg;
  672. if (pmu_access_el0_disabled(vcpu))
  673. return false;
  674. if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
  675. /* PMXEVTYPER_EL0 */
  676. idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
  677. reg = PMEVTYPER0_EL0 + idx;
  678. } else if (r->CRn == 14 && (r->CRm & 12) == 12) {
  679. idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
  680. if (idx == ARMV8_PMU_CYCLE_IDX)
  681. reg = PMCCFILTR_EL0;
  682. else
  683. /* PMEVTYPERn_EL0 */
  684. reg = PMEVTYPER0_EL0 + idx;
  685. } else {
  686. BUG();
  687. }
  688. if (!pmu_counter_idx_valid(vcpu, idx))
  689. return false;
  690. if (p->is_write) {
  691. kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
  692. __vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
  693. kvm_vcpu_pmu_restore_guest(vcpu);
  694. } else {
  695. p->regval = __vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
  696. }
  697. return true;
  698. }
  699. static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
  700. const struct sys_reg_desc *r)
  701. {
  702. u64 val, mask;
  703. if (pmu_access_el0_disabled(vcpu))
  704. return false;
  705. mask = kvm_pmu_valid_counter_mask(vcpu);
  706. if (p->is_write) {
  707. val = p->regval & mask;
  708. if (r->Op2 & 0x1) {
  709. /* accessing PMCNTENSET_EL0 */
  710. __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
  711. kvm_pmu_enable_counter_mask(vcpu, val);
  712. kvm_vcpu_pmu_restore_guest(vcpu);
  713. } else {
  714. /* accessing PMCNTENCLR_EL0 */
  715. __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
  716. kvm_pmu_disable_counter_mask(vcpu, val);
  717. }
  718. } else {
  719. p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
  720. }
  721. return true;
  722. }
  723. static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
  724. const struct sys_reg_desc *r)
  725. {
  726. u64 mask = kvm_pmu_valid_counter_mask(vcpu);
  727. if (check_pmu_access_disabled(vcpu, 0))
  728. return false;
  729. if (p->is_write) {
  730. u64 val = p->regval & mask;
  731. if (r->Op2 & 0x1)
  732. /* accessing PMINTENSET_EL1 */
  733. __vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
  734. else
  735. /* accessing PMINTENCLR_EL1 */
  736. __vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
  737. } else {
  738. p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1);
  739. }
  740. return true;
  741. }
  742. static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
  743. const struct sys_reg_desc *r)
  744. {
  745. u64 mask = kvm_pmu_valid_counter_mask(vcpu);
  746. if (pmu_access_el0_disabled(vcpu))
  747. return false;
  748. if (p->is_write) {
  749. if (r->CRm & 0x2)
  750. /* accessing PMOVSSET_EL0 */
  751. __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
  752. else
  753. /* accessing PMOVSCLR_EL0 */
  754. __vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
  755. } else {
  756. p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0);
  757. }
  758. return true;
  759. }
  760. static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
  761. const struct sys_reg_desc *r)
  762. {
  763. u64 mask;
  764. if (!p->is_write)
  765. return read_from_write_only(vcpu, p, r);
  766. if (pmu_write_swinc_el0_disabled(vcpu))
  767. return false;
  768. mask = kvm_pmu_valid_counter_mask(vcpu);
  769. kvm_pmu_software_increment(vcpu, p->regval & mask);
  770. return true;
  771. }
  772. static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
  773. const struct sys_reg_desc *r)
  774. {
  775. if (p->is_write) {
  776. if (!vcpu_mode_priv(vcpu)) {
  777. kvm_inject_undefined(vcpu);
  778. return false;
  779. }
  780. __vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
  781. p->regval & ARMV8_PMU_USERENR_MASK;
  782. } else {
  783. p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
  784. & ARMV8_PMU_USERENR_MASK;
  785. }
  786. return true;
  787. }
  788. /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
  789. #define DBG_BCR_BVR_WCR_WVR_EL1(n) \
  790. { SYS_DESC(SYS_DBGBVRn_EL1(n)), \
  791. trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr }, \
  792. { SYS_DESC(SYS_DBGBCRn_EL1(n)), \
  793. trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr }, \
  794. { SYS_DESC(SYS_DBGWVRn_EL1(n)), \
  795. trap_wvr, reset_wvr, 0, 0, get_wvr, set_wvr }, \
  796. { SYS_DESC(SYS_DBGWCRn_EL1(n)), \
  797. trap_wcr, reset_wcr, 0, 0, get_wcr, set_wcr }
  798. #define PMU_SYS_REG(r) \
  799. SYS_DESC(r), .reset = reset_pmu_reg, .visibility = pmu_visibility
  800. /* Macro to expand the PMEVCNTRn_EL0 register */
  801. #define PMU_PMEVCNTR_EL0(n) \
  802. { PMU_SYS_REG(SYS_PMEVCNTRn_EL0(n)), \
  803. .reset = reset_pmevcntr, .get_user = get_pmu_evcntr, \
  804. .access = access_pmu_evcntr, .reg = (PMEVCNTR0_EL0 + n), }
  805. /* Macro to expand the PMEVTYPERn_EL0 register */
  806. #define PMU_PMEVTYPER_EL0(n) \
  807. { PMU_SYS_REG(SYS_PMEVTYPERn_EL0(n)), \
  808. .reset = reset_pmevtyper, \
  809. .access = access_pmu_evtyper, .reg = (PMEVTYPER0_EL0 + n), }
  810. static bool undef_access(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
  811. const struct sys_reg_desc *r)
  812. {
  813. kvm_inject_undefined(vcpu);
  814. return false;
  815. }
  816. /* Macro to expand the AMU counter and type registers*/
  817. #define AMU_AMEVCNTR0_EL0(n) { SYS_DESC(SYS_AMEVCNTR0_EL0(n)), undef_access }
  818. #define AMU_AMEVTYPER0_EL0(n) { SYS_DESC(SYS_AMEVTYPER0_EL0(n)), undef_access }
  819. #define AMU_AMEVCNTR1_EL0(n) { SYS_DESC(SYS_AMEVCNTR1_EL0(n)), undef_access }
  820. #define AMU_AMEVTYPER1_EL0(n) { SYS_DESC(SYS_AMEVTYPER1_EL0(n)), undef_access }
  821. static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu,
  822. const struct sys_reg_desc *rd)
  823. {
  824. return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN;
  825. }
  826. /*
  827. * If we land here on a PtrAuth access, that is because we didn't
  828. * fixup the access on exit by allowing the PtrAuth sysregs. The only
  829. * way this happens is when the guest does not have PtrAuth support
  830. * enabled.
  831. */
  832. #define __PTRAUTH_KEY(k) \
  833. { SYS_DESC(SYS_## k), undef_access, reset_unknown, k, \
  834. .visibility = ptrauth_visibility}
  835. #define PTRAUTH_KEY(k) \
  836. __PTRAUTH_KEY(k ## KEYLO_EL1), \
  837. __PTRAUTH_KEY(k ## KEYHI_EL1)
  838. static bool access_arch_timer(struct kvm_vcpu *vcpu,
  839. struct sys_reg_params *p,
  840. const struct sys_reg_desc *r)
  841. {
  842. enum kvm_arch_timers tmr;
  843. enum kvm_arch_timer_regs treg;
  844. u64 reg = reg_to_encoding(r);
  845. switch (reg) {
  846. case SYS_CNTP_TVAL_EL0:
  847. case SYS_AARCH32_CNTP_TVAL:
  848. tmr = TIMER_PTIMER;
  849. treg = TIMER_REG_TVAL;
  850. break;
  851. case SYS_CNTP_CTL_EL0:
  852. case SYS_AARCH32_CNTP_CTL:
  853. tmr = TIMER_PTIMER;
  854. treg = TIMER_REG_CTL;
  855. break;
  856. case SYS_CNTP_CVAL_EL0:
  857. case SYS_AARCH32_CNTP_CVAL:
  858. tmr = TIMER_PTIMER;
  859. treg = TIMER_REG_CVAL;
  860. break;
  861. default:
  862. BUG();
  863. }
  864. if (p->is_write)
  865. kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval);
  866. else
  867. p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg);
  868. return true;
  869. }
  870. /* Read a sanitised cpufeature ID register by sys_reg_desc */
  871. static u64 read_id_reg(const struct kvm_vcpu *vcpu, struct sys_reg_desc const *r)
  872. {
  873. u32 id = reg_to_encoding(r);
  874. u64 val;
  875. if (sysreg_visible_as_raz(vcpu, r))
  876. return 0;
  877. val = read_sanitised_ftr_reg(id);
  878. switch (id) {
  879. case SYS_ID_AA64PFR0_EL1:
  880. if (!vcpu_has_sve(vcpu))
  881. val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_SVE);
  882. val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_AMU);
  883. val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2);
  884. val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2), (u64)vcpu->kvm->arch.pfr0_csv2);
  885. val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3);
  886. val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3), (u64)vcpu->kvm->arch.pfr0_csv3);
  887. if (kvm_vgic_global_state.type == VGIC_V3) {
  888. val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_GIC);
  889. val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_GIC), 1);
  890. }
  891. break;
  892. case SYS_ID_AA64PFR1_EL1:
  893. if (!kvm_has_mte(vcpu->kvm))
  894. val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTE);
  895. val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_SME);
  896. break;
  897. case SYS_ID_AA64ISAR1_EL1:
  898. if (!vcpu_has_ptrauth(vcpu))
  899. val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_APA) |
  900. ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_API) |
  901. ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPA) |
  902. ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPI));
  903. break;
  904. case SYS_ID_AA64ISAR2_EL1:
  905. if (!vcpu_has_ptrauth(vcpu))
  906. val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_APA3) |
  907. ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_GPA3));
  908. if (!cpus_have_final_cap(ARM64_HAS_WFXT))
  909. val &= ~ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_WFxT);
  910. break;
  911. case SYS_ID_AA64DFR0_EL1:
  912. /* Limit debug to ARMv8.0 */
  913. val &= ~ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_DebugVer);
  914. val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_DebugVer), 6);
  915. /* Limit guests to PMUv3 for ARMv8.4 */
  916. val = cpuid_feature_cap_perfmon_field(val,
  917. ID_AA64DFR0_EL1_PMUVer_SHIFT,
  918. kvm_vcpu_has_pmu(vcpu) ? ID_AA64DFR0_EL1_PMUVer_V3P4 : 0);
  919. /* Hide SPE from guests */
  920. val &= ~ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_PMSVer);
  921. break;
  922. case SYS_ID_DFR0_EL1:
  923. /* Limit guests to PMUv3 for ARMv8.4 */
  924. val = cpuid_feature_cap_perfmon_field(val,
  925. ID_DFR0_PERFMON_SHIFT,
  926. kvm_vcpu_has_pmu(vcpu) ? ID_DFR0_PERFMON_8_4 : 0);
  927. break;
  928. }
  929. return val;
  930. }
  931. static unsigned int id_visibility(const struct kvm_vcpu *vcpu,
  932. const struct sys_reg_desc *r)
  933. {
  934. u32 id = reg_to_encoding(r);
  935. switch (id) {
  936. case SYS_ID_AA64ZFR0_EL1:
  937. if (!vcpu_has_sve(vcpu))
  938. return REG_RAZ;
  939. break;
  940. }
  941. return 0;
  942. }
  943. static unsigned int aa32_id_visibility(const struct kvm_vcpu *vcpu,
  944. const struct sys_reg_desc *r)
  945. {
  946. /*
  947. * AArch32 ID registers are UNKNOWN if AArch32 isn't implemented at any
  948. * EL. Promote to RAZ/WI in order to guarantee consistency between
  949. * systems.
