1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059 |
- // SPDX-License-Identifier: GPL-2.0-only
- /*
- * FP/SIMD context switching and fault handling
- *
- * Copyright (C) 2012 ARM Ltd.
- * Author: Catalin Marinas <[email protected]>
- */
- #include <linux/bitmap.h>
- #include <linux/bitops.h>
- #include <linux/bottom_half.h>
- #include <linux/bug.h>
- #include <linux/cache.h>
- #include <linux/compat.h>
- #include <linux/compiler.h>
- #include <linux/cpu.h>
- #include <linux/cpu_pm.h>
- #include <linux/ctype.h>
- #include <linux/kernel.h>
- #include <linux/linkage.h>
- #include <linux/irqflags.h>
- #include <linux/init.h>
- #include <linux/percpu.h>
- #include <linux/prctl.h>
- #include <linux/preempt.h>
- #include <linux/ptrace.h>
- #include <linux/sched/signal.h>
- #include <linux/sched/task_stack.h>
- #include <linux/signal.h>
- #include <linux/slab.h>
- #include <linux/stddef.h>
- #include <linux/sysctl.h>
- #include <linux/swab.h>
- #include <asm/esr.h>
- #include <asm/exception.h>
- #include <asm/fpsimd.h>
- #include <asm/cpufeature.h>
- #include <asm/cputype.h>
- #include <asm/neon.h>
- #include <asm/processor.h>
- #include <asm/simd.h>
- #include <asm/sigcontext.h>
- #include <asm/sysreg.h>
- #include <asm/traps.h>
- #include <asm/virt.h>
- #define FPEXC_IOF (1 << 0)
- #define FPEXC_DZF (1 << 1)
- #define FPEXC_OFF (1 << 2)
- #define FPEXC_UFF (1 << 3)
- #define FPEXC_IXF (1 << 4)
- #define FPEXC_IDF (1 << 7)
- /*
- * (Note: in this discussion, statements about FPSIMD apply equally to SVE.)
- *
- * In order to reduce the number of times the FPSIMD state is needlessly saved
- * and restored, we need to keep track of two things:
- * (a) for each task, we need to remember which CPU was the last one to have
- * the task's FPSIMD state loaded into its FPSIMD registers;
- * (b) for each CPU, we need to remember which task's userland FPSIMD state has
- * been loaded into its FPSIMD registers most recently, or whether it has
- * been used to perform kernel mode NEON in the meantime.
- *
- * For (a), we add a fpsimd_cpu field to thread_struct, which gets updated to
- * the id of the current CPU every time the state is loaded onto a CPU. For (b),
- * we add the per-cpu variable 'fpsimd_last_state' (below), which contains the
- * address of the userland FPSIMD state of the task that was loaded onto the CPU
- * the most recently, or NULL if kernel mode NEON has been performed after that.
- *
- * With this in place, we no longer have to restore the next FPSIMD state right
- * when switching between tasks. Instead, we can defer this check to userland
- * resume, at which time we verify whether the CPU's fpsimd_last_state and the
- * task's fpsimd_cpu are still mutually in sync. If this is the case, we
- * can omit the FPSIMD restore.
- *
- * As an optimization, we use the thread_info flag TIF_FOREIGN_FPSTATE to
- * indicate whether or not the userland FPSIMD state of the current task is
- * present in the registers. The flag is set unless the FPSIMD registers of this
- * CPU currently contain the most recent userland FPSIMD state of the current
- * task. If the task is behaving as a VMM, then this is will be managed by
- * KVM which will clear it to indicate that the vcpu FPSIMD state is currently
- * loaded on the CPU, allowing the state to be saved if a FPSIMD-aware
- * softirq kicks in. Upon vcpu_put(), KVM will save the vcpu FP state and
- * flag the register state as invalid.
- *
- * In order to allow softirq handlers to use FPSIMD, kernel_neon_begin() may
- * save the task's FPSIMD context back to task_struct from softirq context.
- * To prevent this from racing with the manipulation of the task's FPSIMD state
- * from task context and thereby corrupting the state, it is necessary to
- * protect any manipulation of a task's fpsimd_state or TIF_FOREIGN_FPSTATE
- * flag with {, __}get_cpu_fpsimd_context(). This will still allow softirqs to
- * run but prevent them to use FPSIMD.
