pgtable.c 33 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Stand-alone page-table allocator for hyp stage-1 and guest stage-2.
  4. * No bombay mix was harmed in the writing of this file.
  5. *
  6. * Copyright (C) 2020 Google LLC
  7. * Author: Will Deacon <[email protected]>
  8. */
  9. #include <linux/bitfield.h>
  10. #include <asm/kvm_pgtable.h>
  11. #include <asm/stage2_pgtable.h>
  12. #define KVM_PTE_LEAF_ATTR_S2_PERMS (KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R | \
  13. KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W | \
  14. KVM_PTE_LEAF_ATTR_HI_S2_XN)
  15. struct kvm_pgtable_walk_data {
  16. struct kvm_pgtable *pgt;
  17. struct kvm_pgtable_walker *walker;
  18. u64 addr;
  19. u64 end;
  20. };
  21. static bool kvm_phys_is_valid(u64 phys)
  22. {
  23. return phys < BIT(id_aa64mmfr0_parange_to_phys_shift(ID_AA64MMFR0_EL1_PARANGE_MAX));
  24. }
  25. static bool kvm_block_mapping_supported(u64 addr, u64 end, u64 phys, u32 level)
  26. {
  27. u64 granule = kvm_granule_size(level);
  28. if (!kvm_level_supports_block_mapping(level))
  29. return false;
  30. if (granule > (end - addr))
  31. return false;
  32. if (kvm_phys_is_valid(phys) && !IS_ALIGNED(phys, granule))
  33. return false;
  34. return IS_ALIGNED(addr, granule);
  35. }
  36. static u32 kvm_pgtable_idx(struct kvm_pgtable_walk_data *data, u32 level)
  37. {
  38. u64 shift = kvm_granule_shift(level);
  39. u64 mask = BIT(PAGE_SHIFT - 3) - 1;
  40. return (data->addr >> shift) & mask;
  41. }
  42. static u32 __kvm_pgd_page_idx(struct kvm_pgtable *pgt, u64 addr)
  43. {
  44. u64 shift = kvm_granule_shift(pgt->start_level - 1); /* May underflow */
  45. u64 mask = BIT(pgt->ia_bits) - 1;
  46. return (addr & mask) >> shift;
  47. }
  48. static u32 kvm_pgd_page_idx(struct kvm_pgtable_walk_data *data)
  49. {
  50. return __kvm_pgd_page_idx(data->pgt, data->addr);
  51. }
  52. static u32 kvm_pgd_pages(u32 ia_bits, u32 start_level)
  53. {
  54. struct kvm_pgtable pgt = {
  55. .ia_bits = ia_bits,
  56. .start_level = start_level,
  57. };
  58. return __kvm_pgd_page_idx(&pgt, -1ULL) + 1;
  59. }
  60. static void kvm_clear_pte(kvm_pte_t *ptep)
  61. {
  62. WRITE_ONCE(*ptep, 0);
  63. }
  64. static void kvm_set_table_pte(kvm_pte_t *ptep, kvm_pte_t *childp,
  65. struct kvm_pgtable_mm_ops *mm_ops)
  66. {
  67. kvm_pte_t old = *ptep, pte = kvm_phys_to_pte(mm_ops->virt_to_phys(childp));
  68. pte |= FIELD_PREP(KVM_PTE_TYPE, KVM_PTE_TYPE_TABLE);
  69. pte |= KVM_PTE_VALID;
  70. WARN_ON(kvm_pte_valid(old));
  71. smp_store_release(ptep, pte);
  72. }
  73. static kvm_pte_t kvm_init_valid_leaf_pte(u64 pa, kvm_pte_t attr, u32 level)
  74. {
  75. kvm_pte_t pte = kvm_phys_to_pte(pa);
  76. u64 type = (level == KVM_PGTABLE_MAX_LEVELS - 1) ? KVM_PTE_TYPE_PAGE :
  77. KVM_PTE_TYPE_BLOCK;
  78. pte |= attr & (KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI);
  79. pte |= FIELD_PREP(KVM_PTE_TYPE, type);
  80. pte |= KVM_PTE_VALID;
  81. return pte;
  82. }
  83. static int kvm_pgtable_visitor_cb(struct kvm_pgtable_walk_data *data, u64 addr,
  84. u32 level, kvm_pte_t *ptep,
  85. enum kvm_pgtable_walk_flags flag)
  86. {
  87. struct kvm_pgtable_walker *walker = data->walker;
  88. return walker->cb(addr, data->end, level, ptep, flag, walker->arg);
  89. }
  90. static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data,
  91. kvm_pte_t *pgtable, u32 level);
  92. static inline int __kvm_pgtable_visit(struct kvm_pgtable_walk_data *data,
  93. kvm_pte_t *ptep, u32 level)
  94. {
  95. int ret = 0;
  96. u64 addr = data->addr;
  97. kvm_pte_t *childp, pte = *ptep;
  98. bool table = kvm_pte_table(pte, level);
  99. enum kvm_pgtable_walk_flags flags = data->walker->flags;
  100. if (table && (flags & KVM_PGTABLE_WALK_TABLE_PRE)) {
  101. ret = kvm_pgtable_visitor_cb(data, addr, level, ptep,
  102. KVM_PGTABLE_WALK_TABLE_PRE);
  103. }
  104. if (!table && (flags & KVM_PGTABLE_WALK_LEAF)) {
  105. ret = kvm_pgtable_visitor_cb(data, addr, level, ptep,
  106. KVM_PGTABLE_WALK_LEAF);
  107. pte = *ptep;
  108. table = kvm_pte_table(pte, level);
  109. }
  110. if (ret)
  111. goto out;
  112. if (!table) {
  113. data->addr = ALIGN_DOWN(data->addr, kvm_granule_size(level));
  114. data->addr += kvm_granule_size(level);
  115. goto out;
  116. }
  117. childp = kvm_pte_follow(pte, data->pgt->mm_ops);
  118. ret = __kvm_pgtable_walk(data, childp, level + 1);
  119. if (ret)
  120. goto out;
  121. if (flags & KVM_PGTABLE_WALK_TABLE_POST) {
  122. ret = kvm_pgtable_visitor_cb(data, addr, level, ptep,
  123. KVM_PGTABLE_WALK_TABLE_POST);
  124. }
  125. out:
  126. return ret;
  127. }
  128. static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data,
  129. kvm_pte_t *pgtable, u32 level)
  130. {
  131. u32 idx;
  132. int ret = 0;