  950. */
  951. if (!kvm_supports_32bit_el0())
  952. return REG_RAZ | REG_USER_WI;
  953. return id_visibility(vcpu, r);
  954. }
  955. static unsigned int raz_visibility(const struct kvm_vcpu *vcpu,
  956. const struct sys_reg_desc *r)
  957. {
  958. return REG_RAZ;
  959. }
  960. /* cpufeature ID register access trap handlers */
  961. static bool access_id_reg(struct kvm_vcpu *vcpu,
  962. struct sys_reg_params *p,
  963. const struct sys_reg_desc *r)
  964. {
  965. if (p->is_write)
  966. return write_to_read_only(vcpu, p, r);
  967. p->regval = read_id_reg(vcpu, r);
  968. return true;
  969. }
  970. /* Visibility overrides for SVE-specific control registers */
  971. static unsigned int sve_visibility(const struct kvm_vcpu *vcpu,
  972. const struct sys_reg_desc *rd)
  973. {
  974. if (vcpu_has_sve(vcpu))
  975. return 0;
  976. return REG_HIDDEN;
  977. }
  978. static int set_id_aa64pfr0_el1(struct kvm_vcpu *vcpu,
  979. const struct sys_reg_desc *rd,
  980. u64 val)
  981. {
  982. u8 csv2, csv3;
  983. /*
  984. * Allow AA64PFR0_EL1.CSV2 to be set from userspace as long as
  985. * it doesn't promise more than what is actually provided (the
  986. * guest could otherwise be covered in ectoplasmic residue).
  987. */
  988. csv2 = cpuid_feature_extract_unsigned_field(val, ID_AA64PFR0_EL1_CSV2_SHIFT);
  989. if (csv2 > 1 ||
  990. (csv2 && arm64_get_spectre_v2_state() != SPECTRE_UNAFFECTED))
  991. return -EINVAL;
  992. /* Same thing for CSV3 */
  993. csv3 = cpuid_feature_extract_unsigned_field(val, ID_AA64PFR0_EL1_CSV3_SHIFT);
  994. if (csv3 > 1 ||
  995. (csv3 && arm64_get_meltdown_state() != SPECTRE_UNAFFECTED))
  996. return -EINVAL;
  997. /* We can only differ with CSV[23], and anything else is an error */
  998. val ^= read_id_reg(vcpu, rd);
  999. val &= ~(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2) |
  1000. ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3));
  1001. if (val)
  1002. return -EINVAL;
  1003. vcpu->kvm->arch.pfr0_csv2 = csv2;
  1004. vcpu->kvm->arch.pfr0_csv3 = csv3;
  1005. return 0;
  1006. }
  1007. /*
  1008. * cpufeature ID register user accessors
  1009. *
  1010. * For now, these registers are immutable for userspace, so no values
  1011. * are stored, and for set_id_reg() we don't allow the effective value
  1012. * to be changed.
  1013. */
  1014. static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
  1015. u64 *val)
  1016. {
  1017. *val = read_id_reg(vcpu, rd);
  1018. return 0;
  1019. }
  1020. static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
  1021. u64 val)
  1022. {
  1023. /* This is what we mean by invariant: you can't change it. */
  1024. if (val != read_id_reg(vcpu, rd))
  1025. return -EINVAL;
  1026. return 0;
  1027. }
  1028. static int get_raz_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
  1029. u64 *val)
  1030. {
  1031. *val = 0;
  1032. return 0;
  1033. }
  1034. static int set_wi_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
  1035. u64 val)
  1036. {
  1037. return 0;
  1038. }
  1039. static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
  1040. const struct sys_reg_desc *r)
  1041. {
  1042. if (p->is_write)
  1043. return write_to_read_only(vcpu, p, r);
  1044. p->regval = read_sanitised_ftr_reg(SYS_CTR_EL0);
  1045. return true;
  1046. }
  1047. static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
  1048. const struct sys_reg_desc *r)
  1049. {
  1050. if (p->is_write)
  1051. return write_to_read_only(vcpu, p, r);
  1052. p->regval = read_sysreg(clidr_el1);
  1053. return true;
  1054. }
  1055. static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
  1056. const struct sys_reg_desc *r)
  1057. {
  1058. int reg = r->reg;
  1059. if (p->is_write)
  1060. vcpu_write_sys_reg(vcpu, p->regval, reg);
  1061. else
  1062. p->regval = vcpu_read_sys_reg(vcpu, reg);
  1063. return true;
  1064. }
  1065. static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
  1066. const struct sys_reg_desc *r)
  1067. {
  1068. u32 csselr;
  1069. if (p->is_write)
  1070. return write_to_read_only(vcpu, p, r);
  1071. csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1);
  1072. p->regval = get_ccsidr(csselr);
  1073. /*
  1074. * Guests should not be doing cache operations by set/way at all, and
  1075. * for this reason, we trap them and attempt to infer the intent, so
  1076. * that we can flush the entire guest's address space at the appropriate
  1077. * time.
  1078. * To prevent this trapping from causing performance problems, let's
  1079. * expose the geometry of all data and unified caches (which are
  1080. * guaranteed to be PIPT and thus non-aliasing) as 1 set and 1 way.
  1081. * [If guests should attempt to infer aliasing properties from the
  1082. * geometry (which is not permitted by the architecture), they would
  1083. * only do so for virtually indexed caches.]
  1084. */
  1085. if (!(csselr & 1)) // data or unified cache
  1086. p->regval &= ~GENMASK(27, 3);
  1087. return true;
  1088. }
  1089. static unsigned int mte_visibility(const struct kvm_vcpu *vcpu,
  1090. const struct sys_reg_desc *rd)
  1091. {
  1092. if (kvm_has_mte(vcpu->kvm))
  1093. return 0;
  1094. return REG_HIDDEN;
  1095. }
  1096. #define MTE_REG(name) { \
  1097. SYS_DESC(SYS_##name), \
  1098. .access = undef_access, \
  1099. .reset = reset_unknown, \
  1100. .reg = name, \
  1101. .visibility = mte_visibility, \
  1102. }
  1103. /* sys_reg_desc initialiser for known cpufeature ID registers */
  1104. #define ID_SANITISED(name) { \
  1105. SYS_DESC(SYS_##name), \
  1106. .access = access_id_reg, \
  1107. .get_user = get_id_reg, \
  1108. .set_user = set_id_reg, \
  1109. .visibility = id_visibility, \
  1110. }
  1111. /* sys_reg_desc initialiser for known cpufeature ID registers */
  1112. #define AA32_ID_SANITISED(name) { \
  1113. SYS_DESC(SYS_##name), \
  1114. .access = access_id_reg, \
  1115. .get_user = get_id_reg, \
  1116. .set_user = set_id_reg, \
  1117. .visibility = aa32_id_visibility, \
  1118. }
  1119. /*
  1120. * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
  1121. * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
  1122. * (1 <= crm < 8, 0 <= Op2 < 8).
  1123. */
  1124. #define ID_UNALLOCATED(crm, op2) { \
  1125. Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2), \
  1126. .access = access_id_reg, \
  1127. .get_user = get_id_reg, \
  1128. .set_user = set_id_reg, \
  1129. .visibility = raz_visibility \
  1130. }
  1131. /*
  1132. * sys_reg_desc initialiser for known ID registers that we hide from guests.
  1133. * For now, these are exposed just like unallocated ID regs: they appear
  1134. * RAZ for the guest.
  1135. */
  1136. #define ID_HIDDEN(name) { \
  1137. SYS_DESC(SYS_##name), \
  1138. .access = access_id_reg, \
  1139. .get_user = get_id_reg, \
  1140. .set_user = set_id_reg, \
  1141. .visibility = raz_visibility, \
  1142. }
  1143. /*
  1144. * Architected system registers.
  1145. * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
  1146. *
  1147. * Debug handling: We do trap most, if not all debug related system
  1148. * registers. The implementation is good enough to ensure that a guest
  1149. * can use these with minimal performance degradation. The drawback is
  1150. * that we don't implement any of the external debug architecture.
  1151. * This should be revisited if we ever encounter a more demanding
  1152. * guest...
  1153. */
  1154. static const struct sys_reg_desc sys_reg_descs[] = {
  1155. { SYS_DESC(SYS_DC_ISW), access_dcsw },
  1156. { SYS_DESC(SYS_DC_CSW), access_dcsw },
  1157. { SYS_DESC(SYS_DC_CISW), access_dcsw },
  1158. DBG_BCR_BVR_WCR_WVR_EL1(0),
  1159. DBG_BCR_BVR_WCR_WVR_EL1(1),
  1160. { SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
  1161. { SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
  1162. DBG_BCR_BVR_WCR_WVR_EL1(2),
  1163. DBG_BCR_BVR_WCR_WVR_EL1(3),
  1164. DBG_BCR_BVR_WCR_WVR_EL1(4),
  1165. DBG_BCR_BVR_WCR_WVR_EL1(5),
  1166. DBG_BCR_BVR_WCR_WVR_EL1(6),
  1167. DBG_BCR_BVR_WCR_WVR_EL1(7),
  1168. DBG_BCR_BVR_WCR_WVR_EL1(8),
  1169. DBG_BCR_BVR_WCR_WVR_EL1(9),
  1170. DBG_BCR_BVR_WCR_WVR_EL1(10),
  1171. DBG_BCR_BVR_WCR_WVR_EL1(11),
  1172. DBG_BCR_BVR_WCR_WVR_EL1(12),
  1173. DBG_BCR_BVR_WCR_WVR_EL1(13),
  1174. DBG_BCR_BVR_WCR_WVR_EL1(14),
  1175. DBG_BCR_BVR_WCR_WVR_EL1(15),
  1176. { SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
  1177. { SYS_DESC(SYS_OSLAR_EL1), trap_oslar_el1 },
  1178. { SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1, reset_val, OSLSR_EL1,
  1179. SYS_OSLSR_OSLM_IMPLEMENTED, .set_user = set_oslsr_el1, },
  1180. { SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
  1181. { SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
  1182. { SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
  1183. { SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
  1184. { SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
  1185. { SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
  1186. { SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
  1187. // DBGDTR[TR]X_EL0 share the same encoding
  1188. { SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
  1189. { SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 },
  1190. { SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
  1191. /*
  1192. * ID regs: all ID_SANITISED() entries here must have corresponding
  1193. * entries in arm64_ftr_regs[].
