setup.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Based on arch/arm/kernel/setup.c
  4. *
  5. * Copyright (C) 1995-2001 Russell King
  6. * Copyright (C) 2012 ARM Ltd.
  7. */
  8. #include <linux/acpi.h>
  9. #include <linux/export.h>
  10. #include <linux/kernel.h>
  11. #include <linux/stddef.h>
  12. #include <linux/ioport.h>
  13. #include <linux/delay.h>
  14. #include <linux/initrd.h>
  15. #include <linux/console.h>
  16. #include <linux/cache.h>
  17. #include <linux/screen_info.h>
  18. #include <linux/init.h>
  19. #include <linux/kexec.h>
  20. #include <linux/root_dev.h>
  21. #include <linux/cpu.h>
  22. #include <linux/interrupt.h>
  23. #include <linux/smp.h>
  24. #include <linux/fs.h>
  25. #include <linux/panic_notifier.h>
  26. #include <linux/proc_fs.h>
  27. #include <linux/memblock.h>
  28. #include <linux/of_fdt.h>
  29. #include <linux/efi.h>
  30. #include <linux/psci.h>
  31. #include <linux/sched/task.h>
  32. #include <linux/scs.h>
  33. #include <linux/mm.h>
  34. #include <asm/acpi.h>
  35. #include <asm/fixmap.h>
  36. #include <asm/cpu.h>
  37. #include <asm/cputype.h>
  38. #include <asm/daifflags.h>
  39. #include <asm/elf.h>
  40. #include <asm/cpufeature.h>
  41. #include <asm/cpu_ops.h>
  42. #include <asm/hypervisor.h>
  43. #include <asm/kasan.h>
  44. #include <asm/numa.h>
  45. #include <asm/scs.h>
  46. #include <asm/sections.h>
  47. #include <asm/setup.h>
  48. #include <asm/smp_plat.h>
  49. #include <asm/cacheflush.h>
  50. #include <asm/tlbflush.h>
  51. #include <asm/traps.h>
  52. #include <asm/efi.h>
  53. #include <asm/hypervisor.h>
  54. #include <asm/xen/hypervisor.h>
  55. #include <asm/mmu_context.h>
  56. static int num_standard_resources;
  57. static struct resource *standard_resources;
  58. struct hypervisor_ops hyp_ops;
  59. phys_addr_t __fdt_pointer __initdata;
  60. /*
  61. * Standard memory resources
  62. */
  63. static struct resource mem_res[] = {
  64. {
  65. .name = "Kernel code",
  66. .start = 0,
  67. .end = 0,
  68. .flags = IORESOURCE_SYSTEM_RAM
  69. },
  70. {
  71. .name = "Kernel data",
  72. .start = 0,
  73. .end = 0,
  74. .flags = IORESOURCE_SYSTEM_RAM
  75. }
  76. };
  77. #define kernel_code mem_res[0]
  78. #define kernel_data mem_res[1]
  79. /*
  80. * The recorded values of x0 .. x3 upon kernel entry.
  81. */
  82. u64 __cacheline_aligned boot_args[4];
  83. void __init smp_setup_processor_id(void)
  84. {
  85. u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
  86. set_cpu_logical_map(0, mpidr);
  87. pr_info("Booting Linux on physical CPU 0x%010lx [0x%08x]\n",
  88. (unsigned long)mpidr, read_cpuid_id());
  89. }
  90. bool arch_match_cpu_phys_id(int cpu, u64 phys_id)
  91. {
  92. return phys_id == cpu_logical_map(cpu);
  93. }
  94. struct mpidr_hash mpidr_hash;
  95. /**
  96. * smp_build_mpidr_hash - Pre-compute shifts required at each affinity
  97. * level in order to build a linear index from an
  98. * MPIDR value. Resulting algorithm is a collision
  99. * free hash carried out through shifting and ORing
  100. */
  101. static void __init smp_build_mpidr_hash(void)
  102. {
  103. u32 i, affinity, fs[4], bits[4], ls;
  104. u64 mask = 0;
  105. /*
  106. * Pre-scan the list of MPIDRS and filter out bits that do
  107. * not contribute to affinity levels, ie they never toggle.
  108. */
  109. for_each_possible_cpu(i)
  110. mask |= (cpu_logical_map(i) ^ cpu_logical_map(0));
  111. pr_debug("mask of set bits %#llx\n", mask);
  112. /*
  113. * Find and stash the last and first bit set at all affinity levels to
  114. * check how many bits are required to represent them.
  115. */
  116. for (i = 0; i < 4; i++) {
  117. affinity = MPIDR_AFFINITY_LEVEL(mask, i);
  118. /*
  119. * Find the MSB bit and LSB bits position
  120. * to determine how many bits are required
  121. * to express the affinity level.