- *
- * For a certain task, the sequence may look something like this:
- * - the task gets scheduled in; if both the task's fpsimd_cpu field
- * contains the id of the current CPU, and the CPU's fpsimd_last_state per-cpu
- * variable points to the task's fpsimd_state, the TIF_FOREIGN_FPSTATE flag is
- * cleared, otherwise it is set;
- *
- * - the task returns to userland; if TIF_FOREIGN_FPSTATE is set, the task's
- * userland FPSIMD state is copied from memory to the registers, the task's
- * fpsimd_cpu field is set to the id of the current CPU, the current
- * CPU's fpsimd_last_state pointer is set to this task's fpsimd_state and the
- * TIF_FOREIGN_FPSTATE flag is cleared;
- *
- * - the task executes an ordinary syscall; upon return to userland, the
- * TIF_FOREIGN_FPSTATE flag will still be cleared, so no FPSIMD state is
- * restored;
- *
- * - the task executes a syscall which executes some NEON instructions; this is
- * preceded by a call to kernel_neon_begin(), which copies the task's FPSIMD
- * register contents to memory, clears the fpsimd_last_state per-cpu variable
- * and sets the TIF_FOREIGN_FPSTATE flag;
- *
- * - the task gets preempted after kernel_neon_end() is called; as we have not
- * returned from the 2nd syscall yet, TIF_FOREIGN_FPSTATE is still set so
- * whatever is in the FPSIMD registers is not saved to memory, but discarded.
- */
- struct fpsimd_last_state_struct {
- struct user_fpsimd_state *st;
- void *sve_state;
- void *za_state;
- u64 *svcr;
- unsigned int sve_vl;
- unsigned int sme_vl;
- };
- static DEFINE_PER_CPU(struct fpsimd_last_state_struct, fpsimd_last_state);
- __ro_after_init struct vl_info vl_info[ARM64_VEC_MAX] = {
- #ifdef CONFIG_ARM64_SVE
- [ARM64_VEC_SVE] = {
- .type = ARM64_VEC_SVE,
- .name = "SVE",
- .min_vl = SVE_VL_MIN,
- .max_vl = SVE_VL_MIN,
- .max_virtualisable_vl = SVE_VL_MIN,
- },
- #endif
- #ifdef CONFIG_ARM64_SME
- [ARM64_VEC_SME] = {
- .type = ARM64_VEC_SME,
- .name = "SME",
- },
- #endif
- };
- static unsigned int vec_vl_inherit_flag(enum vec_type type)
- {
- switch (type) {
- case ARM64_VEC_SVE:
- return TIF_SVE_VL_INHERIT;
- case ARM64_VEC_SME:
- return TIF_SME_VL_INHERIT;
- default:
- WARN_ON_ONCE(1);
- return 0;
- }
- }
- struct vl_config {
- int __default_vl; /* Default VL for tasks */
- };
- static struct vl_config vl_config[ARM64_VEC_MAX];
- static inline int get_default_vl(enum vec_type type)
- {
- return READ_ONCE(vl_config[type].__default_vl);
- }
- #ifdef CONFIG_ARM64_SVE
- static inline int get_sve_default_vl(void)
- {
- return get_default_vl(ARM64_VEC_SVE);
- }
- static inline void set_default_vl(enum vec_type type, int val)
- {
- WRITE_ONCE(vl_config[type].__default_vl, val);
- }
- static inline void set_sve_default_vl(int val)
- {
- set_default_vl(ARM64_VEC_SVE, val);
- }
- static void __percpu *efi_sve_state;
- #else /* ! CONFIG_ARM64_SVE */
- /* Dummy declaration for code that will be optimised out: */
- extern void __percpu *efi_sve_state;
- #endif /* ! CONFIG_ARM64_SVE */
- #ifdef CONFIG_ARM64_SME
- static int get_sme_default_vl(void)
- {
- return get_default_vl(ARM64_VEC_SME);
- }
- static void set_sme_default_vl(int val)
- {
- set_default_vl(ARM64_VEC_SME, val);
- }
- static void sme_free(struct task_struct *);
- #else
- static inline void sme_free(struct task_struct *t) { }
- #endif
- DEFINE_PER_CPU(bool, fpsimd_context_busy);
- EXPORT_PER_CPU_SYMBOL(fpsimd_context_busy);
- static void fpsimd_bind_task_to_cpu(void);
- static void __get_cpu_fpsimd_context(void)
- {
- bool busy = __this_cpu_xchg(fpsimd_context_busy, true);
- WARN_ON(busy);
- }
- /*
- * Claim ownership of the CPU FPSIMD context for use by the calling context.
- *
- * The caller may freely manipulate the FPSIMD context metadata until
- * put_cpu_fpsimd_context() is called.
- *
- * The double-underscore version must only be called if you know the task
- * can't be preempted.
- *
- * On RT kernels local_bh_disable() is not sufficient because it only
- * serializes soft interrupt related sections via a local lock, but stays
- * preemptible. Disabling preemption is the right choice here as bottom
- * half processing is always in thread context on RT kernels so it
- * implicitly prevents bottom half processing as well.