  1194. */
  1195. /* AArch64 mappings of the AArch32 ID registers */
  1196. /* CRm=1 */
  1197. AA32_ID_SANITISED(ID_PFR0_EL1),
  1198. AA32_ID_SANITISED(ID_PFR1_EL1),
  1199. AA32_ID_SANITISED(ID_DFR0_EL1),
  1200. ID_HIDDEN(ID_AFR0_EL1),
  1201. AA32_ID_SANITISED(ID_MMFR0_EL1),
  1202. AA32_ID_SANITISED(ID_MMFR1_EL1),
  1203. AA32_ID_SANITISED(ID_MMFR2_EL1),
  1204. AA32_ID_SANITISED(ID_MMFR3_EL1),
  1205. /* CRm=2 */
  1206. AA32_ID_SANITISED(ID_ISAR0_EL1),
  1207. AA32_ID_SANITISED(ID_ISAR1_EL1),
  1208. AA32_ID_SANITISED(ID_ISAR2_EL1),
  1209. AA32_ID_SANITISED(ID_ISAR3_EL1),
  1210. AA32_ID_SANITISED(ID_ISAR4_EL1),
  1211. AA32_ID_SANITISED(ID_ISAR5_EL1),
  1212. AA32_ID_SANITISED(ID_MMFR4_EL1),
  1213. AA32_ID_SANITISED(ID_ISAR6_EL1),
  1214. /* CRm=3 */
  1215. AA32_ID_SANITISED(MVFR0_EL1),
  1216. AA32_ID_SANITISED(MVFR1_EL1),
  1217. AA32_ID_SANITISED(MVFR2_EL1),
  1218. ID_UNALLOCATED(3,3),
  1219. AA32_ID_SANITISED(ID_PFR2_EL1),
  1220. ID_HIDDEN(ID_DFR1_EL1),
  1221. AA32_ID_SANITISED(ID_MMFR5_EL1),
  1222. ID_UNALLOCATED(3,7),
  1223. /* AArch64 ID registers */
  1224. /* CRm=4 */
  1225. { SYS_DESC(SYS_ID_AA64PFR0_EL1), .access = access_id_reg,
  1226. .get_user = get_id_reg, .set_user = set_id_aa64pfr0_el1, },
  1227. ID_SANITISED(ID_AA64PFR1_EL1),
  1228. ID_UNALLOCATED(4,2),
  1229. ID_UNALLOCATED(4,3),
  1230. ID_SANITISED(ID_AA64ZFR0_EL1),
  1231. ID_HIDDEN(ID_AA64SMFR0_EL1),
  1232. ID_UNALLOCATED(4,6),
  1233. ID_UNALLOCATED(4,7),
  1234. /* CRm=5 */
  1235. ID_SANITISED(ID_AA64DFR0_EL1),
  1236. ID_SANITISED(ID_AA64DFR1_EL1),
  1237. ID_UNALLOCATED(5,2),
  1238. ID_UNALLOCATED(5,3),
  1239. ID_HIDDEN(ID_AA64AFR0_EL1),
  1240. ID_HIDDEN(ID_AA64AFR1_EL1),
  1241. ID_UNALLOCATED(5,6),
  1242. ID_UNALLOCATED(5,7),
  1243. /* CRm=6 */
  1244. ID_SANITISED(ID_AA64ISAR0_EL1),
  1245. ID_SANITISED(ID_AA64ISAR1_EL1),
  1246. ID_SANITISED(ID_AA64ISAR2_EL1),
  1247. ID_UNALLOCATED(6,3),
  1248. ID_UNALLOCATED(6,4),
  1249. ID_UNALLOCATED(6,5),
  1250. ID_UNALLOCATED(6,6),
  1251. ID_UNALLOCATED(6,7),
  1252. /* CRm=7 */
  1253. ID_SANITISED(ID_AA64MMFR0_EL1),
  1254. ID_SANITISED(ID_AA64MMFR1_EL1),
  1255. ID_SANITISED(ID_AA64MMFR2_EL1),
  1256. ID_UNALLOCATED(7,3),
  1257. ID_UNALLOCATED(7,4),
  1258. ID_UNALLOCATED(7,5),
  1259. ID_UNALLOCATED(7,6),
  1260. ID_UNALLOCATED(7,7),
  1261. { SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
  1262. { SYS_DESC(SYS_ACTLR_EL1), access_actlr, reset_actlr, ACTLR_EL1 },
  1263. { SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
  1264. MTE_REG(RGSR_EL1),
  1265. MTE_REG(GCR_EL1),
  1266. { SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility },
  1267. { SYS_DESC(SYS_TRFCR_EL1), undef_access },
  1268. { SYS_DESC(SYS_SMPRI_EL1), undef_access },
  1269. { SYS_DESC(SYS_SMCR_EL1), undef_access },
  1270. { SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
  1271. { SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
  1272. { SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
  1273. PTRAUTH_KEY(APIA),
  1274. PTRAUTH_KEY(APIB),
  1275. PTRAUTH_KEY(APDA),
  1276. PTRAUTH_KEY(APDB),
  1277. PTRAUTH_KEY(APGA),
  1278. { SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
  1279. { SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
  1280. { SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
  1281. { SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
  1282. { SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
  1283. { SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
  1284. { SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
  1285. { SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
  1286. { SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
  1287. { SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
  1288. { SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },
  1289. MTE_REG(TFSR_EL1),
  1290. MTE_REG(TFSRE0_EL1),
  1291. { SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
  1292. { SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
  1293. { SYS_DESC(SYS_PMSCR_EL1), undef_access },
  1294. { SYS_DESC(SYS_PMSNEVFR_EL1), undef_access },
  1295. { SYS_DESC(SYS_PMSICR_EL1), undef_access },
  1296. { SYS_DESC(SYS_PMSIRR_EL1), undef_access },
  1297. { SYS_DESC(SYS_PMSFCR_EL1), undef_access },
  1298. { SYS_DESC(SYS_PMSEVFR_EL1), undef_access },
  1299. { SYS_DESC(SYS_PMSLATFR_EL1), undef_access },
  1300. { SYS_DESC(SYS_PMSIDR_EL1), undef_access },
  1301. { SYS_DESC(SYS_PMBLIMITR_EL1), undef_access },
  1302. { SYS_DESC(SYS_PMBPTR_EL1), undef_access },
  1303. { SYS_DESC(SYS_PMBSR_EL1), undef_access },
  1304. /* PMBIDR_EL1 is not trapped */
  1305. { PMU_SYS_REG(SYS_PMINTENSET_EL1),
  1306. .access = access_pminten, .reg = PMINTENSET_EL1 },
  1307. { PMU_SYS_REG(SYS_PMINTENCLR_EL1),
  1308. .access = access_pminten, .reg = PMINTENSET_EL1 },
  1309. { SYS_DESC(SYS_PMMIR_EL1), trap_raz_wi },
  1310. { SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
  1311. { SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
  1312. { SYS_DESC(SYS_LORSA_EL1), trap_loregion },
  1313. { SYS_DESC(SYS_LOREA_EL1), trap_loregion },
  1314. { SYS_DESC(SYS_LORN_EL1), trap_loregion },
  1315. { SYS_DESC(SYS_LORC_EL1), trap_loregion },
  1316. { SYS_DESC(SYS_LORID_EL1), trap_loregion },
  1317. { SYS_DESC(SYS_VBAR_EL1), NULL, reset_val, VBAR_EL1, 0 },
  1318. { SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
  1319. { SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
  1320. { SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
  1321. { SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
  1322. { SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
  1323. { SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
  1324. { SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
  1325. { SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
  1326. { SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
  1327. { SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
  1328. { SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
  1329. { SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
  1330. { SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
  1331. { SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
  1332. { SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
  1333. { SYS_DESC(SYS_SCXTNUM_EL1), undef_access },
  1334. { SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
  1335. { SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr },
  1336. { SYS_DESC(SYS_CLIDR_EL1), access_clidr },
  1337. { SYS_DESC(SYS_SMIDR_EL1), undef_access },
  1338. { SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 },
  1339. { SYS_DESC(SYS_CTR_EL0), access_ctr },
  1340. { SYS_DESC(SYS_SVCR), undef_access },
  1341. { PMU_SYS_REG(SYS_PMCR_EL0), .access = access_pmcr,
  1342. .reset = reset_pmcr, .reg = PMCR_EL0 },
  1343. { PMU_SYS_REG(SYS_PMCNTENSET_EL0),
  1344. .access = access_pmcnten, .reg = PMCNTENSET_EL0 },
  1345. { PMU_SYS_REG(SYS_PMCNTENCLR_EL0),
  1346. .access = access_pmcnten, .reg = PMCNTENSET_EL0 },
  1347. { PMU_SYS_REG(SYS_PMOVSCLR_EL0),
  1348. .access = access_pmovs, .reg = PMOVSSET_EL0 },
  1349. /*
  1350. * PM_SWINC_EL0 is exposed to userspace as RAZ/WI, as it was
  1351. * previously (and pointlessly) advertised in the past...