  122. */
  123. ls = fls(affinity);
  124. fs[i] = affinity ? ffs(affinity) - 1 : 0;
  125. bits[i] = ls - fs[i];
  126. }
  127. /*
  128. * An index can be created from the MPIDR_EL1 by isolating the
  129. * significant bits at each affinity level and by shifting
  130. * them in order to compress the 32 bits values space to a
  131. * compressed set of values. This is equivalent to hashing
  132. * the MPIDR_EL1 through shifting and ORing. It is a collision free
  133. * hash though not minimal since some levels might contain a number
  134. * of CPUs that is not an exact power of 2 and their bit
  135. * representation might contain holes, eg MPIDR_EL1[7:0] = {0x2, 0x80}.
  136. */
  137. mpidr_hash.shift_aff[0] = MPIDR_LEVEL_SHIFT(0) + fs[0];
  138. mpidr_hash.shift_aff[1] = MPIDR_LEVEL_SHIFT(1) + fs[1] - bits[0];
  139. mpidr_hash.shift_aff[2] = MPIDR_LEVEL_SHIFT(2) + fs[2] -
  140. (bits[1] + bits[0]);
  141. mpidr_hash.shift_aff[3] = MPIDR_LEVEL_SHIFT(3) +
  142. fs[3] - (bits[2] + bits[1] + bits[0]);
  143. mpidr_hash.mask = mask;
  144. mpidr_hash.bits = bits[3] + bits[2] + bits[1] + bits[0];
  145. pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] aff3[%u] mask[%#llx] bits[%u]\n",
  146. mpidr_hash.shift_aff[0],
  147. mpidr_hash.shift_aff[1],
  148. mpidr_hash.shift_aff[2],
  149. mpidr_hash.shift_aff[3],
  150. mpidr_hash.mask,
  151. mpidr_hash.bits);
  152. /*
  153. * 4x is an arbitrary value used to warn on a hash table much bigger
  154. * than expected on most systems.
  155. */
  156. if (mpidr_hash_size() > 4 * num_possible_cpus())
  157. pr_warn("Large number of MPIDR hash buckets detected\n");
  158. }
  159. static void *early_fdt_ptr __initdata;
  160. void __init *get_early_fdt_ptr(void)
  161. {
  162. return early_fdt_ptr;
  163. }
  164. asmlinkage void __init early_fdt_map(u64 dt_phys)
  165. {
  166. int fdt_size;
  167. early_fixmap_init();
  168. early_fdt_ptr = fixmap_remap_fdt(dt_phys, &fdt_size, PAGE_KERNEL);
  169. }
  170. static void __init setup_machine_fdt(phys_addr_t dt_phys)
  171. {
  172. int size;
  173. void *dt_virt = fixmap_remap_fdt(dt_phys, &size, PAGE_KERNEL);
  174. const char *name;
  175. if (dt_virt)
  176. memblock_reserve(dt_phys, size);
  177. if (!dt_virt || !early_init_dt_scan(dt_virt)) {
  178. pr_crit("\n"
  179. "Error: invalid device tree blob at physical address %pa (virtual address 0x%px)\n"
  180. "The dtb must be 8-byte aligned and must not exceed 2 MB in size\n"
  181. "\nPlease check your bootloader.",
  182. &dt_phys, dt_virt);
  183. /*
  184. * Note that in this _really_ early stage we cannot even BUG()
  185. * or oops, so the least terrible thing to do is cpu_relax(),
  186. * or else we could end-up printing non-initialized data, etc.