- */
- static void get_cpu_fpsimd_context(void)
- {
- if (!IS_ENABLED(CONFIG_PREEMPT_RT))
- local_bh_disable();
- else
- preempt_disable();
- __get_cpu_fpsimd_context();
- }
- static void __put_cpu_fpsimd_context(void)
- {
- bool busy = __this_cpu_xchg(fpsimd_context_busy, false);
- WARN_ON(!busy); /* No matching get_cpu_fpsimd_context()? */
- }
- /*
- * Release the CPU FPSIMD context.
- *
- * Must be called from a context in which get_cpu_fpsimd_context() was
- * previously called, with no call to put_cpu_fpsimd_context() in the
- * meantime.
- */
- static void put_cpu_fpsimd_context(void)
- {
- __put_cpu_fpsimd_context();
- if (!IS_ENABLED(CONFIG_PREEMPT_RT))
- local_bh_enable();
- else
- preempt_enable();
- }
- static bool have_cpu_fpsimd_context(void)
- {
- return !preemptible() && __this_cpu_read(fpsimd_context_busy);
- }
- unsigned int task_get_vl(const struct task_struct *task, enum vec_type type)
- {
- return task->thread.vl[type];
- }
- void task_set_vl(struct task_struct *task, enum vec_type type,
- unsigned long vl)
- {
- task->thread.vl[type] = vl;
- }
- unsigned int task_get_vl_onexec(const struct task_struct *task,
- enum vec_type type)
- {
- return task->thread.vl_onexec[type];
- }
- void task_set_vl_onexec(struct task_struct *task, enum vec_type type,
- unsigned long vl)
- {
- task->thread.vl_onexec[type] = vl;
- }
- /*
- * TIF_SME controls whether a task can use SME without trapping while
- * in userspace, when TIF_SME is set then we must have storage
- * alocated in sve_state and za_state to store the contents of both ZA
- * and the SVE registers for both streaming and non-streaming modes.
- *
- * If both SVCR.ZA and SVCR.SM are disabled then at any point we
- * may disable TIF_SME and reenable traps.
- */
- /*
- * TIF_SVE controls whether a task can use SVE without trapping while
- * in userspace, and also (together with TIF_SME) the way a task's
- * FPSIMD/SVE state is stored in thread_struct.
- *
- * The kernel uses this flag to track whether a user task is actively
- * using SVE, and therefore whether full SVE register state needs to
- * be tracked. If not, the cheaper FPSIMD context handling code can
- * be used instead of the more costly SVE equivalents.
- *
- * * TIF_SVE or SVCR.SM set:
- *
- * The task can execute SVE instructions while in userspace without
- * trapping to the kernel.
- *
- * When stored, Z0-Z31 (incorporating Vn in bits[127:0] or the
- * corresponding Zn), P0-P15 and FFR are encoded in
- * task->thread.sve_state, formatted appropriately for vector
- * length task->thread.sve_vl or, if SVCR.SM is set,
- * task->thread.sme_vl.
- *
- * task->thread.sve_state must point to a valid buffer at least
- * sve_state_size(task) bytes in size.
- *
- * During any syscall, the kernel may optionally clear TIF_SVE and
- * discard the vector state except for the FPSIMD subset.
- *
- * * TIF_SVE clear:
- *
- * An attempt by the user task to execute an SVE instruction causes
- * do_sve_acc() to be called, which does some preparation and then
- * sets TIF_SVE.
- *
- * When stored, FPSIMD registers V0-V31 are encoded in
- * task->thread.uw.fpsimd_state; bits [max : 128] for each of Z0-Z31 are
- * logically zero but not stored anywhere; P0-P15 and FFR are not
- * stored and have unspecified values from userspace's point of
- * view. For hygiene purposes, the kernel zeroes them on next use,
- * but userspace is discouraged from relying on this.
- *
- * task->thread.sve_state does not need to be non-NULL, valid or any
- * particular size: it must not be dereferenced.
- *
- * * FPSR and FPCR are always stored in task->thread.uw.fpsimd_state
- * irrespective of whether TIF_SVE is clear or set, since these are
- * not vector length dependent.
- */
- /*
- * Update current's FPSIMD/SVE registers from thread_struct.
- *
- * This function should be called only when the FPSIMD/SVE state in
- * thread_struct is known to be up to date, when preparing to enter
- * userspace.
