123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379 |
- // SPDX-License-Identifier: GPL-2.0-only
- /*
- * Copyright (C) 2014-2017 Linaro Ltd. <[email protected]>
- */
- #include <linux/elf.h>
- #include <linux/ftrace.h>
- #include <linux/kernel.h>
- #include <linux/module.h>
- #include <linux/moduleloader.h>
- #include <linux/sort.h>
- static struct plt_entry __get_adrp_add_pair(u64 dst, u64 pc,
- enum aarch64_insn_register reg)
- {
- u32 adrp, add;
- adrp = aarch64_insn_gen_adr(pc, dst, reg, AARCH64_INSN_ADR_TYPE_ADRP);
- add = aarch64_insn_gen_add_sub_imm(reg, reg, dst % SZ_4K,
- AARCH64_INSN_VARIANT_64BIT,
- AARCH64_INSN_ADSB_ADD);
- return (struct plt_entry){ cpu_to_le32(adrp), cpu_to_le32(add) };
- }
- struct plt_entry get_plt_entry(u64 dst, void *pc)
- {
- struct plt_entry plt;
- static u32 br;
- if (!br)
- br = aarch64_insn_gen_branch_reg(AARCH64_INSN_REG_16,
- AARCH64_INSN_BRANCH_NOLINK);
- plt = __get_adrp_add_pair(dst, (u64)pc, AARCH64_INSN_REG_16);
- plt.br = cpu_to_le32(br);
- return plt;
- }
- static bool plt_entries_equal(const struct plt_entry *a,
- const struct plt_entry *b)
- {
- u64 p, q;
- /*
- * Check whether both entries refer to the same target:
- * do the cheapest checks first.
- * If the 'add' or 'br' opcodes are different, then the target
- * cannot be the same.
- */
- if (a->add != b->add || a->br != b->br)
- return false;
- p = ALIGN_DOWN((u64)a, SZ_4K);
- q = ALIGN_DOWN((u64)b, SZ_4K);
- /*
- * If the 'adrp' opcodes are the same then we just need to check
- * that they refer to the same 4k region.
- */
- if (a->adrp == b->adrp && p == q)
- return true;
- return (p + aarch64_insn_adrp_get_offset(le32_to_cpu(a->adrp))) ==
- (q + aarch64_insn_adrp_get_offset(le32_to_cpu(b->adrp)));
- }
- static bool in_init(const struct module *mod, void *loc)
- {
- return (u64)loc - (u64)mod->init_layout.base < mod->init_layout.size;
- }
- u64 module_emit_plt_entry(struct module *mod, Elf64_Shdr *sechdrs,
- void *loc, const Elf64_Rela *rela,
- Elf64_Sym *sym)
- {
- struct mod_plt_sec *pltsec = !in_init(mod, loc) ? &mod->arch.core :
- &mod->arch.init;
- struct plt_entry *plt = (struct plt_entry *)sechdrs[pltsec->plt_shndx].sh_addr;
- int i = pltsec->plt_num_entries;
- int j = i - 1;
- u64 val = sym->st_value + rela->r_addend;
- if (is_forbidden_offset_for_adrp(&plt[i].adrp))
- i++;
- plt[i] = get_plt_entry(val, &plt[i]);
- /*
- * Check if the entry we just created is a duplicate. Given that the
- * relocations are sorted, this will be the last entry we allocated.
- * (if one exists).
- */
- if (j >= 0 && plt_entries_equal(plt + i, plt + j))
- return (u64)&plt[j];
- pltsec->plt_num_entries += i - j;
- if (WARN_ON(pltsec->plt_num_entries > pltsec->plt_max_entries))
- return 0;
- return (u64)&plt[i];
- }
- #ifdef CONFIG_ARM64_ERRATUM_843419
- u64 module_emit_veneer_for_adrp(struct module *mod, Elf64_Shdr *sechdrs,
- void *loc, u64 val)
- {
- struct mod_plt_sec *pltsec = !in_init(mod, loc) ? &mod->arch.core :
- &mod->arch.init;
- struct plt_entry *plt = (struct plt_entry *)sechdrs[pltsec->plt_shndx].sh_addr;
- int i = pltsec->plt_num_entries++;
- u32 br;
- int rd;
- if (WARN_ON(pltsec->plt_num_entries > pltsec->plt_max_entries))
- return 0;
- if (is_forbidden_offset_for_adrp(&plt[i].adrp))
- i = pltsec->plt_num_entries++;
- /* get the destination register of the ADRP instruction */
- rd = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RD,
- le32_to_cpup((__le32 *)loc));
- br = aarch64_insn_gen_branch_imm((u64)&plt[i].br, (u64)loc + 4,
- AARCH64_INSN_BRANCH_NOLINK);
- plt[i] = __get_adrp_add_pair(val, (u64)&plt[i], rd);
- plt[i].br = cpu_to_le32(br);
- return (u64)&plt[i];
- }
- #endif
- #define cmp_3way(a, b) ((a) < (b) ? -1 : (a) > (b))
- static int cmp_rela(const void *a, const void *b)
- {
- const Elf64_Rela *x = a, *y = b;
- int i;
- /* sort by type, symbol index and addend */
- i = cmp_3way(ELF64_R_TYPE(x->r_info), ELF64_R_TYPE(y->r_info));
- if (i == 0)
- i = cmp_3way(ELF64_R_SYM(x->r_info), ELF64_R_SYM(y->r_info));
- if (i == 0)
- i = cmp_3way(x->r_addend, y->r_addend);
- return i;
- }
- static bool duplicate_rel(const Elf64_Rela *rela, int num)
- {
- /*
- * Entries are sorted by type, symbol index and addend. That means
- * that, if a duplicate entry exists, it must be in the preceding
- * slot.