  1352. */
  1353. { PMU_SYS_REG(SYS_PMSWINC_EL0),
  1354. .get_user = get_raz_reg, .set_user = set_wi_reg,
  1355. .access = access_pmswinc, .reset = NULL },
  1356. { PMU_SYS_REG(SYS_PMSELR_EL0),
  1357. .access = access_pmselr, .reset = reset_pmselr, .reg = PMSELR_EL0 },
  1358. { PMU_SYS_REG(SYS_PMCEID0_EL0),
  1359. .access = access_pmceid, .reset = NULL },
  1360. { PMU_SYS_REG(SYS_PMCEID1_EL0),
  1361. .access = access_pmceid, .reset = NULL },
  1362. { PMU_SYS_REG(SYS_PMCCNTR_EL0),
  1363. .access = access_pmu_evcntr, .reset = reset_unknown,
  1364. .reg = PMCCNTR_EL0, .get_user = get_pmu_evcntr},
  1365. { PMU_SYS_REG(SYS_PMXEVTYPER_EL0),
  1366. .access = access_pmu_evtyper, .reset = NULL },
  1367. { PMU_SYS_REG(SYS_PMXEVCNTR_EL0),
  1368. .access = access_pmu_evcntr, .reset = NULL },
  1369. /*
  1370. * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
  1371. * in 32bit mode. Here we choose to reset it as zero for consistency.
  1372. */
  1373. { PMU_SYS_REG(SYS_PMUSERENR_EL0), .access = access_pmuserenr,
  1374. .reset = reset_val, .reg = PMUSERENR_EL0, .val = 0 },
  1375. { PMU_SYS_REG(SYS_PMOVSSET_EL0),
  1376. .access = access_pmovs, .reg = PMOVSSET_EL0 },
  1377. { SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
  1378. { SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
  1379. { SYS_DESC(SYS_TPIDR2_EL0), undef_access },
  1380. { SYS_DESC(SYS_SCXTNUM_EL0), undef_access },
  1381. { SYS_DESC(SYS_AMCR_EL0), undef_access },
  1382. { SYS_DESC(SYS_AMCFGR_EL0), undef_access },
  1383. { SYS_DESC(SYS_AMCGCR_EL0), undef_access },
  1384. { SYS_DESC(SYS_AMUSERENR_EL0), undef_access },
  1385. { SYS_DESC(SYS_AMCNTENCLR0_EL0), undef_access },
  1386. { SYS_DESC(SYS_AMCNTENSET0_EL0), undef_access },
  1387. { SYS_DESC(SYS_AMCNTENCLR1_EL0), undef_access },
  1388. { SYS_DESC(SYS_AMCNTENSET1_EL0), undef_access },
  1389. AMU_AMEVCNTR0_EL0(0),
  1390. AMU_AMEVCNTR0_EL0(1),
  1391. AMU_AMEVCNTR0_EL0(2),
  1392. AMU_AMEVCNTR0_EL0(3),
  1393. AMU_AMEVCNTR0_EL0(4),
  1394. AMU_AMEVCNTR0_EL0(5),
  1395. AMU_AMEVCNTR0_EL0(6),
  1396. AMU_AMEVCNTR0_EL0(7),
  1397. AMU_AMEVCNTR0_EL0(8),
  1398. AMU_AMEVCNTR0_EL0(9),
  1399. AMU_AMEVCNTR0_EL0(10),
  1400. AMU_AMEVCNTR0_EL0(11),
  1401. AMU_AMEVCNTR0_EL0(12),
  1402. AMU_AMEVCNTR0_EL0(13),
  1403. AMU_AMEVCNTR0_EL0(14),
  1404. AMU_AMEVCNTR0_EL0(15),
  1405. AMU_AMEVTYPER0_EL0(0),
  1406. AMU_AMEVTYPER0_EL0(1),
  1407. AMU_AMEVTYPER0_EL0(2),
  1408. AMU_AMEVTYPER0_EL0(3),
  1409. AMU_AMEVTYPER0_EL0(4),
  1410. AMU_AMEVTYPER0_EL0(5),
  1411. AMU_AMEVTYPER0_EL0(6),
  1412. AMU_AMEVTYPER0_EL0(7),
  1413. AMU_AMEVTYPER0_EL0(8),
  1414. AMU_AMEVTYPER0_EL0(9),
  1415. AMU_AMEVTYPER0_EL0(10),
  1416. AMU_AMEVTYPER0_EL0(11),
  1417. AMU_AMEVTYPER0_EL0(12),
  1418. AMU_AMEVTYPER0_EL0(13),
  1419. AMU_AMEVTYPER0_EL0(14),
  1420. AMU_AMEVTYPER0_EL0(15),
  1421. AMU_AMEVCNTR1_EL0(0),
  1422. AMU_AMEVCNTR1_EL0(1),
  1423. AMU_AMEVCNTR1_EL0(2),
  1424. AMU_AMEVCNTR1_EL0(3),
  1425. AMU_AMEVCNTR1_EL0(4),
  1426. AMU_AMEVCNTR1_EL0(5),
  1427. AMU_AMEVCNTR1_EL0(6),
  1428. AMU_AMEVCNTR1_EL0(7),
  1429. AMU_AMEVCNTR1_EL0(8),
  1430. AMU_AMEVCNTR1_EL0(9),
  1431. AMU_AMEVCNTR1_EL0(10),
  1432. AMU_AMEVCNTR1_EL0(11),
  1433. AMU_AMEVCNTR1_EL0(12),
  1434. AMU_AMEVCNTR1_EL0(13),
  1435. AMU_AMEVCNTR1_EL0(14),
  1436. AMU_AMEVCNTR1_EL0(15),
  1437. AMU_AMEVTYPER1_EL0(0),
  1438. AMU_AMEVTYPER1_EL0(1),
  1439. AMU_AMEVTYPER1_EL0(2),
  1440. AMU_AMEVTYPER1_EL0(3),
  1441. AMU_AMEVTYPER1_EL0(4),
  1442. AMU_AMEVTYPER1_EL0(5),
  1443. AMU_AMEVTYPER1_EL0(6),
  1444. AMU_AMEVTYPER1_EL0(7),
  1445. AMU_AMEVTYPER1_EL0(8),
  1446. AMU_AMEVTYPER1_EL0(9),
  1447. AMU_AMEVTYPER1_EL0(10),
  1448. AMU_AMEVTYPER1_EL0(11),
  1449. AMU_AMEVTYPER1_EL0(12),
  1450. AMU_AMEVTYPER1_EL0(13),
  1451. AMU_AMEVTYPER1_EL0(14),
  1452. AMU_AMEVTYPER1_EL0(15),
  1453. { SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer },
  1454. { SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer },
  1455. { SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer },
  1456. /* PMEVCNTRn_EL0 */
  1457. PMU_PMEVCNTR_EL0(0),
  1458. PMU_PMEVCNTR_EL0(1),
  1459. PMU_PMEVCNTR_EL0(2),
  1460. PMU_PMEVCNTR_EL0(3),
  1461. PMU_PMEVCNTR_EL0(4),
  1462. PMU_PMEVCNTR_EL0(5),
  1463. PMU_PMEVCNTR_EL0(6),
  1464. PMU_PMEVCNTR_EL0(7),
  1465. PMU_PMEVCNTR_EL0(8),
  1466. PMU_PMEVCNTR_EL0(9),
  1467. PMU_PMEVCNTR_EL0(10),
  1468. PMU_PMEVCNTR_EL0(11),
  1469. PMU_PMEVCNTR_EL0(12),
  1470. PMU_PMEVCNTR_EL0(13),
  1471. PMU_PMEVCNTR_EL0(14),
  1472. PMU_PMEVCNTR_EL0(15),
  1473. PMU_PMEVCNTR_EL0(16),
  1474. PMU_PMEVCNTR_EL0(17),
  1475. PMU_PMEVCNTR_EL0(18),
  1476. PMU_PMEVCNTR_EL0(19),
  1477. PMU_PMEVCNTR_EL0(20),
  1478. PMU_PMEVCNTR_EL0(21),
  1479. PMU_PMEVCNTR_EL0(22),
  1480. PMU_PMEVCNTR_EL0(23),
  1481. PMU_PMEVCNTR_EL0(24),
  1482. PMU_PMEVCNTR_EL0(25),
  1483. PMU_PMEVCNTR_EL0(26),
  1484. PMU_PMEVCNTR_EL0(27),
  1485. PMU_PMEVCNTR_EL0(28),
  1486. PMU_PMEVCNTR_EL0(29),
  1487. PMU_PMEVCNTR_EL0(30),
  1488. /* PMEVTYPERn_EL0 */
  1489. PMU_PMEVTYPER_EL0(0),
  1490. PMU_PMEVTYPER_EL0(1),
  1491. PMU_PMEVTYPER_EL0(2),
  1492. PMU_PMEVTYPER_EL0(3),
  1493. PMU_PMEVTYPER_EL0(4),
  1494. PMU_PMEVTYPER_EL0(5),
  1495. PMU_PMEVTYPER_EL0(6),
  1496. PMU_PMEVTYPER_EL0(7),
  1497. PMU_PMEVTYPER_EL0(8),
  1498. PMU_PMEVTYPER_EL0(9),
  1499. PMU_PMEVTYPER_EL0(10),
  1500. PMU_PMEVTYPER_EL0(11),
  1501. PMU_PMEVTYPER_EL0(12),
  1502. PMU_PMEVTYPER_EL0(13),
  1503. PMU_PMEVTYPER_EL0(14),
  1504. PMU_PMEVTYPER_EL0(15),
  1505. PMU_PMEVTYPER_EL0(16),
  1506. PMU_PMEVTYPER_EL0(17),
  1507. PMU_PMEVTYPER_EL0(18),
  1508. PMU_PMEVTYPER_EL0(19),
  1509. PMU_PMEVTYPER_EL0(20),
  1510. PMU_PMEVTYPER_EL0(21),
  1511. PMU_PMEVTYPER_EL0(22),
  1512. PMU_PMEVTYPER_EL0(23),
  1513. PMU_PMEVTYPER_EL0(24),
  1514. PMU_PMEVTYPER_EL0(25),
  1515. PMU_PMEVTYPER_EL0(26),
  1516. PMU_PMEVTYPER_EL0(27),
  1517. PMU_PMEVTYPER_EL0(28),
  1518. PMU_PMEVTYPER_EL0(29),
  1519. PMU_PMEVTYPER_EL0(30),
  1520. /*
  1521. * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
  1522. * in 32bit mode. Here we choose to reset it as zero for consistency.