  187. */
  188. while (true)
  189. cpu_relax();
  190. }
  191. /* Early fixups are done, map the FDT as read-only now */
  192. fixmap_remap_fdt(dt_phys, &size, PAGE_KERNEL_RO);
  193. name = of_flat_dt_get_machine_name();
  194. if (!name)
  195. return;
  196. pr_info("Machine model: %s\n", name);
  197. dump_stack_set_arch_desc("%s (DT)", name);
  198. }
  199. static void __init request_standard_resources(void)
  200. {
  201. struct memblock_region *region;
  202. struct resource *res;
  203. unsigned long i = 0;
  204. size_t res_size;
  205. kernel_code.start = __pa_symbol(_stext);
  206. kernel_code.end = __pa_symbol(__init_begin - 1);
  207. kernel_data.start = __pa_symbol(_sdata);
  208. kernel_data.end = __pa_symbol(_end - 1);
  209. insert_resource(&iomem_resource, &kernel_code);
  210. insert_resource(&iomem_resource, &kernel_data);
  211. num_standard_resources = memblock.memory.cnt;
  212. res_size = num_standard_resources * sizeof(*standard_resources);
  213. standard_resources = memblock_alloc(res_size, SMP_CACHE_BYTES);
  214. if (!standard_resources)
  215. panic("%s: Failed to allocate %zu bytes\n", __func__, res_size);
  216. for_each_mem_region(region) {
  217. res = &standard_resources[i++];
  218. if (memblock_is_nomap(region)) {
  219. res->name = "reserved";
  220. res->flags = IORESOURCE_MEM;
  221. res->start = __pfn_to_phys(memblock_region_reserved_base_pfn(region));
  222. res->end = __pfn_to_phys(memblock_region_reserved_end_pfn(region)) - 1;
  223. } else {
  224. res->name = "System RAM";
  225. res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
  226. res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
  227. res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
  228. }
  229. insert_resource(&iomem_resource, res);
  230. }
  231. }
  232. static int __init reserve_memblock_reserved_regions(void)
  233. {
  234. u64 i, j;
  235. for (i = 0; i < num_standard_resources; ++i) {
  236. struct resource *mem = &standard_resources[i];
  237. phys_addr_t r_start, r_end, mem_size = resource_size(mem);
  238. if (!memblock_is_region_reserved(mem->start, mem_size))
  239. continue;
  240. for_each_reserved_mem_range(j, &r_start, &r_end) {
  241. resource_size_t start, end;
  242. start = max(PFN_PHYS(PFN_DOWN(r_start)), mem->start);
  243. end = min(PFN_PHYS(PFN_UP(r_end)) - 1, mem->end);
  244. if (start > mem->end || end < mem->start)
  245. continue;
  246. reserve_region_with_split(mem, start, end, "reserved");
  247. }
  248. }
  249. return 0;
  250. }
  251. arch_initcall(reserve_memblock_reserved_regions);
  252. u64 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = INVALID_HWID };
  253. u64 cpu_logical_map(unsigned int cpu)
  254. {
  255. return __cpu_logical_map[cpu];
  256. }
  257. static void __init __truncate_boot_command_line(void);
  258. void __init __no_sanitize_address setup_arch(char **cmdline_p)
  259. {
  260. setup_initial_init_mm(_stext, _etext, _edata, _end);
  261. *cmdline_p = boot_command_line;
  262. /*
  263. * If know now we are going to need KPTI then use non-global
  264. * mappings from the start, avoiding the cost of rewriting
  265. * everything later.
  266. */
  267. arm64_use_ng_mappings = kaslr_requires_kpti();
  268. early_fixmap_init();
  269. early_ioremap_init();
  270. setup_machine_fdt(__fdt_pointer);
  271. __truncate_boot_command_line();
  272. /*
  273. * Initialise the static keys early as they may be enabled by the
  274. * cpufeature code and early parameters.
  275. */
  276. jump_label_init();
  277. parse_early_param();
  278. dynamic_scs_init();
  279. /*
  280. * Unmask asynchronous aborts and fiq after bringing up possible
  281. * earlycon. (Report possible System Errors once we can report this
  282. * occurred).
  283. */
  284. local_daif_restore(DAIF_PROCCTX_NOIRQ);
  285. /*
  286. * TTBR0 is only used for the identity mapping at this stage. Make it
  287. * point to zero page to avoid speculatively fetching new entries.
  288. */
  289. cpu_uninstall_idmap();
  290. xen_early_init();
  291. efi_init();
  292. if (!efi_enabled(EFI_BOOT) && ((u64)_text % MIN_KIMG_ALIGN) != 0)
  293. pr_warn(FW_BUG "Kernel image misaligned at boot, please fix your bootloader!");
  294. arm64_memblock_init();
  295. paging_init();
  296. acpi_table_upgrade();
  297. /* Parse the ACPI tables for possible boot-time configuration */
  298. acpi_boot_table_init();
  299. if (acpi_disabled)
  300. unflatten_device_tree();
  301. bootmem_init();
  302. kasan_init();
  303. request_standard_resources();
  304. early_ioremap_reset();
  305. if (acpi_disabled)
  306. psci_dt_init();
  307. else
  308. psci_acpi_init();
  309. init_bootcpu_ops();
  310. smp_init_cpus();
  311. smp_build_mpidr_hash();
  312. /* Init percpu seeds for random tags after cpus are set up. */
  313. kasan_init_sw_tags();
  314. #ifdef CONFIG_ARM64_SW_TTBR0_PAN
  315. /*
  316. * Make sure init_thread_info.ttbr0 always generates translation
  317. * faults in case uaccess_enable() is inadvertently called by the init
  318. * thread.