- */
- return num > 0 && cmp_rela(rela + num, rela + num - 1) == 0;
- }
- static unsigned int count_plts(Elf64_Sym *syms, Elf64_Rela *rela, int num,
- Elf64_Word dstidx, Elf_Shdr *dstsec)
- {
- unsigned int ret = 0;
- Elf64_Sym *s;
- int i;
- for (i = 0; i < num; i++) {
- u64 min_align;
- switch (ELF64_R_TYPE(rela[i].r_info)) {
- case R_AARCH64_JUMP26:
- case R_AARCH64_CALL26:
- if (!IS_ENABLED(CONFIG_RANDOMIZE_BASE))
- break;
- /*
- * We only have to consider branch targets that resolve
- * to symbols that are defined in a different section.
- * This is not simply a heuristic, it is a fundamental
- * limitation, since there is no guaranteed way to emit
- * PLT entries sufficiently close to the branch if the
- * section size exceeds the range of a branch
- * instruction. So ignore relocations against defined
- * symbols if they live in the same section as the
- * relocation target.
- */
- s = syms + ELF64_R_SYM(rela[i].r_info);
- if (s->st_shndx == dstidx)
- break;
- /*
- * Jump relocations with non-zero addends against
- * undefined symbols are supported by the ELF spec, but
- * do not occur in practice (e.g., 'jump n bytes past
- * the entry point of undefined function symbol f').
- * So we need to support them, but there is no need to
- * take them into consideration when trying to optimize
- * this code. So let's only check for duplicates when
- * the addend is zero: this allows us to record the PLT
- * entry address in the symbol table itself, rather than
- * having to search the list for duplicates each time we
- * emit one.
- */
- if (rela[i].r_addend != 0 || !duplicate_rel(rela, i))
- ret++;
- break;
- case R_AARCH64_ADR_PREL_PG_HI21_NC:
- case R_AARCH64_ADR_PREL_PG_HI21:
- if (!IS_ENABLED(CONFIG_ARM64_ERRATUM_843419) ||
- !cpus_have_const_cap(ARM64_WORKAROUND_843419))
- break;
- /*
- * Determine the minimal safe alignment for this ADRP
- * instruction: the section alignment at which it is
- * guaranteed not to appear at a vulnerable offset.
- *
- * This comes down to finding the least significant zero
- * bit in bits [11:3] of the section offset, and
- * increasing the section's alignment so that the
- * resulting address of this instruction is guaranteed
- * to equal the offset in that particular bit (as well
- * as all less significant bits). This ensures that the
- * address modulo 4 KB != 0xfff8 or 0xfffc (which would
- * have all ones in bits [11:3])
- */
- min_align = 2ULL << ffz(rela[i].r_offset | 0x7);
- /*
- * Allocate veneer space for each ADRP that may appear
- * at a vulnerable offset nonetheless. At relocation
- * time, some of these will remain unused since some
- * ADRP instructions can be patched to ADR instructions
- * instead.
- */
- if (min_align > SZ_4K)
- ret++;
- else
- dstsec->sh_addralign = max(dstsec->sh_addralign,
- min_align);
- break;
- }
- }
- if (IS_ENABLED(CONFIG_ARM64_ERRATUM_843419) &&
- cpus_have_const_cap(ARM64_WORKAROUND_843419))
- /*
- * Add some slack so we can skip PLT slots that may trigger
- * the erratum due to the placement of the ADRP instruction.