  1523. */
  1524. { PMU_SYS_REG(SYS_PMCCFILTR_EL0), .access = access_pmu_evtyper,
  1525. .reset = reset_val, .reg = PMCCFILTR_EL0, .val = 0 },
  1526. { SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 },
  1527. { SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 },
  1528. { SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x700 },
  1529. };
  1530. static bool trap_dbgdidr(struct kvm_vcpu *vcpu,
  1531. struct sys_reg_params *p,
  1532. const struct sys_reg_desc *r)
  1533. {
  1534. if (p->is_write) {
  1535. return ignore_write(vcpu, p);
  1536. } else {
  1537. u64 dfr = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
  1538. u64 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
  1539. u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL1_EL3_SHIFT);
  1540. p->regval = ((((dfr >> ID_AA64DFR0_EL1_WRPs_SHIFT) & 0xf) << 28) |
  1541. (((dfr >> ID_AA64DFR0_EL1_BRPs_SHIFT) & 0xf) << 24) |
  1542. (((dfr >> ID_AA64DFR0_EL1_CTX_CMPs_SHIFT) & 0xf) << 20)
  1543. | (6 << 16) | (1 << 15) | (el3 << 14) | (el3 << 12));
  1544. return true;
  1545. }
  1546. }
  1547. /*
  1548. * AArch32 debug register mappings
  1549. *
  1550. * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
  1551. * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
  1552. *
  1553. * None of the other registers share their location, so treat them as
  1554. * if they were 64bit.
  1555. */
  1556. #define DBG_BCR_BVR_WCR_WVR(n) \
  1557. /* DBGBVRn */ \
  1558. { AA32(LO), Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \
  1559. /* DBGBCRn */ \
  1560. { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n }, \
  1561. /* DBGWVRn */ \
  1562. { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n }, \
  1563. /* DBGWCRn */ \
  1564. { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
  1565. #define DBGBXVR(n) \
  1566. { AA32(HI), Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_bvr, NULL, n }
  1567. /*
  1568. * Trapped cp14 registers. We generally ignore most of the external
  1569. * debug, on the principle that they don't really make sense to a
  1570. * guest. Revisit this one day, would this principle change.
  1571. */
  1572. static const struct sys_reg_desc cp14_regs[] = {
  1573. /* DBGDIDR */
  1574. { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgdidr },
  1575. /* DBGDTRRXext */
  1576. { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
  1577. DBG_BCR_BVR_WCR_WVR(0),
  1578. /* DBGDSCRint */
  1579. { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
  1580. DBG_BCR_BVR_WCR_WVR(1),
  1581. /* DBGDCCINT */
  1582. { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug_regs, NULL, MDCCINT_EL1 },
  1583. /* DBGDSCRext */
  1584. { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug_regs, NULL, MDSCR_EL1 },
  1585. DBG_BCR_BVR_WCR_WVR(2),
  1586. /* DBGDTR[RT]Xint */
  1587. { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
  1588. /* DBGDTR[RT]Xext */
  1589. { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
  1590. DBG_BCR_BVR_WCR_WVR(3),
  1591. DBG_BCR_BVR_WCR_WVR(4),
  1592. DBG_BCR_BVR_WCR_WVR(5),
  1593. /* DBGWFAR */
  1594. { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
  1595. /* DBGOSECCR */
  1596. { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
  1597. DBG_BCR_BVR_WCR_WVR(6),
  1598. /* DBGVCR */
  1599. { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug_regs, NULL, DBGVCR32_EL2 },
  1600. DBG_BCR_BVR_WCR_WVR(7),
  1601. DBG_BCR_BVR_WCR_WVR(8),
  1602. DBG_BCR_BVR_WCR_WVR(9),
  1603. DBG_BCR_BVR_WCR_WVR(10),
  1604. DBG_BCR_BVR_WCR_WVR(11),
  1605. DBG_BCR_BVR_WCR_WVR(12),
  1606. DBG_BCR_BVR_WCR_WVR(13),
  1607. DBG_BCR_BVR_WCR_WVR(14),
  1608. DBG_BCR_BVR_WCR_WVR(15),
  1609. /* DBGDRAR (32bit) */
  1610. { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
  1611. DBGBXVR(0),
  1612. /* DBGOSLAR */
  1613. { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_oslar_el1 },
  1614. DBGBXVR(1),
  1615. /* DBGOSLSR */
  1616. { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1, NULL, OSLSR_EL1 },
  1617. DBGBXVR(2),
  1618. DBGBXVR(3),
  1619. /* DBGOSDLR */
  1620. { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
  1621. DBGBXVR(4),
  1622. /* DBGPRCR */
  1623. { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
  1624. DBGBXVR(5),
  1625. DBGBXVR(6),
  1626. DBGBXVR(7),
  1627. DBGBXVR(8),
  1628. DBGBXVR(9),
  1629. DBGBXVR(10),
  1630. DBGBXVR(11),
  1631. DBGBXVR(12),
  1632. DBGBXVR(13),
  1633. DBGBXVR(14),
  1634. DBGBXVR(15),
  1635. /* DBGDSAR (32bit) */
  1636. { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
  1637. /* DBGDEVID2 */
  1638. { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
  1639. /* DBGDEVID1 */
  1640. { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
  1641. /* DBGDEVID */
  1642. { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
  1643. /* DBGCLAIMSET */
  1644. { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
  1645. /* DBGCLAIMCLR */
  1646. { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
  1647. /* DBGAUTHSTATUS */
  1648. { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
  1649. };
  1650. /* Trapped cp14 64bit registers */
  1651. static const struct sys_reg_desc cp14_64_regs[] = {
  1652. /* DBGDRAR (64bit) */
  1653. { Op1( 0), CRm( 1), .access = trap_raz_wi },
  1654. /* DBGDSAR (64bit) */
  1655. { Op1( 0), CRm( 2), .access = trap_raz_wi },
  1656. };
  1657. #define CP15_PMU_SYS_REG(_map, _Op1, _CRn, _CRm, _Op2) \
  1658. AA32(_map), \
  1659. Op1(_Op1), CRn(_CRn), CRm(_CRm), Op2(_Op2), \
  1660. .visibility = pmu_visibility
  1661. /* Macro to expand the PMEVCNTRn register */
  1662. #define PMU_PMEVCNTR(n) \
  1663. { CP15_PMU_SYS_REG(DIRECT, 0, 0b1110, \
  1664. (0b1000 | (((n) >> 3) & 0x3)), ((n) & 0x7)), \
  1665. .access = access_pmu_evcntr }
  1666. /* Macro to expand the PMEVTYPERn register */
  1667. #define PMU_PMEVTYPER(n) \
  1668. { CP15_PMU_SYS_REG(DIRECT, 0, 0b1110, \
  1669. (0b1100 | (((n) >> 3) & 0x3)), ((n) & 0x7)), \
  1670. .access = access_pmu_evtyper }
  1671. /*
  1672. * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
  1673. * depending on the way they are accessed (as a 32bit or a 64bit
  1674. * register).
  1675. */
  1676. static const struct sys_reg_desc cp15_regs[] = {
  1677. { Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr },
  1678. { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, SCTLR_EL1 },
  1679. /* ACTLR */
  1680. { AA32(LO), Op1( 0), CRn( 1), CRm( 0), Op2( 1), access_actlr, NULL, ACTLR_EL1 },
  1681. /* ACTLR2 */
  1682. { AA32(HI), Op1( 0), CRn( 1), CRm( 0), Op2( 3), access_actlr, NULL, ACTLR_EL1 },
  1683. { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
  1684. { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, TTBR1_EL1 },
  1685. /* TTBCR */
  1686. { AA32(LO), Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, TCR_EL1 },
  1687. /* TTBCR2 */
  1688. { AA32(HI), Op1( 0), CRn( 2), CRm( 0), Op2( 3), access_vm_reg, NULL, TCR_EL1 },
  1689. { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, DACR32_EL2 },
  1690. /* DFSR */
  1691. { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, ESR_EL1 },
  1692. { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, IFSR32_EL2 },
  1693. /* ADFSR */
  1694. { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, AFSR0_EL1 },
  1695. /* AIFSR */
  1696. { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, AFSR1_EL1 },
  1697. /* DFAR */
  1698. { AA32(LO), Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, FAR_EL1 },
  1699. /* IFAR */
  1700. { AA32(HI), Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, FAR_EL1 },
  1701. /*
  1702. * DC{C,I,CI}SW operations:
  1703. */
  1704. { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
  1705. { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
  1706. { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
  1707. /* PMU */
  1708. { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 0), .access = access_pmcr },
  1709. { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 1), .access = access_pmcnten },
  1710. { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 2), .access = access_pmcnten },
  1711. { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 3), .access = access_pmovs },
  1712. { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 4), .access = access_pmswinc },
  1713. { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 5), .access = access_pmselr },
  1714. { CP15_PMU_SYS_REG(LO, 0, 9, 12, 6), .access = access_pmceid },
  1715. { CP15_PMU_SYS_REG(LO, 0, 9, 12, 7), .access = access_pmceid },
  1716. { CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 0), .access = access_pmu_evcntr },
  1717. { CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 1), .access = access_pmu_evtyper },
  1718. { CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 2), .access = access_pmu_evcntr },
  1719. { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 0), .access = access_pmuserenr },
  1720. { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 1), .access = access_pminten },
  1721. { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 2), .access = access_pminten },
  1722. { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 3), .access = access_pmovs },
  1723. { CP15_PMU_SYS_REG(HI, 0, 9, 14, 4), .access = access_pmceid },
  1724. { CP15_PMU_SYS_REG(HI, 0, 9, 14, 5), .access = access_pmceid },
  1725. /* PMMIR */