  133. if (WARN_ON_ONCE(level >= KVM_PGTABLE_MAX_LEVELS))
  134. return -EINVAL;
  135. for (idx = kvm_pgtable_idx(data, level); idx < PTRS_PER_PTE; ++idx) {
  136. kvm_pte_t *ptep = &pgtable[idx];
  137. if (data->addr >= data->end)
  138. break;
  139. ret = __kvm_pgtable_visit(data, ptep, level);
  140. if (ret)
  141. break;
  142. }
  143. return ret;
  144. }
  145. static int _kvm_pgtable_walk(struct kvm_pgtable_walk_data *data)
  146. {
  147. u32 idx;
  148. int ret = 0;
  149. struct kvm_pgtable *pgt = data->pgt;
  150. u64 limit = BIT(pgt->ia_bits);
  151. if (data->addr > limit || data->end > limit)
  152. return -ERANGE;
  153. if (!pgt->pgd)
  154. return -EINVAL;
  155. for (idx = kvm_pgd_page_idx(data); data->addr < data->end; ++idx) {
  156. kvm_pte_t *ptep = &pgt->pgd[idx * PTRS_PER_PTE];
  157. ret = __kvm_pgtable_walk(data, ptep, pgt->start_level);
  158. if (ret)
  159. break;
  160. }
  161. return ret;
  162. }
  163. int kvm_pgtable_walk(struct kvm_pgtable *pgt, u64 addr, u64 size,
  164. struct kvm_pgtable_walker *walker)
  165. {
  166. struct kvm_pgtable_walk_data walk_data = {
  167. .pgt = pgt,
  168. .addr = ALIGN_DOWN(addr, PAGE_SIZE),
  169. .end = PAGE_ALIGN(walk_data.addr + size),
  170. .walker = walker,
  171. };
  172. return _kvm_pgtable_walk(&walk_data);
  173. }
  174. struct leaf_walk_data {
  175. kvm_pte_t pte;
  176. u32 level;
  177. };
  178. static int leaf_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
  179. enum kvm_pgtable_walk_flags flag, void * const arg)
  180. {
  181. struct leaf_walk_data *data = arg;
  182. data->pte = *ptep;
  183. data->level = level;
  184. return 0;
  185. }
  186. int kvm_pgtable_get_leaf(struct kvm_pgtable *pgt, u64 addr,
  187. kvm_pte_t *ptep, u32 *level)
  188. {
  189. struct leaf_walk_data data;
  190. struct kvm_pgtable_walker walker = {
  191. .cb = leaf_walker,
  192. .flags = KVM_PGTABLE_WALK_LEAF,
  193. .arg = &data,
  194. };
  195. int ret;
  196. ret = kvm_pgtable_walk(pgt, ALIGN_DOWN(addr, PAGE_SIZE),
  197. PAGE_SIZE, &walker);
  198. if (!ret) {
  199. if (ptep)
  200. *ptep = data.pte;
  201. if (level)
  202. *level = data.level;
  203. }
  204. return ret;
  205. }
  206. struct hyp_map_data {
  207. u64 phys;
  208. kvm_pte_t attr;
  209. struct kvm_pgtable_mm_ops *mm_ops;
  210. };
  211. static int hyp_set_prot_attr(enum kvm_pgtable_prot prot, kvm_pte_t *ptep)
  212. {
  213. u32 ap = (prot & KVM_PGTABLE_PROT_W) ? KVM_PTE_LEAF_ATTR_LO_S1_AP_RW :
  214. KVM_PTE_LEAF_ATTR_LO_S1_AP_RO;
  215. bool device = prot & KVM_PGTABLE_PROT_DEVICE;
  216. u32 sh = KVM_PTE_LEAF_ATTR_LO_S1_SH_IS;
  217. bool nc = prot & KVM_PGTABLE_PROT_NC;
  218. kvm_pte_t attr;
  219. u32 mtype;
  220. if (!(prot & KVM_PGTABLE_PROT_R) || (device && nc) ||
  221. (prot & (KVM_PGTABLE_PROT_PXN | KVM_PGTABLE_PROT_UXN)))
  222. return -EINVAL;
  223. if (device)
  224. mtype = MT_DEVICE_nGnRnE;
  225. else if (nc)
  226. mtype = MT_NORMAL_NC;
  227. else
  228. mtype = MT_NORMAL;
  229. attr = FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_ATTRIDX, mtype);
  230. if (prot & KVM_PGTABLE_PROT_X) {
  231. if (prot & KVM_PGTABLE_PROT_W)
  232. return -EINVAL;
  233. if (device)
  234. return -EINVAL;
  235. } else {
  236. attr |= KVM_PTE_LEAF_ATTR_HI_S1_XN;
  237. }
  238. attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_AP, ap);
  239. attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_SH, sh);
  240. attr |= KVM_PTE_LEAF_ATTR_LO_S1_AF;
  241. attr |= prot & KVM_PTE_LEAF_ATTR_HI_SW;
  242. *ptep = attr;
  243. return 0;
  244. }
  245. enum kvm_pgtable_prot kvm_pgtable_hyp_pte_prot(kvm_pte_t pte)
  246. {
  247. enum kvm_pgtable_prot prot = pte & KVM_PTE_LEAF_ATTR_HI_SW;
  248. u32 ap;
  249. if (!kvm_pte_valid(pte))
  250. return prot;
  251. if (!(pte & KVM_PTE_LEAF_ATTR_HI_S1_XN))
  252. prot |= KVM_PGTABLE_PROT_X;
  253. ap = FIELD_GET(KVM_PTE_LEAF_ATTR_LO_S1_AP, pte);
  254. if (ap == KVM_PTE_LEAF_ATTR_LO_S1_AP_RO)
  255. prot |= KVM_PGTABLE_PROT_R;
  256. else if (ap == KVM_PTE_LEAF_ATTR_LO_S1_AP_RW)
  257. prot |= KVM_PGTABLE_PROT_RW;
  258. return prot;
  259. }
  260. static bool hyp_map_walker_try_leaf(u64 addr, u64 end, u32 level,
  261. kvm_pte_t *ptep, struct hyp_map_data *data)
  262. {
  263. kvm_pte_t new, old = *ptep;
  264. u64 granule = kvm_granule_size(level), phys = data->phys;
  265. if (!kvm_block_mapping_supported(addr, end, phys, level))
  266. return false;
  267. data->phys += granule;
  268. new = kvm_init_valid_leaf_pte(phys, data->attr, level);
  269. if (old == new)
  270. return true;
  271. if (!kvm_pte_valid(old))
  272. data->mm_ops->get_page(ptep);
  273. else if (WARN_ON((old ^ new) & ~KVM_PTE_LEAF_ATTR_HI_SW))
  274. return false;
  275. smp_store_release(ptep, new);
  276. return true;
  277. }