  319. */
  320. init_task.thread_info.ttbr0 = phys_to_ttbr(__pa_symbol(reserved_pg_dir));
  321. #endif
  322. if (boot_args[1] || boot_args[2] || boot_args[3]) {
  323. pr_err("WARNING: x1-x3 nonzero in violation of boot protocol:\n"
  324. "\tx1: %016llx\n\tx2: %016llx\n\tx3: %016llx\n"
  325. "This indicates a broken bootloader or old kernel\n",
  326. boot_args[1], boot_args[2], boot_args[3]);
  327. }
  328. }
  329. static inline bool cpu_can_disable(unsigned int cpu)
  330. {
  331. #ifdef CONFIG_HOTPLUG_CPU
  332. const struct cpu_operations *ops = get_cpu_ops(cpu);
  333. if (ops && ops->cpu_can_disable)
  334. return ops->cpu_can_disable(cpu);
  335. #endif
  336. return false;
  337. }
  338. static int __init topology_init(void)
  339. {
  340. int i;
  341. for_each_possible_cpu(i) {
  342. struct cpu *cpu = &per_cpu(cpu_data.cpu, i);
  343. cpu->hotpluggable = cpu_can_disable(i);
  344. register_cpu(cpu, i);
  345. }
  346. return 0;
  347. }
  348. subsys_initcall(topology_init);
  349. static void dump_kernel_offset(void)
  350. {
  351. const unsigned long offset = kaslr_offset();
  352. if (IS_ENABLED(CONFIG_RANDOMIZE_BASE) && offset > 0) {
  353. pr_emerg("Kernel Offset: 0x%lx from 0x%lx\n",
  354. offset, KIMAGE_VADDR);
  355. pr_emerg("PHYS_OFFSET: 0x%llx\n", PHYS_OFFSET);
  356. } else {
  357. pr_emerg("Kernel Offset: disabled\n");
  358. }
  359. }
  360. static int arm64_panic_block_dump(struct notifier_block *self,
  361. unsigned long v, void *p)
  362. {
  363. dump_kernel_offset();
  364. dump_cpu_features();
  365. dump_mem_limit();
  366. return 0;
  367. }
  368. static struct notifier_block arm64_panic_block = {
  369. .notifier_call = arm64_panic_block_dump
  370. };
  371. static int __init register_arm64_panic_block(void)
  372. {
  373. atomic_notifier_chain_register(&panic_notifier_list,
  374. &arm64_panic_block);
  375. return 0;
  376. }
  377. device_initcall(register_arm64_panic_block);
  378. void kvm_arm_init_hyp_services(void)
  379. {
  380. kvm_init_ioremap_services();
  381. kvm_init_memshare_services();
  382. kvm_init_memrelinquish_services();
  383. }
  384. static bool __init __test_androidboot_boot_recovery(const char *param,
  385. const char *val)
  386. {
  387. unsigned int boot_recovery;
  388. union {
  389. uint64_t raw;
  390. char __str[8];
  391. } androidboot = {
  392. .__str = { 'a', 'n', 'd', 'r', 'o', 'i', 'd', 'b' },
  393. };
  394. /* if param is not started with 'androidb', then it is ignored */
  395. if (*(const uint64_t *)param != androidboot.raw)
  396. return false;
  397. if (strcmp(param, "androidboot.boot_recovery"))
  398. return false;
  399. if (kstrtouint(val, 0, &boot_recovery)) {
  400. pr_warn("androidboot.boot_recovery is malformed.\n");
  401. return false;
  402. }
  403. return !!boot_recovery;
  404. }
  405. static bool __init __is_boot_recovery(void)
  406. {
  407. static char __tmp_boot_command_line[COMMAND_LINE_SIZE] __initdata;
  408. char *param, *val;
  409. char *args;
  410. strlcpy(__tmp_boot_command_line, boot_command_line, COMMAND_LINE_SIZE);
  411. args = __tmp_boot_command_line;
  412. while (*args) {
  413. args = next_arg(args, &param, &val);
  414. if (__test_androidboot_boot_recovery(param, val))
  415. return true;
  416. }
  417. return false;
  418. }
  419. static void __init __truncate_boot_command_line(void)
  420. {
  421. char *to_be_truncated;
  422. size_t sz_truncated;
  423. if (COMMAND_LINE_SIZE <= GKI_COMMAND_LINE_SIZE)
  424. return;
  425. if (strlen(boot_command_line) < GKI_COMMAND_LINE_SIZE)
  426. return;
  427. if (__is_boot_recovery()) {
  428. pr_info("current boot_mode is recovery and header_version is maybe '2'\n");
  429. return;
  430. }
  431. pr_info("current boot_mode is NOT recovery. kernel command line options will be truncated.\n");
  432. to_be_truncated = &boot_command_line[GKI_COMMAND_LINE_SIZE];
  433. sz_truncated = COMMAND_LINE_SIZE - GKI_COMMAND_LINE_SIZE;
  434. memset(to_be_truncated, 0x0, sz_truncated);
  435. }