- */
- static void task_fpsimd_load(void)
- {
- bool restore_sve_regs = false;
- bool restore_ffr;
- WARN_ON(!system_supports_fpsimd());
- WARN_ON(!have_cpu_fpsimd_context());
- /* Check if we should restore SVE first */
- if (IS_ENABLED(CONFIG_ARM64_SVE) && test_thread_flag(TIF_SVE)) {
- sve_set_vq(sve_vq_from_vl(task_get_sve_vl(current)) - 1);
- restore_sve_regs = true;
- restore_ffr = true;
- }
- /* Restore SME, override SVE register configuration if needed */
- if (system_supports_sme()) {
- unsigned long sme_vl = task_get_sme_vl(current);
- /* Ensure VL is set up for restoring data */
- if (test_thread_flag(TIF_SME))
- sme_set_vq(sve_vq_from_vl(sme_vl) - 1);
- write_sysreg_s(current->thread.svcr, SYS_SVCR);
- if (thread_za_enabled(¤t->thread))
- za_load_state(current->thread.za_state);
- if (thread_sm_enabled(¤t->thread)) {
- restore_sve_regs = true;
- restore_ffr = system_supports_fa64();
- }
- }
- if (restore_sve_regs)
- sve_load_state(sve_pffr(¤t->thread),
- ¤t->thread.uw.fpsimd_state.fpsr,
- restore_ffr);
- else
- fpsimd_load_state(¤t->thread.uw.fpsimd_state);
- }
- /*
- * Ensure FPSIMD/SVE storage in memory for the loaded context is up to
- * date with respect to the CPU registers. Note carefully that the
- * current context is the context last bound to the CPU stored in
- * last, if KVM is involved this may be the guest VM context rather
- * than the host thread for the VM pointed to by current. This means
- * that we must always reference the state storage via last rather
- * than via current, other than the TIF_ flags which KVM will
- * carefully maintain for us.
- */
- static void fpsimd_save(void)
- {
- struct fpsimd_last_state_struct const *last =
- this_cpu_ptr(&fpsimd_last_state);
- /* set by fpsimd_bind_task_to_cpu() or fpsimd_bind_state_to_cpu() */
- bool save_sve_regs = false;
- bool save_ffr;
- unsigned int vl;
- WARN_ON(!system_supports_fpsimd());
- WARN_ON(!have_cpu_fpsimd_context());
- if (test_thread_flag(TIF_FOREIGN_FPSTATE))
- return;
- if (test_thread_flag(TIF_SVE)) {
- save_sve_regs = true;
- save_ffr = true;
- vl = last->sve_vl;
- }
- if (system_supports_sme()) {
- u64 *svcr = last->svcr;
- *svcr = read_sysreg_s(SYS_SVCR);
- if (*svcr & SVCR_ZA_MASK)
- za_save_state(last->za_state);
- /* If we are in streaming mode override regular SVE. */
- if (*svcr & SVCR_SM_MASK) {
- save_sve_regs = true;
- save_ffr = system_supports_fa64();
- vl = last->sme_vl;
- }
- }
- if (IS_ENABLED(CONFIG_ARM64_SVE) && save_sve_regs) {
- /* Get the configured VL from RDVL, will account for SM */
- if (WARN_ON(sve_get_vl() != vl)) {
- /*
- * Can't save the user regs, so current would
- * re-enter user with corrupt state.
- * There's no way to recover, so kill it:
- */
- force_signal_inject(SIGKILL, SI_KERNEL, 0, 0);
- return;
- }
- sve_save_state((char *)last->sve_state +
- sve_ffr_offset(vl),
- &last->st->fpsr, save_ffr);
- } else {
- fpsimd_save_state(last->st);
- }
- }
- /*
- * All vector length selection from userspace comes through here.
- * We're on a slow path, so some sanity-checks are included.
- * If things go wrong there's a bug somewhere, but try to fall back to a
- * safe choice.