  278. static int hyp_map_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
  279. enum kvm_pgtable_walk_flags flag, void * const arg)
  280. {
  281. kvm_pte_t *childp;
  282. struct hyp_map_data *data = arg;
  283. struct kvm_pgtable_mm_ops *mm_ops = data->mm_ops;
  284. if (hyp_map_walker_try_leaf(addr, end, level, ptep, arg))
  285. return 0;
  286. if (WARN_ON(level == KVM_PGTABLE_MAX_LEVELS - 1))
  287. return -EINVAL;
  288. childp = (kvm_pte_t *)mm_ops->zalloc_page(NULL);
  289. if (!childp)
  290. return -ENOMEM;
  291. kvm_set_table_pte(ptep, childp, mm_ops);
  292. mm_ops->get_page(ptep);
  293. return 0;
  294. }
  295. int kvm_pgtable_hyp_map(struct kvm_pgtable *pgt, u64 addr, u64 size, u64 phys,
  296. enum kvm_pgtable_prot prot)
  297. {
  298. int ret;
  299. struct hyp_map_data map_data = {
  300. .phys = ALIGN_DOWN(phys, PAGE_SIZE),
  301. .mm_ops = pgt->mm_ops,
  302. };
  303. struct kvm_pgtable_walker walker = {
  304. .cb = hyp_map_walker,
  305. .flags = KVM_PGTABLE_WALK_LEAF,
  306. .arg = &map_data,
  307. };
  308. ret = hyp_set_prot_attr(prot, &map_data.attr);
  309. if (ret)
  310. return ret;
  311. ret = kvm_pgtable_walk(pgt, addr, size, &walker);
  312. dsb(ishst);
  313. isb();
  314. return ret;
  315. }
  316. struct hyp_unmap_data {
  317. u64 unmapped;
  318. struct kvm_pgtable_mm_ops *mm_ops;
  319. };
  320. static int hyp_unmap_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
  321. enum kvm_pgtable_walk_flags flag, void * const arg)
  322. {
  323. kvm_pte_t pte = *ptep, *childp = NULL;
  324. u64 granule = kvm_granule_size(level);
  325. struct hyp_unmap_data *data = arg;
  326. struct kvm_pgtable_mm_ops *mm_ops = data->mm_ops;
  327. if (!kvm_pte_valid(pte))
  328. return -EINVAL;
  329. if (kvm_pte_table(pte, level)) {
  330. childp = kvm_pte_follow(pte, mm_ops);
  331. if (mm_ops->page_count(childp) != 1)
  332. return 0;
  333. kvm_clear_pte(ptep);
  334. dsb(ishst);
  335. __tlbi_level(vae2is, __TLBI_VADDR(addr, 0), level);
  336. } else {
  337. if (end - addr < granule)
  338. return -EINVAL;
  339. kvm_clear_pte(ptep);
  340. dsb(ishst);
  341. __tlbi_level(vale2is, __TLBI_VADDR(addr, 0), level);
  342. data->unmapped += granule;
  343. }
  344. dsb(ish);
  345. isb();
  346. mm_ops->put_page(ptep);
  347. if (childp)
  348. mm_ops->put_page(childp);
  349. return 0;
  350. }
  351. u64 kvm_pgtable_hyp_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size)
  352. {
  353. struct hyp_unmap_data unmap_data = {
  354. .mm_ops = pgt->mm_ops,
  355. };
  356. struct kvm_pgtable_walker walker = {
  357. .cb = hyp_unmap_walker,
  358. .arg = &unmap_data,
  359. .flags = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
  360. };
  361. if (!pgt->mm_ops->page_count)
  362. return 0;
  363. kvm_pgtable_walk(pgt, addr, size, &walker);
  364. return unmap_data.unmapped;
  365. }
  366. int kvm_pgtable_hyp_init(struct kvm_pgtable *pgt, u32 va_bits,
  367. struct kvm_pgtable_mm_ops *mm_ops)
  368. {
  369. u64 levels = ARM64_HW_PGTABLE_LEVELS(va_bits);
  370. pgt->pgd = (kvm_pte_t *)mm_ops->zalloc_page(NULL);
  371. if (!pgt->pgd)
  372. return -ENOMEM;
  373. pgt->ia_bits = va_bits;
  374. pgt->start_level = KVM_PGTABLE_MAX_LEVELS - levels;
  375. pgt->mm_ops = mm_ops;
  376. pgt->mmu = NULL;
  377. pgt->pte_ops = NULL;
  378. return 0;
  379. }
  380. static int hyp_free_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
  381. enum kvm_pgtable_walk_flags flag, void * const arg)
  382. {
  383. struct kvm_pgtable_mm_ops *mm_ops = arg;
  384. kvm_pte_t pte = *ptep;
  385. if (!kvm_pte_valid(pte))
  386. return 0;
  387. mm_ops->put_page(ptep);
  388. if (kvm_pte_table(pte, level))
  389. mm_ops->put_page(kvm_pte_follow(pte, mm_ops));
  390. return 0;
  391. }
  392. void kvm_pgtable_hyp_destroy(struct kvm_pgtable *pgt)
  393. {
  394. struct kvm_pgtable_walker walker = {
  395. .cb = hyp_free_walker,
  396. .flags = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
  397. .arg = pgt->mm_ops,
  398. };
  399. WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker));
  400. pgt->mm_ops->put_page(pgt->pgd);
  401. pgt->pgd = NULL;
  402. }
  403. struct stage2_map_data {
  404. u64 phys;
  405. kvm_pte_t attr;
  406. u64 annotation;
  407. kvm_pte_t *anchor;
  408. kvm_pte_t *childp;
  409. struct kvm_s2_mmu *mmu;
  410. void *memcache;
  411. struct kvm_pgtable_mm_ops *mm_ops;
  412. /* Force mappings to page granularity */
  413. bool force_pte;
  414. };
  415. u64 kvm_get_vtcr(u64 mmfr0, u64 mmfr1, u32 phys_shift)
  416. {
  417. u64 vtcr = VTCR_EL2_FLAGS;
  418. u8 lvls;
  419. vtcr |= kvm_get_parange(mmfr0) << VTCR_EL2_PS_SHIFT;
  420. vtcr |= VTCR_EL2_T0SZ(phys_shift);
  421. /*
  422. * Use a minimum 2 level page table to prevent splitting
  423. * host PMD huge pages at stage2.