  1726. { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 6), .access = trap_raz_wi },
  1727. /* PRRR/MAIR0 */
  1728. { AA32(LO), Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, MAIR_EL1 },
  1729. /* NMRR/MAIR1 */
  1730. { AA32(HI), Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, MAIR_EL1 },
  1731. /* AMAIR0 */
  1732. { AA32(LO), Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, AMAIR_EL1 },
  1733. /* AMAIR1 */
  1734. { AA32(HI), Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, AMAIR_EL1 },
  1735. /* ICC_SRE */
  1736. { Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
  1737. { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, CONTEXTIDR_EL1 },
  1738. /* Arch Tmers */
  1739. { SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer },
  1740. { SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer },
  1741. /* PMEVCNTRn */
  1742. PMU_PMEVCNTR(0),
  1743. PMU_PMEVCNTR(1),
  1744. PMU_PMEVCNTR(2),
  1745. PMU_PMEVCNTR(3),
  1746. PMU_PMEVCNTR(4),
  1747. PMU_PMEVCNTR(5),
  1748. PMU_PMEVCNTR(6),
  1749. PMU_PMEVCNTR(7),
  1750. PMU_PMEVCNTR(8),
  1751. PMU_PMEVCNTR(9),
  1752. PMU_PMEVCNTR(10),
  1753. PMU_PMEVCNTR(11),
  1754. PMU_PMEVCNTR(12),
  1755. PMU_PMEVCNTR(13),
  1756. PMU_PMEVCNTR(14),
  1757. PMU_PMEVCNTR(15),
  1758. PMU_PMEVCNTR(16),
  1759. PMU_PMEVCNTR(17),
  1760. PMU_PMEVCNTR(18),
  1761. PMU_PMEVCNTR(19),
  1762. PMU_PMEVCNTR(20),
  1763. PMU_PMEVCNTR(21),
  1764. PMU_PMEVCNTR(22),
  1765. PMU_PMEVCNTR(23),
  1766. PMU_PMEVCNTR(24),
  1767. PMU_PMEVCNTR(25),
  1768. PMU_PMEVCNTR(26),
  1769. PMU_PMEVCNTR(27),
  1770. PMU_PMEVCNTR(28),
  1771. PMU_PMEVCNTR(29),
  1772. PMU_PMEVCNTR(30),
  1773. /* PMEVTYPERn */
  1774. PMU_PMEVTYPER(0),
  1775. PMU_PMEVTYPER(1),
  1776. PMU_PMEVTYPER(2),
  1777. PMU_PMEVTYPER(3),
  1778. PMU_PMEVTYPER(4),
  1779. PMU_PMEVTYPER(5),
  1780. PMU_PMEVTYPER(6),
  1781. PMU_PMEVTYPER(7),
  1782. PMU_PMEVTYPER(8),
  1783. PMU_PMEVTYPER(9),
  1784. PMU_PMEVTYPER(10),
  1785. PMU_PMEVTYPER(11),
  1786. PMU_PMEVTYPER(12),
  1787. PMU_PMEVTYPER(13),
  1788. PMU_PMEVTYPER(14),
  1789. PMU_PMEVTYPER(15),
  1790. PMU_PMEVTYPER(16),
  1791. PMU_PMEVTYPER(17),
  1792. PMU_PMEVTYPER(18),
  1793. PMU_PMEVTYPER(19),
  1794. PMU_PMEVTYPER(20),
  1795. PMU_PMEVTYPER(21),
  1796. PMU_PMEVTYPER(22),
  1797. PMU_PMEVTYPER(23),
  1798. PMU_PMEVTYPER(24),
  1799. PMU_PMEVTYPER(25),
  1800. PMU_PMEVTYPER(26),
  1801. PMU_PMEVTYPER(27),
  1802. PMU_PMEVTYPER(28),
  1803. PMU_PMEVTYPER(29),
  1804. PMU_PMEVTYPER(30),
  1805. /* PMCCFILTR */
  1806. { CP15_PMU_SYS_REG(DIRECT, 0, 14, 15, 7), .access = access_pmu_evtyper },
  1807. { Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr },
  1808. { Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr },
  1809. { Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, CSSELR_EL1 },
  1810. };
  1811. static const struct sys_reg_desc cp15_64_regs[] = {
  1812. { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
  1813. { CP15_PMU_SYS_REG(DIRECT, 0, 0, 9, 0), .access = access_pmu_evcntr },
  1814. { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
  1815. { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR1_EL1 },
  1816. { Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
  1817. { Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
  1818. { SYS_DESC(SYS_AARCH32_CNTP_CVAL), access_arch_timer },
  1819. };
  1820. static bool check_sysreg_table(const struct sys_reg_desc *table, unsigned int n,
  1821. bool is_32)
  1822. {
  1823. unsigned int i;
  1824. for (i = 0; i < n; i++) {
  1825. if (!is_32 && table[i].reg && !table[i].reset) {
  1826. kvm_err("sys_reg table %pS entry %d lacks reset\n", &table[i], i);
  1827. return false;
  1828. }
  1829. if (i && cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
  1830. kvm_err("sys_reg table %pS entry %d out of order\n", &table[i - 1], i - 1);
  1831. return false;
  1832. }
  1833. }
  1834. return true;
  1835. }
  1836. int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu)
  1837. {
  1838. kvm_inject_undefined(vcpu);
  1839. return 1;
  1840. }
  1841. static void perform_access(struct kvm_vcpu *vcpu,
  1842. struct sys_reg_params *params,
  1843. const struct sys_reg_desc *r)
  1844. {
  1845. trace_kvm_sys_access(*vcpu_pc(vcpu), params, r);
  1846. /* Check for regs disabled by runtime config */
  1847. if (sysreg_hidden(vcpu, r)) {
  1848. kvm_inject_undefined(vcpu);
  1849. return;
  1850. }
  1851. /*
  1852. * Not having an accessor means that we have configured a trap
  1853. * that we don't know how to handle. This certainly qualifies
  1854. * as a gross bug that should be fixed right away.
  1855. */
  1856. BUG_ON(!r->access);
  1857. /* Skip instruction if instructed so */
  1858. if (likely(r->access(vcpu, params, r)))
  1859. kvm_incr_pc(vcpu);
  1860. }
  1861. /*
  1862. * emulate_cp -- tries to match a sys_reg access in a handling table, and
  1863. * call the corresponding trap handler.
  1864. *
  1865. * @params: pointer to the descriptor of the access
  1866. * @table: array of trap descriptors
  1867. * @num: size of the trap descriptor array
  1868. *
  1869. * Return true if the access has been handled, false if not.
  1870. */
  1871. static bool emulate_cp(struct kvm_vcpu *vcpu,
  1872. struct sys_reg_params *params,
  1873. const struct sys_reg_desc *table,
  1874. size_t num)
  1875. {
  1876. const struct sys_reg_desc *r;
  1877. if (!table)
  1878. return false; /* Not handled */
  1879. r = find_reg(params, table, num);
  1880. if (r) {
  1881. perform_access(vcpu, params, r);
  1882. return true;
  1883. }
  1884. /* Not handled */
  1885. return false;
  1886. }
  1887. static void unhandled_cp_access(struct kvm_vcpu *vcpu,
  1888. struct sys_reg_params *params)
  1889. {
  1890. u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
  1891. int cp = -1;
  1892. switch (esr_ec) {
  1893. case ESR_ELx_EC_CP15_32:
  1894. case ESR_ELx_EC_CP15_64:
  1895. cp = 15;
  1896. break;
  1897. case ESR_ELx_EC_CP14_MR:
  1898. case ESR_ELx_EC_CP14_64:
  1899. cp = 14;
  1900. break;
  1901. default:
  1902. WARN_ON(1);
  1903. }
  1904. print_sys_reg_msg(params,
  1905. "Unsupported guest CP%d access at: %08lx [%08lx]\n",
  1906. cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
  1907. kvm_inject_undefined(vcpu);
  1908. }
  1909. /**
  1910. * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
  1911. * @vcpu: The VCPU pointer
  1912. * @run: The kvm_run struct
  1913. */
  1914. static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
  1915. const struct sys_reg_desc *global,
  1916. size_t nr_global)
  1917. {
  1918. struct sys_reg_params params;
  1919. u64 esr = kvm_vcpu_get_esr(vcpu);
  1920. int Rt = kvm_vcpu_sys_get_rt(vcpu);
  1921. int Rt2 = (esr >> 10) & 0x1f;
  1922. params.CRm = (esr >> 1) & 0xf;
  1923. params.is_write = ((esr & 1) == 0);
  1924. params.Op0 = 0;
  1925. params.Op1 = (esr >> 16) & 0xf;
  1926. params.Op2 = 0;
  1927. params.CRn = 0;
  1928. /*
  1929. * Make a 64-bit value out of Rt and Rt2. As we use the same trap
  1930. * backends between AArch32 and AArch64, we get away with it.
  1931. */
  1932. if (params.is_write) {
  1933. params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
  1934. params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
  1935. }
  1936. /*
  1937. * If the table contains a handler, handle the
  1938. * potential register operation in the case of a read and return
  1939. * with success.
  1940. */
  1941. if (emulate_cp(vcpu, &params, global, nr_global)) {
  1942. /* Split up the value between registers for the read side */
  1943. if (!params.is_write) {
  1944. vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
  1945. vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
  1946. }
  1947. return 1;
  1948. }
  1949. unhandled_cp_access(vcpu, &params);
  1950. return 1;
  1951. }
  1952. static bool emulate_sys_reg(struct kvm_vcpu *vcpu, struct sys_reg_params *params);
  1953. /*
  1954. * The CP10 ID registers are architecturally mapped to AArch64 feature
  1955. * registers. Abuse that fact so we can rely on the AArch64 handler for accesses
  1956. * from AArch32.
  1957. */
  1958. static bool kvm_esr_cp10_id_to_sys64(u64 esr, struct sys_reg_params *params)
  1959. {
  1960. u8 reg_id = (esr >> 10) & 0xf;
  1961. bool valid;
  1962. params->is_write = ((esr & 1) == 0);
  1963. params->Op0 = 3;
  1964. params->Op1 = 0;
  1965. params->CRn = 0;
  1966. params->CRm = 3;
  1967. /* CP10 ID registers are read-only */
  1968. valid = !params->is_write;
  1969. switch (reg_id) {
  1970. /* MVFR0 */
  1971. case 0b0111:
  1972. params->Op2 = 0;
  1973. break;
  1974. /* MVFR1 */
  1975. case 0b0110:
  1976. params->Op2 = 1;
  1977. break;
  1978. /* MVFR2 */
  1979. case 0b0101:
  1980. params->Op2 = 2;
  1981. break;
  1982. default:
  1983. valid = false;
  1984. }
  1985. if (valid)
  1986. return true;
  1987. kvm_pr_unimpl("Unhandled cp10 register %s: %u\n",
  1988. params->is_write ? "write" : "read", reg_id);
  1989. return false;
  1990. }
  1991. /**
  1992. * kvm_handle_cp10_id() - Handles a VMRS trap on guest access to a 'Media and
  1993. * VFP Register' from AArch32.
  1994. * @vcpu: The vCPU pointer
  1995. *
  1996. * MVFR{0-2} are architecturally mapped to the AArch64 MVFR{0-2}_EL1 registers.
  1997. * Work out the correct AArch64 system register encoding and reroute to the
  1998. * AArch64 system register emulation.