- */
- static unsigned int find_supported_vector_length(enum vec_type type,
- unsigned int vl)
- {
- struct vl_info *info = &vl_info[type];
- int bit;
- int max_vl = info->max_vl;
- if (WARN_ON(!sve_vl_valid(vl)))
- vl = info->min_vl;
- if (WARN_ON(!sve_vl_valid(max_vl)))
- max_vl = info->min_vl;
- if (vl > max_vl)
- vl = max_vl;
- if (vl < info->min_vl)
- vl = info->min_vl;
- bit = find_next_bit(info->vq_map, SVE_VQ_MAX,
- __vq_to_bit(sve_vq_from_vl(vl)));
- return sve_vl_from_vq(__bit_to_vq(bit));
- }
- #if defined(CONFIG_ARM64_SVE) && defined(CONFIG_SYSCTL)
- static int vec_proc_do_default_vl(struct ctl_table *table, int write,
- void *buffer, size_t *lenp, loff_t *ppos)
- {
- struct vl_info *info = table->extra1;
- enum vec_type type = info->type;
- int ret;
- int vl = get_default_vl(type);
- struct ctl_table tmp_table = {
- .data = &vl,
- .maxlen = sizeof(vl),
- };
- ret = proc_dointvec(&tmp_table, write, buffer, lenp, ppos);
- if (ret || !write)
- return ret;
- /* Writing -1 has the special meaning "set to max": */
- if (vl == -1)
- vl = info->max_vl;
- if (!sve_vl_valid(vl))
- return -EINVAL;
- set_default_vl(type, find_supported_vector_length(type, vl));
- return 0;
- }
- static struct ctl_table sve_default_vl_table[] = {
- {
- .procname = "sve_default_vector_length",
- .mode = 0644,
- .proc_handler = vec_proc_do_default_vl,
- .extra1 = &vl_info[ARM64_VEC_SVE],
- },
- { }
- };
- static int __init sve_sysctl_init(void)
- {
- if (system_supports_sve())
- if (!register_sysctl("abi", sve_default_vl_table))
- return -EINVAL;
- return 0;
- }
- #else /* ! (CONFIG_ARM64_SVE && CONFIG_SYSCTL) */
- static int __init sve_sysctl_init(void) { return 0; }
- #endif /* ! (CONFIG_ARM64_SVE && CONFIG_SYSCTL) */
- #if defined(CONFIG_ARM64_SME) && defined(CONFIG_SYSCTL)
- static struct ctl_table sme_default_vl_table[] = {
- {
- .procname = "sme_default_vector_length",
- .mode = 0644,
- .proc_handler = vec_proc_do_default_vl,
- .extra1 = &vl_info[ARM64_VEC_SME],
- },
- { }
- };
- static int __init sme_sysctl_init(void)
- {
- if (system_supports_sme())
- if (!register_sysctl("abi", sme_default_vl_table))
- return -EINVAL;
- return 0;
- }
- #else /* ! (CONFIG_ARM64_SME && CONFIG_SYSCTL) */
- static int __init sme_sysctl_init(void) { return 0; }
- #endif /* ! (CONFIG_ARM64_SME && CONFIG_SYSCTL) */
- #define ZREG(sve_state, vq, n) ((char *)(sve_state) + \
- (SVE_SIG_ZREG_OFFSET(vq, n) - SVE_SIG_REGS_OFFSET))
- #ifdef CONFIG_CPU_BIG_ENDIAN
- static __uint128_t arm64_cpu_to_le128(__uint128_t x)
- {
- u64 a = swab64(x);
- u64 b = swab64(x >> 64);
- return ((__uint128_t)a << 64) | b;
- }
- #else
- static __uint128_t arm64_cpu_to_le128(__uint128_t x)
- {
- return x;
- }
- #endif
- #define arm64_le128_to_cpu(x) arm64_cpu_to_le128(x)
- static void __fpsimd_to_sve(void *sst, struct user_fpsimd_state const *fst,
- unsigned int vq)
- {
- unsigned int i;
- __uint128_t *p;
- for (i = 0; i < SVE_NUM_ZREGS; ++i) {
- p = (__uint128_t *)ZREG(sst, vq, i);
- *p = arm64_cpu_to_le128(fst->vregs[i]);
- }
- }
- /*
- * Transfer the FPSIMD state in task->thread.uw.fpsimd_state to
- * task->thread.sve_state.
- *
- * Task can be a non-runnable task, or current. In the latter case,
- * the caller must have ownership of the cpu FPSIMD context before calling
- * this function.
- * task->thread.sve_state must point to at least sve_state_size(task)
- * bytes of allocated kernel memory.
- * task->thread.uw.fpsimd_state must be up to date before calling this
- * function.
- */
- static void fpsimd_to_sve(struct task_struct *task)
- {
- unsigned int vq;
- void *sst = task->thread.sve_state;
- struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
- if (!system_supports_sve() && !system_supports_sme())
- return;
- vq = sve_vq_from_vl(thread_get_cur_vl(&task->thread));
- __fpsimd_to_sve(sst, fst, vq);
- }
- /*
- * Transfer the SVE state in task->thread.sve_state to
- * task->thread.uw.fpsimd_state.
- *
- * Task can be a non-runnable task, or current. In the latter case,
- * the caller must have ownership of the cpu FPSIMD context before calling
- * this function.
- * task->thread.sve_state must point to at least sve_state_size(task)
- * bytes of allocated kernel memory.
- * task->thread.sve_state must be up to date before calling this function.