  424. */
  425. lvls = stage2_pgtable_levels(phys_shift);
  426. if (lvls < 2)
  427. lvls = 2;
  428. vtcr |= VTCR_EL2_LVLS_TO_SL0(lvls);
  429. #ifdef CONFIG_ARM64_HW_AFDBM
  430. /*
  431. * Enable the Hardware Access Flag management, unconditionally
  432. * on all CPUs. The features is RES0 on CPUs without the support
  433. * and must be ignored by the CPUs.
  434. */
  435. vtcr |= VTCR_EL2_HA;
  436. #endif /* CONFIG_ARM64_HW_AFDBM */
  437. /* Set the vmid bits */
  438. vtcr |= (get_vmid_bits(mmfr1) == 16) ?
  439. VTCR_EL2_VS_16BIT :
  440. VTCR_EL2_VS_8BIT;
  441. return vtcr;
  442. }
  443. static bool stage2_has_fwb(struct kvm_pgtable *pgt)
  444. {
  445. if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
  446. return false;
  447. return !(pgt->flags & KVM_PGTABLE_S2_NOFWB);
  448. }
  449. #define KVM_S2_MEMATTR(pgt, attr) PAGE_S2_MEMATTR(attr, stage2_has_fwb(pgt))
  450. static int stage2_set_prot_attr(struct kvm_pgtable *pgt, enum kvm_pgtable_prot prot,
  451. kvm_pte_t *ptep)
  452. {
  453. u64 exec_type = KVM_PTE_LEAF_ATTR_HI_S2_XN_XN;
  454. bool device = prot & KVM_PGTABLE_PROT_DEVICE;
  455. u32 sh = KVM_PTE_LEAF_ATTR_LO_S2_SH_IS;
  456. bool nc = prot & KVM_PGTABLE_PROT_NC;
  457. enum kvm_pgtable_prot exec_prot;
  458. kvm_pte_t attr;
  459. if (device)
  460. attr = KVM_S2_MEMATTR(pgt, DEVICE_nGnRE);
  461. else if (nc)
  462. attr = KVM_S2_MEMATTR(pgt, NORMAL_NC);
  463. else
  464. attr = KVM_S2_MEMATTR(pgt, NORMAL);
  465. exec_prot = prot & (KVM_PGTABLE_PROT_X | KVM_PGTABLE_PROT_PXN | KVM_PGTABLE_PROT_UXN);
  466. switch(exec_prot) {
  467. case KVM_PGTABLE_PROT_X:
  468. goto set_ap;
  469. case KVM_PGTABLE_PROT_PXN:
  470. exec_type = KVM_PTE_LEAF_ATTR_HI_S2_XN_PXN;
  471. break;
  472. case KVM_PGTABLE_PROT_UXN:
  473. exec_type = KVM_PTE_LEAF_ATTR_HI_S2_XN_UXN;
  474. break;
  475. default:
  476. if (exec_prot)
  477. return -EINVAL;
  478. }
  479. attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_HI_S2_XN, exec_type);
  480. set_ap:
  481. if (prot & KVM_PGTABLE_PROT_R)
  482. attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R;
  483. if (prot & KVM_PGTABLE_PROT_W)
  484. attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W;
  485. attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S2_SH, sh);
  486. attr |= KVM_PTE_LEAF_ATTR_LO_S2_AF;
  487. attr |= prot & KVM_PTE_LEAF_ATTR_HI_SW;
  488. *ptep = attr;
  489. return 0;
  490. }
  491. enum kvm_pgtable_prot kvm_pgtable_stage2_pte_prot(kvm_pte_t pte)
  492. {
  493. enum kvm_pgtable_prot prot = pte & KVM_PTE_LEAF_ATTR_HI_SW;
  494. if (!kvm_pte_valid(pte))
  495. return prot;
  496. if (pte & KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R)
  497. prot |= KVM_PGTABLE_PROT_R;
  498. if (pte & KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W)
  499. prot |= KVM_PGTABLE_PROT_W;
  500. switch(FIELD_GET(KVM_PTE_LEAF_ATTR_HI_S2_XN, pte)) {
  501. case 0:
  502. prot |= KVM_PGTABLE_PROT_X;
  503. break;
  504. case KVM_PTE_LEAF_ATTR_HI_S2_XN_PXN:
  505. prot |= KVM_PGTABLE_PROT_PXN;
  506. break;
  507. case KVM_PTE_LEAF_ATTR_HI_S2_XN_UXN:
  508. prot |= KVM_PGTABLE_PROT_UXN;
  509. break;
  510. case KVM_PTE_LEAF_ATTR_HI_S2_XN_XN:
  511. break;
  512. default:
  513. WARN_ON(1);
  514. }
  515. return prot;
  516. }
  517. static bool stage2_pte_needs_update(struct kvm_pgtable *pgt,
  518. kvm_pte_t old, kvm_pte_t new)
  519. {
  520. /* Following filter logic applies only to guest stage-2 entries. */
  521. if (pgt->flags & KVM_PGTABLE_S2_IDMAP)
  522. return true;
  523. if (!kvm_pte_valid(old) || !kvm_pte_valid(new))
  524. return true;
  525. return ((old ^ new) & (~KVM_PTE_LEAF_ATTR_S2_PERMS));
  526. }
  527. static void stage2_clear_pte(kvm_pte_t *ptep, struct kvm_s2_mmu *mmu, u64 addr,
  528. u32 level)
  529. {
  530. if (!kvm_pte_valid(*ptep))
  531. return;
  532. kvm_clear_pte(ptep);
  533. kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu, addr, level);
  534. }
  535. static void stage2_put_pte(kvm_pte_t *ptep, struct kvm_s2_mmu *mmu, u64 addr,
  536. u32 level, struct kvm_pgtable_mm_ops *mm_ops)
  537. {
  538. /*
  539. * Clear the existing PTE, and perform break-before-make with
  540. * TLB maintenance if it was valid.