- */
- ret += DIV_ROUND_UP(ret, (SZ_4K / sizeof(struct plt_entry)));
- return ret;
- }
- static bool branch_rela_needs_plt(Elf64_Sym *syms, Elf64_Rela *rela,
- Elf64_Word dstidx)
- {
- Elf64_Sym *s = syms + ELF64_R_SYM(rela->r_info);
- if (s->st_shndx == dstidx)
- return false;
- return ELF64_R_TYPE(rela->r_info) == R_AARCH64_JUMP26 ||
- ELF64_R_TYPE(rela->r_info) == R_AARCH64_CALL26;
- }
- /* Group branch PLT relas at the front end of the array. */
- static int partition_branch_plt_relas(Elf64_Sym *syms, Elf64_Rela *rela,
- int numrels, Elf64_Word dstidx)
- {
- int i = 0, j = numrels - 1;
- if (!IS_ENABLED(CONFIG_RANDOMIZE_BASE))
- return 0;
- while (i < j) {
- if (branch_rela_needs_plt(syms, &rela[i], dstidx))
- i++;
- else if (branch_rela_needs_plt(syms, &rela[j], dstidx))
- swap(rela[i], rela[j]);
- else
- j--;
- }
- return i;
- }
- int module_frob_arch_sections(Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
- char *secstrings, struct module *mod)
- {
- unsigned long core_plts = 0;
- unsigned long init_plts = 0;
- Elf64_Sym *syms = NULL;
- Elf_Shdr *pltsec, *tramp = NULL;
- int i;
- /*
- * Find the empty .plt section so we can expand it to store the PLT
- * entries. Record the symtab address as well.
- */
- for (i = 0; i < ehdr->e_shnum; i++) {
- if (!strcmp(secstrings + sechdrs[i].sh_name, ".plt"))
- mod->arch.core.plt_shndx = i;
- else if (!strcmp(secstrings + sechdrs[i].sh_name, ".init.plt"))
- mod->arch.init.plt_shndx = i;
- else if (!strcmp(secstrings + sechdrs[i].sh_name,
- ".text.ftrace_trampoline"))
- tramp = sechdrs + i;
- else if (sechdrs[i].sh_type == SHT_SYMTAB)
- syms = (Elf64_Sym *)sechdrs[i].sh_addr;
- }
- if (!mod->arch.core.plt_shndx || !mod->arch.init.plt_shndx) {
- pr_err("%s: module PLT section(s) missing\n", mod->name);
- return -ENOEXEC;
- }
- if (!syms) {
- pr_err("%s: module symtab section missing\n", mod->name);
- return -ENOEXEC;
- }
- for (i = 0; i < ehdr->e_shnum; i++) {
- Elf64_Rela *rels = (void *)ehdr + sechdrs[i].sh_offset;
- int nents, numrels = sechdrs[i].sh_size / sizeof(Elf64_Rela);
- Elf64_Shdr *dstsec = sechdrs + sechdrs[i].sh_info;
- if (sechdrs[i].sh_type != SHT_RELA)
- continue;
- /* ignore relocations that operate on non-exec sections */
- if (!(dstsec->sh_flags & SHF_EXECINSTR))
- continue;
- /*
- * sort branch relocations requiring a PLT by type, symbol index
- * and addend
- */
- nents = partition_branch_plt_relas(syms, rels, numrels,
- sechdrs[i].sh_info);
- if (nents)
- sort(rels, nents, sizeof(Elf64_Rela), cmp_rela, NULL);
- if (!module_init_layout_section(secstrings + dstsec->sh_name))
- core_plts += count_plts(syms, rels, numrels,
- sechdrs[i].sh_info, dstsec);
- else
- init_plts += count_plts(syms, rels, numrels,
- sechdrs[i].sh_info, dstsec);
- }
- pltsec = sechdrs + mod->arch.core.plt_shndx;
- pltsec->sh_type = SHT_NOBITS;
- pltsec->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
- pltsec->sh_addralign = L1_CACHE_BYTES;
- pltsec->sh_size = (core_plts + 1) * sizeof(struct plt_entry);
- mod->arch.core.plt_num_entries = 0;
- mod->arch.core.plt_max_entries = core_plts;
- pltsec = sechdrs + mod->arch.init.plt_shndx;
- pltsec->sh_type = SHT_NOBITS;
- pltsec->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
- pltsec->sh_addralign = L1_CACHE_BYTES;
- pltsec->sh_size = (init_plts + 1) * sizeof(struct plt_entry);
- mod->arch.init.plt_num_entries = 0;
- mod->arch.init.plt_max_entries = init_plts;
- if (tramp) {
- tramp->sh_type = SHT_NOBITS;
- tramp->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
- tramp->sh_addralign = __alignof__(struct plt_entry);
- tramp->sh_size = NR_FTRACE_PLTS * sizeof(struct plt_entry);
- }
- return 0;
- }
|