- */
- static void sve_to_fpsimd(struct task_struct *task)
- {
- unsigned int vq, vl;
- void const *sst = task->thread.sve_state;
- struct user_fpsimd_state *fst = &task->thread.uw.fpsimd_state;
- unsigned int i;
- __uint128_t const *p;
- if (!system_supports_sve() && !system_supports_sme())
- return;
- vl = thread_get_cur_vl(&task->thread);
- vq = sve_vq_from_vl(vl);
- for (i = 0; i < SVE_NUM_ZREGS; ++i) {
- p = (__uint128_t const *)ZREG(sst, vq, i);
- fst->vregs[i] = arm64_le128_to_cpu(*p);
- }
- }
- #ifdef CONFIG_ARM64_SVE
- /*
- * Call __sve_free() directly only if you know task can't be scheduled
- * or preempted.
- */
- static void __sve_free(struct task_struct *task)
- {
- kfree(task->thread.sve_state);
- task->thread.sve_state = NULL;
- }
- static void sve_free(struct task_struct *task)
- {
- WARN_ON(test_tsk_thread_flag(task, TIF_SVE));
- __sve_free(task);
- }
- /*
- * Return how many bytes of memory are required to store the full SVE
- * state for task, given task's currently configured vector length.
- */
- size_t sve_state_size(struct task_struct const *task)
- {
- unsigned int vl = 0;
- if (system_supports_sve())
- vl = task_get_sve_vl(task);
- if (system_supports_sme())
- vl = max(vl, task_get_sme_vl(task));
- return SVE_SIG_REGS_SIZE(sve_vq_from_vl(vl));
- }
- /*
- * Ensure that task->thread.sve_state is allocated and sufficiently large.
- *
- * This function should be used only in preparation for replacing
- * task->thread.sve_state with new data. The memory is always zeroed
- * here to prevent stale data from showing through: this is done in
- * the interest of testability and predictability: except in the
- * do_sve_acc() case, there is no ABI requirement to hide stale data
- * written previously be task.
- */
- void sve_alloc(struct task_struct *task, bool flush)
- {
- if (task->thread.sve_state) {
- if (flush)
- memset(task->thread.sve_state, 0,
- sve_state_size(task));
- return;
- }
- /* This is a small allocation (maximum ~8KB) and Should Not Fail. */
- task->thread.sve_state =
- kzalloc(sve_state_size(task), GFP_KERNEL);
- }
- /*
- * Force the FPSIMD state shared with SVE to be updated in the SVE state
- * even if the SVE state is the current active state.
- *
- * This should only be called by ptrace. task must be non-runnable.
- * task->thread.sve_state must point to at least sve_state_size(task)
- * bytes of allocated kernel memory.
- */
- void fpsimd_force_sync_to_sve(struct task_struct *task)
- {
- fpsimd_to_sve(task);
- }
- /*
- * Ensure that task->thread.sve_state is up to date with respect to
- * the user task, irrespective of when SVE is in use or not.
- *
- * This should only be called by ptrace. task must be non-runnable.
- * task->thread.sve_state must point to at least sve_state_size(task)
- * bytes of allocated kernel memory.
- */
- void fpsimd_sync_to_sve(struct task_struct *task)
- {
- if (!test_tsk_thread_flag(task, TIF_SVE) &&
- !thread_sm_enabled(&task->thread))
- fpsimd_to_sve(task);
- }
- /*
- * Ensure that task->thread.uw.fpsimd_state is up to date with respect to
- * the user task, irrespective of whether SVE is in use or not.
- *
- * This should only be called by ptrace. task must be non-runnable.
- * task->thread.sve_state must point to at least sve_state_size(task)
- * bytes of allocated kernel memory.
- */
- void sve_sync_to_fpsimd(struct task_struct *task)
- {
- if (test_tsk_thread_flag(task, TIF_SVE) ||
- thread_sm_enabled(&task->thread))
- sve_to_fpsimd(task);
- }
- /*
- * Ensure that task->thread.sve_state is up to date with respect to
- * the task->thread.uw.fpsimd_state.
- *
- * This should only be called by ptrace to merge new FPSIMD register
- * values into a task for which SVE is currently active.
- * task must be non-runnable.
- * task->thread.sve_state must point to at least sve_state_size(task)
- * bytes of allocated kernel memory.
- * task->thread.uw.fpsimd_state must already have been initialised with
- * the new FPSIMD register values to be merged in.