  541. */
  542. stage2_clear_pte(ptep, mmu, addr, level);
  543. mm_ops->put_page(ptep);
  544. }
  545. static bool stage2_pte_cacheable(struct kvm_pgtable *pgt, kvm_pte_t pte)
  546. {
  547. u64 memattr = pte & KVM_PTE_LEAF_ATTR_LO_S2_MEMATTR;
  548. return kvm_pte_valid(pte) && memattr == KVM_S2_MEMATTR(pgt, NORMAL);
  549. }
  550. static bool stage2_pte_executable(kvm_pte_t pte)
  551. {
  552. kvm_pte_t xn = FIELD_GET(KVM_PTE_LEAF_ATTR_HI_S2_XN, pte);
  553. return kvm_pte_valid(pte) && xn != KVM_PTE_LEAF_ATTR_HI_S2_XN_XN;
  554. }
  555. static bool stage2_leaf_mapping_allowed(u64 addr, u64 end, u32 level,
  556. struct stage2_map_data *data)
  557. {
  558. if (data->force_pte && (level < (KVM_PGTABLE_MAX_LEVELS - 1)))
  559. return false;
  560. return kvm_block_mapping_supported(addr, end, data->phys, level);
  561. }
  562. static int stage2_map_walker_try_leaf(u64 addr, u64 end, u32 level,
  563. kvm_pte_t *ptep,
  564. struct stage2_map_data *data)
  565. {
  566. kvm_pte_t new, old = *ptep;
  567. u64 granule = kvm_granule_size(level), phys = data->phys;
  568. struct kvm_pgtable *pgt = data->mmu->pgt;
  569. struct kvm_pgtable_pte_ops *pte_ops = pgt->pte_ops;
  570. struct kvm_pgtable_mm_ops *mm_ops = data->mm_ops;
  571. if (!stage2_leaf_mapping_allowed(addr, end, level, data))
  572. return -E2BIG;
  573. if (kvm_phys_is_valid(phys))
  574. new = kvm_init_valid_leaf_pte(phys, data->attr, level);
  575. else
  576. new = data->annotation;
  577. /*
  578. * Skip updating a guest PTE if we are trying to recreate the exact
  579. * same mapping or change only the access permissions. Instead,
  580. * the vCPU will exit one more time from the guest if still needed
  581. * and then go through the path of relaxing permissions. This applies
  582. * only to guest PTEs; Host PTEs are unconditionally updated. The
  583. * host cannot livelock because the abort handler has done prior
  584. * checks before calling here.
  585. */
  586. if (!stage2_pte_needs_update(pgt, old, new))
  587. return -EAGAIN;
  588. if (pte_ops->pte_is_counted_cb(old, level))
  589. mm_ops->put_page(ptep);
  590. /*
  591. * If we're only changing software bits, then we don't need to
  592. * do anything else.
  593. */
  594. if (!((old ^ new) & ~KVM_PTE_LEAF_ATTR_HI_SW))
  595. goto out_set_pte;
  596. stage2_clear_pte(ptep, data->mmu, addr, level);
  597. /* Perform CMOs before installation of the guest stage-2 PTE */
  598. if (mm_ops->dcache_clean_inval_poc && stage2_pte_cacheable(pgt, new))
  599. mm_ops->dcache_clean_inval_poc(kvm_pte_follow(new, mm_ops),
  600. granule);
  601. if (mm_ops->icache_inval_pou && stage2_pte_executable(new))
  602. mm_ops->icache_inval_pou(kvm_pte_follow(new, mm_ops), granule);
  603. out_set_pte:
  604. if (pte_ops->pte_is_counted_cb(new, level))
  605. mm_ops->get_page(ptep);
  606. smp_store_release(ptep, new);
  607. if (kvm_phys_is_valid(phys))
  608. data->phys += granule;
  609. return 0;
  610. }
  611. static int stage2_map_walk_table_pre(u64 addr, u64 end, u32 level,
  612. kvm_pte_t *ptep,
  613. struct stage2_map_data *data)
  614. {
  615. if (data->anchor)
  616. return 0;
  617. if (!stage2_leaf_mapping_allowed(addr, end, level, data))
  618. return 0;
  619. data->childp = kvm_pte_follow(*ptep, data->mm_ops);
  620. kvm_clear_pte(ptep);
  621. /*
  622. * Invalidate the whole stage-2, as we may have numerous leaf
  623. * entries below us which would otherwise need invalidating
  624. * individually.
  625. */
  626. kvm_call_hyp(__kvm_tlb_flush_vmid, data->mmu);
  627. data->anchor = ptep;
  628. return 0;
  629. }
  630. static void stage2_map_prefault_idmap(struct kvm_pgtable_pte_ops *pte_ops,
  631. u64 addr, u64 end, u32 level,
  632. kvm_pte_t *ptep, kvm_pte_t block_pte)
  633. {
  634. u64 pa, granule;
  635. int i;
  636. WARN_ON(pte_ops->pte_is_counted_cb(block_pte, level-1));
  637. if (!kvm_pte_valid(block_pte))
  638. return;
  639. pa = ALIGN_DOWN(addr, kvm_granule_size(level-1));
  640. granule = kvm_granule_size(level);
  641. for (i = 0; i < PTRS_PER_PTE; ++i, ++ptep, pa += granule) {
  642. kvm_pte_t pte = kvm_init_valid_leaf_pte(pa, block_pte, level);
  643. /* Skip ptes in the range being modified by the caller. */
  644. if ((pa < addr) || (pa >= end)) {
  645. /* We can write non-atomically: ptep isn't yet live. */
  646. *ptep = pte;
  647. }
  648. }
  649. }
  650. static int stage2_map_walk_leaf(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
  651. struct stage2_map_data *data)
  652. {
  653. struct kvm_pgtable_mm_ops *mm_ops = data->mm_ops;
  654. struct kvm_pgtable *pgt = data->mmu->pgt;
  655. struct kvm_pgtable_pte_ops *pte_ops = pgt->pte_ops;
  656. kvm_pte_t *childp, pte = *ptep;
  657. int ret;
  658. if (data->anchor) {
  659. if (pte_ops->pte_is_counted_cb(pte, level))
  660. mm_ops->put_page(ptep);
  661. return 0;
  662. }
  663. ret = stage2_map_walker_try_leaf(addr, end, level, ptep, data);
  664. if (ret != -E2BIG)
  665. return ret;
  666. if (WARN_ON(level == KVM_PGTABLE_MAX_LEVELS - 1))
  667. return -EINVAL;
  668. if (!data->memcache)
  669. return -ENOMEM;
  670. childp = mm_ops->zalloc_page(data->memcache);
  671. if (!childp)
  672. return -ENOMEM;
  673. if (pgt->flags & KVM_PGTABLE_S2_IDMAP) {
  674. stage2_map_prefault_idmap(pte_ops, addr, end, level + 1,
  675. childp, pte);
  676. }
  677. /*
  678. * If we've run into an existing block mapping then replace it with
  679. * a table. Accesses beyond 'end' that fall within the new table
  680. * will be mapped lazily.