  1999. */
  2000. int kvm_handle_cp10_id(struct kvm_vcpu *vcpu)
  2001. {
  2002. int Rt = kvm_vcpu_sys_get_rt(vcpu);
  2003. u64 esr = kvm_vcpu_get_esr(vcpu);
  2004. struct sys_reg_params params;
  2005. /* UNDEF on any unhandled register access */
  2006. if (!kvm_esr_cp10_id_to_sys64(esr, &params)) {
  2007. kvm_inject_undefined(vcpu);
  2008. return 1;
  2009. }
  2010. if (emulate_sys_reg(vcpu, &params))
  2011. vcpu_set_reg(vcpu, Rt, params.regval);
  2012. return 1;
  2013. }
  2014. /**
  2015. * kvm_emulate_cp15_id_reg() - Handles an MRC trap on a guest CP15 access where
  2016. * CRn=0, which corresponds to the AArch32 feature
  2017. * registers.
  2018. * @vcpu: the vCPU pointer
  2019. * @params: the system register access parameters.
  2020. *
  2021. * Our cp15 system register tables do not enumerate the AArch32 feature
  2022. * registers. Conveniently, our AArch64 table does, and the AArch32 system
  2023. * register encoding can be trivially remapped into the AArch64 for the feature
  2024. * registers: Append op0=3, leaving op1, CRn, CRm, and op2 the same.
  2025. *
  2026. * According to DDI0487G.b G7.3.1, paragraph "Behavior of VMSAv8-32 32-bit
  2027. * System registers with (coproc=0b1111, CRn==c0)", read accesses from this
  2028. * range are either UNKNOWN or RES0. Rerouting remains architectural as we
  2029. * treat undefined registers in this range as RAZ.
  2030. */
  2031. static int kvm_emulate_cp15_id_reg(struct kvm_vcpu *vcpu,
  2032. struct sys_reg_params *params)
  2033. {
  2034. int Rt = kvm_vcpu_sys_get_rt(vcpu);
  2035. /* Treat impossible writes to RO registers as UNDEFINED */
  2036. if (params->is_write) {
  2037. unhandled_cp_access(vcpu, params);
  2038. return 1;
  2039. }
  2040. params->Op0 = 3;
  2041. /*
  2042. * All registers where CRm > 3 are known to be UNKNOWN/RAZ from AArch32.
  2043. * Avoid conflicting with future expansion of AArch64 feature registers
  2044. * and simply treat them as RAZ here.
  2045. */
  2046. if (params->CRm > 3)
  2047. params->regval = 0;
  2048. else if (!emulate_sys_reg(vcpu, params))
  2049. return 1;
  2050. vcpu_set_reg(vcpu, Rt, params->regval);
  2051. return 1;
  2052. }
  2053. /**
  2054. * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
  2055. * @vcpu: The VCPU pointer
  2056. * @run: The kvm_run struct
  2057. */
  2058. static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
  2059. struct sys_reg_params *params,
  2060. const struct sys_reg_desc *global,
  2061. size_t nr_global)
  2062. {
  2063. int Rt = kvm_vcpu_sys_get_rt(vcpu);
  2064. params->regval = vcpu_get_reg(vcpu, Rt);
  2065. if (emulate_cp(vcpu, params, global, nr_global)) {
  2066. if (!params->is_write)
  2067. vcpu_set_reg(vcpu, Rt, params->regval);
  2068. return 1;
  2069. }
  2070. unhandled_cp_access(vcpu, params);
  2071. return 1;
  2072. }
  2073. int kvm_handle_cp15_64(struct kvm_vcpu *vcpu)
  2074. {
  2075. return kvm_handle_cp_64(vcpu, cp15_64_regs, ARRAY_SIZE(cp15_64_regs));
  2076. }
  2077. int kvm_handle_cp15_32(struct kvm_vcpu *vcpu)
  2078. {
  2079. struct sys_reg_params params;
  2080. params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu));
  2081. /*
  2082. * Certain AArch32 ID registers are handled by rerouting to the AArch64
  2083. * system register table. Registers in the ID range where CRm=0 are
  2084. * excluded from this scheme as they do not trivially map into AArch64
  2085. * system register encodings.
  2086. */
  2087. if (params.Op1 == 0 && params.CRn == 0 && params.CRm)
  2088. return kvm_emulate_cp15_id_reg(vcpu, &params);
  2089. return kvm_handle_cp_32(vcpu, &params, cp15_regs, ARRAY_SIZE(cp15_regs));
  2090. }
  2091. int kvm_handle_cp14_64(struct kvm_vcpu *vcpu)
  2092. {
  2093. return kvm_handle_cp_64(vcpu, cp14_64_regs, ARRAY_SIZE(cp14_64_regs));
  2094. }
  2095. int kvm_handle_cp14_32(struct kvm_vcpu *vcpu)
  2096. {
  2097. struct sys_reg_params params;
  2098. params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu));
  2099. return kvm_handle_cp_32(vcpu, &params, cp14_regs, ARRAY_SIZE(cp14_regs));
  2100. }
  2101. static bool is_imp_def_sys_reg(struct sys_reg_params *params)
  2102. {
  2103. // See ARM DDI 0487E.a, section D12.3.2
  2104. return params->Op0 == 3 && (params->CRn & 0b1011) == 0b1011;
  2105. }
  2106. /**
  2107. * emulate_sys_reg - Emulate a guest access to an AArch64 system register
  2108. * @vcpu: The VCPU pointer
  2109. * @params: Decoded system register parameters
  2110. *
  2111. * Return: true if the system register access was successful, false otherwise.
  2112. */
  2113. static bool emulate_sys_reg(struct kvm_vcpu *vcpu,
  2114. struct sys_reg_params *params)
  2115. {
  2116. const struct sys_reg_desc *r;
  2117. r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
  2118. if (likely(r)) {
  2119. perform_access(vcpu, params, r);
  2120. return true;
  2121. }
  2122. if (is_imp_def_sys_reg(params)) {
  2123. kvm_inject_undefined(vcpu);
  2124. } else {
  2125. print_sys_reg_msg(params,
  2126. "Unsupported guest sys_reg access at: %lx [%08lx]\n",
  2127. *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
  2128. kvm_inject_undefined(vcpu);
  2129. }
  2130. return false;
  2131. }
  2132. /**
  2133. * kvm_reset_sys_regs - sets system registers to reset value
  2134. * @vcpu: The VCPU pointer
  2135. *
  2136. * This function finds the right table above and sets the registers on the
  2137. * virtual CPU struct to their architecturally defined reset values.
  2138. */
  2139. void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
  2140. {
  2141. unsigned long i;
  2142. for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++)
  2143. if (sys_reg_descs[i].reset)
  2144. sys_reg_descs[i].reset(vcpu, &sys_reg_descs[i]);
  2145. }
  2146. /**
  2147. * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
  2148. * @vcpu: The VCPU pointer
  2149. */
  2150. int kvm_handle_sys_reg(struct kvm_vcpu *vcpu)
  2151. {
  2152. struct sys_reg_params params;
  2153. unsigned long esr = kvm_vcpu_get_esr(vcpu);
  2154. int Rt = kvm_vcpu_sys_get_rt(vcpu);
  2155. trace_kvm_handle_sys_reg(esr);
  2156. params = esr_sys64_to_params(esr);
  2157. params.regval = vcpu_get_reg(vcpu, Rt);
  2158. if (!emulate_sys_reg(vcpu, &params))
  2159. return 1;
  2160. if (!params.is_write)
  2161. vcpu_set_reg(vcpu, Rt, params.regval);
  2162. return 1;
  2163. }
  2164. /******************************************************************************
  2165. * Userspace API
  2166. *****************************************************************************/
  2167. static bool index_to_params(u64 id, struct sys_reg_params *params)
  2168. {
  2169. switch (id & KVM_REG_SIZE_MASK) {
  2170. case KVM_REG_SIZE_U64:
  2171. /* Any unused index bits means it's not valid. */
  2172. if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
  2173. | KVM_REG_ARM_COPROC_MASK
  2174. | KVM_REG_ARM64_SYSREG_OP0_MASK
  2175. | KVM_REG_ARM64_SYSREG_OP1_MASK
  2176. | KVM_REG_ARM64_SYSREG_CRN_MASK
  2177. | KVM_REG_ARM64_SYSREG_CRM_MASK
  2178. | KVM_REG_ARM64_SYSREG_OP2_MASK))
  2179. return false;
  2180. params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
  2181. >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
  2182. params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
  2183. >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
  2184. params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
  2185. >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
  2186. params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
  2187. >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
  2188. params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
  2189. >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
  2190. return true;
  2191. default:
  2192. return false;
  2193. }
  2194. }
  2195. const struct sys_reg_desc *get_reg_by_id(u64 id,
  2196. const struct sys_reg_desc table[],
  2197. unsigned int num)
  2198. {
  2199. struct sys_reg_params params;
  2200. if (!index_to_params(id, &params))
  2201. return NULL;
  2202. return find_reg(&params, table, num);
  2203. }
  2204. /* Decode an index value, and find the sys_reg_desc entry. */
  2205. static const struct sys_reg_desc *
  2206. id_to_sys_reg_desc(struct kvm_vcpu *vcpu, u64 id,
  2207. const struct sys_reg_desc table[], unsigned int num)
  2208. {
  2209. const struct sys_reg_desc *r;
  2210. /* We only do sys_reg for now. */
  2211. if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
  2212. return NULL;
  2213. r = get_reg_by_id(id, table, num);
  2214. /* Not saved in the sys_reg array and not otherwise accessible? */
  2215. if (r && (!(r->reg || r->get_user) || sysreg_hidden(vcpu, r)))
  2216. r = NULL;
  2217. return r;
  2218. }
  2219. /*
  2220. * These are the invariant sys_reg registers: we let the guest see the
  2221. * host versions of these, so they're part of the guest state.
  2222. *
  2223. * A future CPU may provide a mechanism to present different values to
  2224. * the guest, or a future kvm may trap them.