- */
- void sve_sync_from_fpsimd_zeropad(struct task_struct *task)
- {
- unsigned int vq;
- void *sst = task->thread.sve_state;
- struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
- if (!test_tsk_thread_flag(task, TIF_SVE) &&
- !thread_sm_enabled(&task->thread))
- return;
- vq = sve_vq_from_vl(thread_get_cur_vl(&task->thread));
- memset(sst, 0, SVE_SIG_REGS_SIZE(vq));
- __fpsimd_to_sve(sst, fst, vq);
- }
- int vec_set_vector_length(struct task_struct *task, enum vec_type type,
- unsigned long vl, unsigned long flags)
- {
- bool free_sme = false;
- if (flags & ~(unsigned long)(PR_SVE_VL_INHERIT |
- PR_SVE_SET_VL_ONEXEC))
- return -EINVAL;
- if (!sve_vl_valid(vl))
- return -EINVAL;
- /*
- * Clamp to the maximum vector length that VL-agnostic code
- * can work with. A flag may be assigned in the future to
- * allow setting of larger vector lengths without confusing
- * older software.
- */
- if (vl > VL_ARCH_MAX)
- vl = VL_ARCH_MAX;
- vl = find_supported_vector_length(type, vl);
- if (flags & (PR_SVE_VL_INHERIT |
- PR_SVE_SET_VL_ONEXEC))
- task_set_vl_onexec(task, type, vl);
- else
- /* Reset VL to system default on next exec: */
- task_set_vl_onexec(task, type, 0);
- /* Only actually set the VL if not deferred: */
- if (flags & PR_SVE_SET_VL_ONEXEC)
- goto out;
- if (vl == task_get_vl(task, type))
- goto out;
- /*
- * To ensure the FPSIMD bits of the SVE vector registers are preserved,
- * write any live register state back to task_struct, and convert to a
- * regular FPSIMD thread.
- */
- if (task == current) {
- get_cpu_fpsimd_context();
- fpsimd_save();
- }
- fpsimd_flush_task_state(task);
- if (test_and_clear_tsk_thread_flag(task, TIF_SVE) ||
- thread_sm_enabled(&task->thread))
- sve_to_fpsimd(task);
- if (system_supports_sme()) {
- if (type == ARM64_VEC_SME ||
- !(task->thread.svcr & (SVCR_SM_MASK | SVCR_ZA_MASK))) {
- /*
- * We are changing the SME VL or weren't using
- * SME anyway, discard the state and force a
- * reallocation.
- */
- task->thread.svcr &= ~(SVCR_SM_MASK |
- SVCR_ZA_MASK);
- clear_tsk_thread_flag(task, TIF_SME);
- free_sme = true;
- }
- }
- if (task == current)
- put_cpu_fpsimd_context();
- task_set_vl(task, type, vl);
- /*
- * Free the changed states if they are not in use, SME will be
- * reallocated to the correct size on next use and we just
- * allocate SVE now in case it is needed for use in streaming
- * mode.
- */
- if (system_supports_sve()) {
- sve_free(task);
- sve_alloc(task, true);
- }
- if (free_sme)
- sme_free(task);
- out:
- update_tsk_thread_flag(task, vec_vl_inherit_flag(type),
- flags & PR_SVE_VL_INHERIT);
- return 0;
- }
- /*
- * Encode the current vector length and flags for return.
- * This is only required for prctl(): ptrace has separate fields.
- * SVE and SME use the same bits for _ONEXEC and _INHERIT.
- *
- * flags are as for vec_set_vector_length().
- */
- static int vec_prctl_status(enum vec_type type, unsigned long flags)
- {
- int ret;
- if (flags & PR_SVE_SET_VL_ONEXEC)
- ret = task_get_vl_onexec(current, type);
- else
- ret = task_get_vl(current, type);
- if (test_thread_flag(vec_vl_inherit_flag(type)))
- ret |= PR_SVE_VL_INHERIT;
- return ret;
- }
- /* PR_SVE_SET_VL */
- int sve_set_current_vl(unsigned long arg)
- {
- unsigned long vl, flags;
- int ret;
- vl = arg & PR_SVE_VL_LEN_MASK;
- flags = arg & ~vl;
- if (!system_supports_sve() || is_compat_task())
- return -EINVAL;
- ret = vec_set_vector_length(current, ARM64_VEC_SVE, vl, flags);
- if (ret)
- return ret;
- return vec_prctl_status(ARM64_VEC_SVE, flags);
- }
- /* PR_SVE_GET_VL */
- int sve_get_current_vl(void)
- {
- if (!system_supports_sve() || is_compat_task())
- return -EINVAL;
- return vec_prctl_status(ARM64_VEC_SVE, 0);
- }
- #ifdef CONFIG_ARM64_SME
- /* PR_SME_SET_VL */
- int sme_set_current_vl(unsigned long arg)
- {
- unsigned long vl, flags;
- int ret;
- vl = arg & PR_SME_VL_LEN_MASK;
- flags = arg & ~vl;
- if (!system_supports_sme() || is_compat_task())
- return -EINVAL;
- ret = vec_set_vector_length(current, ARM64_VEC_SME, vl, flags);
- if (ret)
- return ret;
- return vec_prctl_status(ARM64_VEC_SME, flags);
- }
- /* PR_SME_GET_VL */
- int sme_get_current_vl(void)
- {
- if (!system_supports_sme() || is_compat_task())
- return -EINVAL;
- return vec_prctl_status(ARM64_VEC_SME, 0);
- }
- #endif /* CONFIG_ARM64_SME */
- static void vec_probe_vqs(struct vl_info *info,
- DECLARE_BITMAP(map, SVE_VQ_MAX))
- {
- unsigned int vq, vl;
- bitmap_zero(map, SVE_VQ_MAX);
- for (vq = SVE_VQ_MAX; vq >= SVE_VQ_MIN; --vq) {
- write_vl(info->type, vq - 1); /* self-syncing */
- switch (info->type) {
- case ARM64_VEC_SVE:
- vl = sve_get_vl();
- break;
- case ARM64_VEC_SME:
- vl = sme_get_vl();
- break;
- default:
- vl = 0;
- break;
- }
- /* Minimum VL identified? */
- if (sve_vq_from_vl(vl) > vq)
- break;
- vq = sve_vq_from_vl(vl); /* skip intervening lengths */
- set_bit(__vq_to_bit(vq), map);
- }
- }
- /*
- * Initialise the set of known supported VQs for the boot CPU.