  681. */
  682. if (pte_ops->pte_is_counted_cb(pte, level)) {
  683. stage2_put_pte(ptep, data->mmu, addr, level, mm_ops);
  684. } else {
  685. /*
  686. * On non-refcounted PTEs we just clear them out without
  687. * dropping the refcount.
  688. */
  689. stage2_clear_pte(ptep, data->mmu, addr, level);
  690. }
  691. kvm_set_table_pte(ptep, childp, mm_ops);
  692. mm_ops->get_page(ptep);
  693. return 0;
  694. }
  695. static void stage2_coalesce_walk_table_post(u64 addr, u64 end, u32 level,
  696. kvm_pte_t *ptep,
  697. struct stage2_map_data *data)
  698. {
  699. struct kvm_pgtable_mm_ops *mm_ops = data->mm_ops;
  700. kvm_pte_t *childp = kvm_pte_follow(*ptep, mm_ops);
  701. /*
  702. * Decrement the refcount only on the set ownership path to avoid a
  703. * loop situation when the following happens:
  704. * 1. We take a host stage2 fault and we create a small mapping which
  705. * has default attributes (is not refcounted).
  706. * 2. On the way back we execute the post handler and we zap the
  707. * table that holds our mapping.
  708. */
  709. if (kvm_phys_is_valid(data->phys) ||
  710. !kvm_level_supports_block_mapping(level))
  711. return;
  712. /*
  713. * Free a page that is not referenced anymore and drop the reference
  714. * of the page table page.
  715. */
  716. if (mm_ops->page_count(childp) == 1) {
  717. stage2_put_pte(ptep, data->mmu, addr, level, mm_ops);
  718. mm_ops->put_page(childp);
  719. }
  720. }
  721. static int stage2_map_walk_table_post(u64 addr, u64 end, u32 level,
  722. kvm_pte_t *ptep,
  723. struct stage2_map_data *data)
  724. {
  725. struct kvm_pgtable_mm_ops *mm_ops = data->mm_ops;
  726. kvm_pte_t *childp;
  727. int ret = 0;
  728. if (!data->anchor) {
  729. stage2_coalesce_walk_table_post(addr, end, level, ptep,
  730. data);
  731. return 0;
  732. }
  733. if (data->anchor == ptep) {
  734. childp = data->childp;
  735. data->anchor = NULL;
  736. data->childp = NULL;
  737. ret = stage2_map_walk_leaf(addr, end, level, ptep, data);
  738. } else {
  739. childp = kvm_pte_follow(*ptep, mm_ops);
  740. }
  741. mm_ops->put_page(childp);
  742. mm_ops->put_page(ptep);
  743. return ret;
  744. }
  745. /*
  746. * This is a little fiddly, as we use all three of the walk flags. The idea
  747. * is that the TABLE_PRE callback runs for table entries on the way down,
  748. * looking for table entries which we could conceivably replace with a
  749. * block entry for this mapping. If it finds one, then it sets the 'anchor'
  750. * field in 'struct stage2_map_data' to point at the table entry, before
  751. * clearing the entry to zero and descending into the now detached table.
  752. *
  753. * The behaviour of the LEAF callback then depends on whether or not the
  754. * anchor has been set. If not, then we're not using a block mapping higher
  755. * up the table and we perform the mapping at the existing leaves instead.
  756. * If, on the other hand, the anchor _is_ set, then we drop references to
  757. * all valid leaves so that the pages beneath the anchor can be freed.
  758. *
  759. * Finally, the TABLE_POST callback does nothing if the anchor has not
  760. * been set, but otherwise frees the page-table pages while walking back up
  761. * the page-table, installing the block entry when it revisits the anchor
  762. * pointer and clearing the anchor to NULL.
  763. */
  764. static int stage2_map_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
  765. enum kvm_pgtable_walk_flags flag, void * const arg)
  766. {
  767. struct stage2_map_data *data = arg;
  768. switch (flag) {
  769. case KVM_PGTABLE_WALK_TABLE_PRE:
  770. return stage2_map_walk_table_pre(addr, end, level, ptep, data);
  771. case KVM_PGTABLE_WALK_LEAF:
  772. return stage2_map_walk_leaf(addr, end, level, ptep, data);
  773. case KVM_PGTABLE_WALK_TABLE_POST:
  774. return stage2_map_walk_table_post(addr, end, level, ptep, data);
  775. }
  776. return -EINVAL;
  777. }
  778. int kvm_pgtable_stage2_map(struct kvm_pgtable *pgt, u64 addr, u64 size,
  779. u64 phys, enum kvm_pgtable_prot prot,
  780. void *mc)
  781. {
  782. int ret;
  783. struct kvm_pgtable_pte_ops *pte_ops = pgt->pte_ops;
  784. struct stage2_map_data map_data = {
  785. .phys = ALIGN_DOWN(phys, PAGE_SIZE),
  786. .mmu = pgt->mmu,
  787. .memcache = mc,
  788. .mm_ops = pgt->mm_ops,
  789. };
  790. struct kvm_pgtable_walker walker = {
  791. .cb = stage2_map_walker,
  792. .flags = KVM_PGTABLE_WALK_TABLE_PRE |
  793. KVM_PGTABLE_WALK_LEAF |
  794. KVM_PGTABLE_WALK_TABLE_POST,
  795. .arg = &map_data,
  796. };
  797. if (pte_ops->force_pte_cb)
  798. map_data.force_pte = pte_ops->force_pte_cb(addr, addr + size, prot);
  799. if (WARN_ON((pgt->flags & KVM_PGTABLE_S2_IDMAP) && (addr != phys)))
  800. return -EINVAL;
  801. ret = stage2_set_prot_attr(pgt, prot, &map_data.attr);
  802. if (ret)
  803. return ret;
  804. ret = kvm_pgtable_walk(pgt, addr, size, &walker);
  805. dsb(ishst);
  806. return ret;
  807. }
  808. int kvm_pgtable_stage2_annotate(struct kvm_pgtable *pgt, u64 addr, u64 size,
  809. void *mc, kvm_pte_t annotation)
  810. {
  811. int ret;
  812. struct stage2_map_data map_data = {
  813. .phys = KVM_PHYS_INVALID,
  814. .mmu = pgt->mmu,
  815. .memcache = mc,
  816. .mm_ops = pgt->mm_ops,
  817. .force_pte = true,
  818. .annotation = annotation,
  819. };
  820. struct kvm_pgtable_walker walker = {
  821. .cb = stage2_map_walker,
  822. .flags = KVM_PGTABLE_WALK_TABLE_PRE |
  823. KVM_PGTABLE_WALK_LEAF |
  824. KVM_PGTABLE_WALK_TABLE_POST,
  825. .arg = &map_data,
  826. };
  827. if (annotation & PTE_VALID)
  828. return -EINVAL;
  829. ret = kvm_pgtable_walk(pgt, addr, size, &walker);
  830. return ret;
  831. }
  832. static int stage2_unmap_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
  833. enum kvm_pgtable_walk_flags flag,
  834. void * const arg)
  835. {
  836. struct kvm_pgtable *pgt = arg;
  837. struct kvm_s2_mmu *mmu = pgt->mmu;
  838. struct kvm_pgtable_mm_ops *mm_ops = pgt->mm_ops;
  839. struct kvm_pgtable_pte_ops *pte_ops = pgt->pte_ops;
  840. kvm_pte_t pte = *ptep, *childp = NULL;
  841. bool need_flush = false;
  842. if (!kvm_pte_valid(pte)) {
  843. if (pte_ops->pte_is_counted_cb(pte, level)) {
  844. kvm_clear_pte(ptep);
  845. mm_ops->put_page(ptep);
  846. }
  847. return 0;
  848. }
  849. if (kvm_pte_table(pte, level)) {
  850. childp = kvm_pte_follow(pte, mm_ops);
  851. if (mm_ops->page_count(childp) != 1)
  852. return 0;
  853. } else if (stage2_pte_cacheable(pgt, pte)) {
  854. need_flush = !stage2_has_fwb(pgt);
  855. }
  856. /*
  857. * This is similar to the map() path in that we unmap the entire
  858. * block entry and rely on the remaining portions being faulted
  859. * back lazily.