  2225. */
  2226. #define FUNCTION_INVARIANT(reg) \
  2227. static void get_##reg(struct kvm_vcpu *v, \
  2228. const struct sys_reg_desc *r) \
  2229. { \
  2230. ((struct sys_reg_desc *)r)->val = read_sysreg(reg); \
  2231. }
  2232. FUNCTION_INVARIANT(midr_el1)
  2233. FUNCTION_INVARIANT(revidr_el1)
  2234. FUNCTION_INVARIANT(clidr_el1)
  2235. FUNCTION_INVARIANT(aidr_el1)
  2236. static void get_ctr_el0(struct kvm_vcpu *v, const struct sys_reg_desc *r)
  2237. {
  2238. ((struct sys_reg_desc *)r)->val = read_sanitised_ftr_reg(SYS_CTR_EL0);
  2239. }
  2240. /* ->val is filled in by kvm_sys_reg_table_init() */
  2241. static struct sys_reg_desc invariant_sys_regs[] = {
  2242. { SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
  2243. { SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
  2244. { SYS_DESC(SYS_CLIDR_EL1), NULL, get_clidr_el1 },
  2245. { SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
  2246. { SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
  2247. };
  2248. static int get_invariant_sys_reg(u64 id, u64 __user *uaddr)
  2249. {
  2250. const struct sys_reg_desc *r;
  2251. r = get_reg_by_id(id, invariant_sys_regs,
  2252. ARRAY_SIZE(invariant_sys_regs));
  2253. if (!r)
  2254. return -ENOENT;
  2255. return put_user(r->val, uaddr);
  2256. }
  2257. static int set_invariant_sys_reg(u64 id, u64 __user *uaddr)
  2258. {
  2259. const struct sys_reg_desc *r;
  2260. u64 val;
  2261. r = get_reg_by_id(id, invariant_sys_regs,
  2262. ARRAY_SIZE(invariant_sys_regs));
  2263. if (!r)
  2264. return -ENOENT;
  2265. if (get_user(val, uaddr))
  2266. return -EFAULT;
  2267. /* This is what we mean by invariant: you can't change it. */
  2268. if (r->val != val)
  2269. return -EINVAL;
  2270. return 0;
  2271. }
  2272. static bool is_valid_cache(u32 val)
  2273. {
  2274. u32 level, ctype;
  2275. if (val >= CSSELR_MAX)
  2276. return false;
  2277. /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
  2278. level = (val >> 1);
  2279. ctype = (cache_levels >> (level * 3)) & 7;
  2280. switch (ctype) {
  2281. case 0: /* No cache */
  2282. return false;
  2283. case 1: /* Instruction cache only */
  2284. return (val & 1);
  2285. case 2: /* Data cache only */
  2286. case 4: /* Unified cache */
  2287. return !(val & 1);
  2288. case 3: /* Separate instruction and data caches */
  2289. return true;
  2290. default: /* Reserved: we can't know instruction or data. */
  2291. return false;
  2292. }
  2293. }
  2294. static int demux_c15_get(u64 id, void __user *uaddr)
  2295. {
  2296. u32 val;
  2297. u32 __user *uval = uaddr;
  2298. /* Fail if we have unknown bits set. */
  2299. if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
  2300. | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
  2301. return -ENOENT;
  2302. switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
  2303. case KVM_REG_ARM_DEMUX_ID_CCSIDR:
  2304. if (KVM_REG_SIZE(id) != 4)
  2305. return -ENOENT;
  2306. val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
  2307. >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
  2308. if (!is_valid_cache(val))
  2309. return -ENOENT;
  2310. return put_user(get_ccsidr(val), uval);
  2311. default:
  2312. return -ENOENT;
  2313. }
  2314. }
  2315. static int demux_c15_set(u64 id, void __user *uaddr)
  2316. {
  2317. u32 val, newval;
  2318. u32 __user *uval = uaddr;
  2319. /* Fail if we have unknown bits set. */
  2320. if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
  2321. | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
  2322. return -ENOENT;
  2323. switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
  2324. case KVM_REG_ARM_DEMUX_ID_CCSIDR:
  2325. if (KVM_REG_SIZE(id) != 4)
  2326. return -ENOENT;
  2327. val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
  2328. >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
  2329. if (!is_valid_cache(val))
  2330. return -ENOENT;
  2331. if (get_user(newval, uval))
  2332. return -EFAULT;
  2333. /* This is also invariant: you can't change it. */
  2334. if (newval != get_ccsidr(val))
  2335. return -EINVAL;
  2336. return 0;
  2337. default:
  2338. return -ENOENT;
  2339. }
  2340. }
  2341. int kvm_sys_reg_get_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg,
  2342. const struct sys_reg_desc table[], unsigned int num)
  2343. {
  2344. u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr;
  2345. const struct sys_reg_desc *r;
  2346. u64 val;
  2347. int ret;
  2348. r = id_to_sys_reg_desc(vcpu, reg->id, table, num);
  2349. if (!r)
  2350. return -ENOENT;
  2351. if (r->get_user) {
  2352. ret = (r->get_user)(vcpu, r, &val);
  2353. } else {
  2354. val = __vcpu_sys_reg(vcpu, r->reg);
  2355. ret = 0;
  2356. }
  2357. if (!ret)
  2358. ret = put_user(val, uaddr);
  2359. return ret;
  2360. }
  2361. int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
  2362. {
  2363. void __user *uaddr = (void __user *)(unsigned long)reg->addr;
  2364. int err;
  2365. if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
  2366. return demux_c15_get(reg->id, uaddr);
  2367. err = get_invariant_sys_reg(reg->id, uaddr);
  2368. if (err != -ENOENT)
  2369. return err;
  2370. return kvm_sys_reg_get_user(vcpu, reg,
  2371. sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
  2372. }
  2373. int kvm_sys_reg_set_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg,
  2374. const struct sys_reg_desc table[], unsigned int num)
  2375. {
  2376. u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr;
  2377. const struct sys_reg_desc *r;
  2378. u64 val;
  2379. int ret;
  2380. if (get_user(val, uaddr))
  2381. return -EFAULT;
  2382. r = id_to_sys_reg_desc(vcpu, reg->id, table, num);
  2383. if (!r)
  2384. return -ENOENT;
  2385. if (sysreg_user_write_ignore(vcpu, r))
  2386. return 0;
  2387. if (r->set_user) {
  2388. ret = (r->set_user)(vcpu, r, val);
  2389. } else {
  2390. __vcpu_sys_reg(vcpu, r->reg) = val;
  2391. ret = 0;
  2392. }
  2393. return ret;
  2394. }
  2395. int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
  2396. {
  2397. void __user *uaddr = (void __user *)(unsigned long)reg->addr;
  2398. int err;
  2399. if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
  2400. return demux_c15_set(reg->id, uaddr);
  2401. err = set_invariant_sys_reg(reg->id, uaddr);
  2402. if (err != -ENOENT)
  2403. return err;
  2404. return kvm_sys_reg_set_user(vcpu, reg,
  2405. sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
  2406. }
  2407. static unsigned int num_demux_regs(void)
  2408. {
  2409. unsigned int i, count = 0;
  2410. for (i = 0; i < CSSELR_MAX; i++)
  2411. if (is_valid_cache(i))
  2412. count++;
  2413. return count;
  2414. }
  2415. static int write_demux_regids(u64 __user *uindices)
  2416. {
  2417. u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
  2418. unsigned int i;
  2419. val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
  2420. for (i = 0; i < CSSELR_MAX; i++) {
  2421. if (!is_valid_cache(i))
  2422. continue;
  2423. if (put_user(val | i, uindices))
  2424. return -EFAULT;
  2425. uindices++;
  2426. }
  2427. return 0;
  2428. }
  2429. static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
  2430. {
  2431. return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
  2432. KVM_REG_ARM64_SYSREG |
  2433. (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
  2434. (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
  2435. (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
  2436. (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
  2437. (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
  2438. }
  2439. static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
  2440. {
  2441. if (!*uind)
  2442. return true;
  2443. if (put_user(sys_reg_to_index(reg), *uind))
  2444. return false;
  2445. (*uind)++;
  2446. return true;
  2447. }
  2448. static int walk_one_sys_reg(const struct kvm_vcpu *vcpu,
  2449. const struct sys_reg_desc *rd,
  2450. u64 __user **uind,
  2451. unsigned int *total)
  2452. {
  2453. /*
  2454. * Ignore registers we trap but don't save,
  2455. * and for which no custom user accessor is provided.
  2456. */
  2457. if (!(rd->reg || rd->get_user))
  2458. return 0;
  2459. if (sysreg_hidden(vcpu, rd))
  2460. return 0;
  2461. if (!copy_reg_to_user(rd, uind))
  2462. return -EFAULT;
  2463. (*total)++;
  2464. return 0;
  2465. }
  2466. /* Assumed ordered tables, see kvm_sys_reg_table_init. */
  2467. static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
  2468. {
  2469. const struct sys_reg_desc *i2, *end2;
  2470. unsigned int total = 0;
  2471. int err;
  2472. i2 = sys_reg_descs;
  2473. end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
  2474. while (i2 != end2) {
  2475. err = walk_one_sys_reg(vcpu, i2++, &uind, &total);
  2476. if (err)
  2477. return err;
  2478. }
  2479. return total;
  2480. }
  2481. unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
  2482. {
  2483. return ARRAY_SIZE(invariant_sys_regs)
  2484. + num_demux_regs()
  2485. + walk_sys_regs(vcpu, (u64 __user *)NULL);
  2486. }
  2487. int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
  2488. {
  2489. unsigned int i;
  2490. int err;
  2491. /* Then give them all the invariant registers' indices. */
  2492. for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
  2493. if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
  2494. return -EFAULT;
  2495. uindices++;
  2496. }
  2497. err = walk_sys_regs(vcpu, uindices);
  2498. if (err < 0)
  2499. return err;
  2500. uindices += err;
  2501. return write_demux_regids(uindices);
  2502. }
  2503. int kvm_sys_reg_table_init(void)
  2504. {
  2505. bool valid = true;
  2506. unsigned int i;
  2507. struct sys_reg_desc clidr;
  2508. /* Make sure tables are unique and in order. */
  2509. valid &= check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs), false);
  2510. valid &= check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs), true);
  2511. valid &= check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs), true);
  2512. valid &= check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs), true);
  2513. valid &= check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs), true);
  2514. valid &= check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs), false);
  2515. if (!valid)
  2516. return -EINVAL;
  2517. /* We abuse the reset function to overwrite the table itself. */
  2518. for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
  2519. invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
  2520. /*
  2521. * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
  2522. *
  2523. * If software reads the Cache Type fields from Ctype1
  2524. * upwards, once it has seen a value of 0b000, no caches
  2525. * exist at further-out levels of the hierarchy. So, for
  2526. * example, if Ctype3 is the first Cache Type field with a
  2527. * value of 0b000, the values of Ctype4 to Ctype7 must be
  2528. * ignored.
  2529. */
  2530. get_clidr_el1(NULL, &clidr); /* Ugly... */
  2531. cache_levels = clidr.val;
  2532. for (i = 0; i < 7; i++)
  2533. if (((cache_levels >> (i*3)) & 7) == 0)
  2534. break;
  2535. /* Clear all higher bits. */
  2536. cache_levels &= (1 << (i*3))-1;
  2537. return 0;
  2538. }