  860. */
  861. if (pte_ops->pte_is_counted_cb(pte, level))
  862. stage2_put_pte(ptep, mmu, addr, level, mm_ops);
  863. else
  864. stage2_clear_pte(ptep, mmu, addr, level);
  865. if (need_flush && mm_ops->dcache_clean_inval_poc)
  866. mm_ops->dcache_clean_inval_poc(kvm_pte_follow(pte, mm_ops),
  867. kvm_granule_size(level));
  868. if (childp)
  869. mm_ops->put_page(childp);
  870. return 0;
  871. }
  872. int kvm_pgtable_stage2_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size)
  873. {
  874. struct kvm_pgtable_walker walker = {
  875. .cb = stage2_unmap_walker,
  876. .arg = pgt,
  877. .flags = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
  878. };
  879. return kvm_pgtable_walk(pgt, addr, size, &walker);
  880. }
  881. static int stage2_reclaim_leaf_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
  882. enum kvm_pgtable_walk_flags flag, void * const arg)
  883. {
  884. stage2_coalesce_walk_table_post(addr, end, level, ptep, arg);
  885. return 0;
  886. }
  887. int kvm_pgtable_stage2_reclaim_leaves(struct kvm_pgtable *pgt, u64 addr, u64 size)
  888. {
  889. struct stage2_map_data map_data = {
  890. .phys = KVM_PHYS_INVALID,
  891. .mmu = pgt->mmu,
  892. .mm_ops = pgt->mm_ops,
  893. };
  894. struct kvm_pgtable_walker walker = {
  895. .cb = stage2_reclaim_leaf_walker,
  896. .arg = &map_data,
  897. .flags = KVM_PGTABLE_WALK_TABLE_POST,
  898. };
  899. return kvm_pgtable_walk(pgt, addr, size, &walker);
  900. }
  901. struct stage2_attr_data {
  902. kvm_pte_t attr_set;
  903. kvm_pte_t attr_clr;
  904. kvm_pte_t pte;
  905. u32 level;
  906. struct kvm_pgtable_mm_ops *mm_ops;
  907. };
  908. static int stage2_attr_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
  909. enum kvm_pgtable_walk_flags flag,
  910. void * const arg)
  911. {
  912. kvm_pte_t pte = *ptep;
  913. struct stage2_attr_data *data = arg;
  914. struct kvm_pgtable_mm_ops *mm_ops = data->mm_ops;
  915. if (!kvm_pte_valid(pte))
  916. return 0;
  917. data->level = level;
  918. data->pte = pte;
  919. pte &= ~data->attr_clr;
  920. pte |= data->attr_set;
  921. /*
  922. * We may race with the CPU trying to set the access flag here,
  923. * but worst-case the access flag update gets lost and will be
  924. * set on the next access instead.
  925. */
  926. if (data->pte != pte) {
  927. /*
  928. * Invalidate instruction cache before updating the guest
  929. * stage-2 PTE if we are going to add executable permission.
  930. */
  931. if (mm_ops->icache_inval_pou &&
  932. stage2_pte_executable(pte) && !stage2_pte_executable(*ptep))
  933. mm_ops->icache_inval_pou(kvm_pte_follow(pte, mm_ops),
  934. kvm_granule_size(level));
  935. WRITE_ONCE(*ptep, pte);
  936. }
  937. return 0;
  938. }
  939. static int stage2_update_leaf_attrs(struct kvm_pgtable *pgt, u64 addr,
  940. u64 size, kvm_pte_t attr_set,
  941. kvm_pte_t attr_clr, kvm_pte_t *orig_pte,
  942. u32 *level)
  943. {
  944. int ret;
  945. kvm_pte_t attr_mask = KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI;
  946. struct stage2_attr_data data = {
  947. .attr_set = attr_set & attr_mask,
  948. .attr_clr = attr_clr & attr_mask,
  949. .mm_ops = pgt->mm_ops,
  950. };
  951. struct kvm_pgtable_walker walker = {
  952. .cb = stage2_attr_walker,
  953. .arg = &data,
  954. .flags = KVM_PGTABLE_WALK_LEAF,
  955. };
  956. ret = kvm_pgtable_walk(pgt, addr, size, &walker);
  957. if (ret)
  958. return ret;
  959. if (orig_pte)
  960. *orig_pte = data.pte;
  961. if (level)
  962. *level = data.level;
  963. return 0;
  964. }
  965. int kvm_pgtable_stage2_wrprotect(struct kvm_pgtable *pgt, u64 addr, u64 size)
  966. {
  967. return stage2_update_leaf_attrs(pgt, addr, size, 0,
  968. KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W,
  969. NULL, NULL);
  970. }
  971. kvm_pte_t kvm_pgtable_stage2_mkyoung(struct kvm_pgtable *pgt, u64 addr)
  972. {
  973. kvm_pte_t pte = 0;
  974. stage2_update_leaf_attrs(pgt, addr, 1, KVM_PTE_LEAF_ATTR_LO_S2_AF, 0,
  975. &pte, NULL);
  976. dsb(ishst);
  977. return pte;
  978. }
  979. kvm_pte_t kvm_pgtable_stage2_mkold(struct kvm_pgtable *pgt, u64 addr)
  980. {
  981. kvm_pte_t pte = 0;
  982. stage2_update_leaf_attrs(pgt, addr, 1, 0, KVM_PTE_LEAF_ATTR_LO_S2_AF,
  983. &pte, NULL);
  984. /*
  985. * "But where's the TLBI?!", you scream.
  986. * "Over in the core code", I sigh.
  987. *
  988. * See the '->clear_flush_young()' callback on the KVM mmu notifier.
  989. */
  990. return pte;
  991. }
  992. bool kvm_pgtable_stage2_is_young(struct kvm_pgtable *pgt, u64 addr)
  993. {
  994. kvm_pte_t pte = 0;
  995. stage2_update_leaf_attrs(pgt, addr, 1, 0, 0, &pte, NULL);
  996. return pte & KVM_PTE_LEAF_ATTR_LO_S2_AF;
  997. }
  998. int kvm_pgtable_stage2_relax_perms(struct kvm_pgtable *pgt, u64 addr,
  999. enum kvm_pgtable_prot prot)
  1000. {
  1001. int ret;
  1002. u32 level;
  1003. kvm_pte_t set = 0, clr = 0;
  1004. if (prot & !KVM_PGTABLE_PROT_RWX)
  1005. return -EINVAL;
  1006. if (prot & KVM_PGTABLE_PROT_R)
  1007. set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R;
  1008. if (prot & KVM_PGTABLE_PROT_W)
  1009. set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W;
  1010. if (prot & KVM_PGTABLE_PROT_X)
  1011. clr |= KVM_PTE_LEAF_ATTR_HI_S2_XN;
  1012. ret = stage2_update_leaf_attrs(pgt, addr, 1, set, clr, NULL, &level);
  1013. if (!ret)
  1014. kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, pgt->mmu, addr, level);
  1015. return ret;
  1016. }
  1017. static int stage2_flush_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
  1018. enum kvm_pgtable_walk_flags flag,
  1019. void * const arg)
  1020. {
  1021. struct kvm_pgtable *pgt = arg;
  1022. struct kvm_pgtable_mm_ops *mm_ops = pgt->mm_ops;
  1023. kvm_pte_t pte = *ptep;
  1024. if (!stage2_pte_cacheable(pgt, pte))
  1025. return 0;
  1026. if (mm_ops->dcache_clean_inval_poc)
  1027. mm_ops->dcache_clean_inval_poc(kvm_pte_follow(pte, mm_ops),
  1028. kvm_granule_size(level));
  1029. return 0;
  1030. }
  1031. int kvm_pgtable_stage2_flush(struct kvm_pgtable *pgt, u64 addr, u64 size)
  1032. {
  1033. struct kvm_pgtable_walker walker = {
  1034. .cb = stage2_flush_walker,
  1035. .flags = KVM_PGTABLE_WALK_LEAF,
  1036. .arg = pgt,
  1037. };
  1038. if (stage2_has_fwb(pgt))
  1039. return 0;
  1040. return kvm_pgtable_walk(pgt, addr, size, &walker);
  1041. }
  1042. int __kvm_pgtable_stage2_init(struct kvm_pgtable *pgt, struct kvm_s2_mmu *mmu,
  1043. struct kvm_pgtable_mm_ops *mm_ops,
  1044. enum kvm_pgtable_stage2_flags flags,
  1045. struct kvm_pgtable_pte_ops *pte_ops)
  1046. {
  1047. size_t pgd_sz;
  1048. u64 vtcr = mmu->arch->vtcr;
  1049. u32 ia_bits = VTCR_EL2_IPA(vtcr);
  1050. u32 sl0 = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr);
  1051. u32 start_level = VTCR_EL2_TGRAN_SL0_BASE - sl0;
  1052. pgd_sz = kvm_pgd_pages(ia_bits, start_level) * PAGE_SIZE;
  1053. pgt->pgd = mm_ops->zalloc_pages_exact(pgd_sz);
  1054. if (!pgt->pgd)
  1055. return -ENOMEM;
  1056. pgt->ia_bits = ia_bits;
  1057. pgt->start_level = start_level;
  1058. pgt->mm_ops = mm_ops;
  1059. pgt->mmu = mmu;
  1060. pgt->flags = flags;
  1061. pgt->pte_ops = pte_ops;
  1062. /* Ensure zeroed PGD pages are visible to the hardware walker */
  1063. dsb(ishst);
  1064. return 0;
  1065. }
  1066. size_t kvm_pgtable_stage2_pgd_size(u64 vtcr)
  1067. {
  1068. u32 ia_bits = VTCR_EL2_IPA(vtcr);
  1069. u32 sl0 = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr);
  1070. u32 start_level = VTCR_EL2_TGRAN_SL0_BASE - sl0;
  1071. return kvm_pgd_pages(ia_bits, start_level) * PAGE_SIZE;
  1072. }
  1073. static int stage2_free_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
  1074. enum kvm_pgtable_walk_flags flag,
  1075. void * const arg)
  1076. {
  1077. struct kvm_pgtable *pgt = arg;
  1078. struct kvm_pgtable_mm_ops *mm_ops = pgt->mm_ops;
  1079. struct kvm_pgtable_pte_ops *pte_ops = pgt->pte_ops;
  1080. kvm_pte_t pte = *ptep;
  1081. if (!pte_ops->pte_is_counted_cb(pte, level))
  1082. return 0;
  1083. mm_ops->put_page(ptep);
  1084. if (kvm_pte_table(pte, level))
  1085. mm_ops->put_page(kvm_pte_follow(pte, mm_ops));
  1086. return 0;
  1087. }
  1088. void kvm_pgtable_stage2_destroy(struct kvm_pgtable *pgt)
  1089. {
  1090. size_t pgd_sz;
  1091. struct kvm_pgtable_walker walker = {
  1092. .cb = stage2_free_walker,
  1093. .flags = KVM_PGTABLE_WALK_LEAF |
  1094. KVM_PGTABLE_WALK_TABLE_POST,
  1095. .arg = pgt,
  1096. };
  1097. WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker));
  1098. pgd_sz = kvm_pgd_pages(pgt->ia_bits, pgt->start_level) * PAGE_SIZE;
  1099. pgt->mm_ops->free_pages_exact(pgt->pgd, pgd_sz);
  1100. pgt->pgd = NULL;
  1101. }