- * This is called during kernel boot, before secondary CPUs are brought up.
- */
- void __init vec_init_vq_map(enum vec_type type)
- {
- struct vl_info *info = &vl_info[type];
- vec_probe_vqs(info, info->vq_map);
- bitmap_copy(info->vq_partial_map, info->vq_map, SVE_VQ_MAX);
- }
- /*
- * If we haven't committed to the set of supported VQs yet, filter out
- * those not supported by the current CPU.
- * This function is called during the bring-up of early secondary CPUs only.
- */
- void vec_update_vq_map(enum vec_type type)
- {
- struct vl_info *info = &vl_info[type];
- DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
- vec_probe_vqs(info, tmp_map);
- bitmap_and(info->vq_map, info->vq_map, tmp_map, SVE_VQ_MAX);
- bitmap_or(info->vq_partial_map, info->vq_partial_map, tmp_map,
- SVE_VQ_MAX);
- }
- /*
- * Check whether the current CPU supports all VQs in the committed set.
- * This function is called during the bring-up of late secondary CPUs only.
- */
- int vec_verify_vq_map(enum vec_type type)
- {
- struct vl_info *info = &vl_info[type];
- DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
- unsigned long b;
- vec_probe_vqs(info, tmp_map);
- bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX);
- if (bitmap_intersects(tmp_map, info->vq_map, SVE_VQ_MAX)) {
- pr_warn("%s: cpu%d: Required vector length(s) missing\n",
- info->name, smp_processor_id());
- return -EINVAL;
- }
- if (!IS_ENABLED(CONFIG_KVM) || !is_hyp_mode_available())
- return 0;
- /*
- * For KVM, it is necessary to ensure that this CPU doesn't
- * support any vector length that guests may have probed as
- * unsupported.
- */
- /* Recover the set of supported VQs: */
- bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX);
- /* Find VQs supported that are not globally supported: */
- bitmap_andnot(tmp_map, tmp_map, info->vq_map, SVE_VQ_MAX);
- /* Find the lowest such VQ, if any: */
- b = find_last_bit(tmp_map, SVE_VQ_MAX);
- if (b >= SVE_VQ_MAX)
- return 0; /* no mismatches */
- /*
- * Mismatches above sve_max_virtualisable_vl are fine, since
- * no guest is allowed to configure ZCR_EL2.LEN to exceed this:
- */
- if (sve_vl_from_vq(__bit_to_vq(b)) <= info->max_virtualisable_vl) {
- pr_warn("%s: cpu%d: Unsupported vector length(s) present\n",
- info->name, smp_processor_id());
- return -EINVAL;
- }
- return 0;
- }
- static void __init sve_efi_setup(void)
- {
- int max_vl = 0;
- int i;
- if (!IS_ENABLED(CONFIG_EFI))
- return;
- for (i = 0; i < ARRAY_SIZE(vl_info); i++)
- max_vl = max(vl_info[i].max_vl, max_vl);
- /*
- * alloc_percpu() warns and prints a backtrace if this goes wrong.
- * This is evidence of a crippled system and we are returning void,
- * so no attempt is made to handle this situation here.
- */
- if (!sve_vl_valid(max_vl))
- goto fail;
- efi_sve_state = __alloc_percpu(
- SVE_SIG_REGS_SIZE(sve_vq_from_vl(max_vl)), SVE_VQ_BYTES);
- if (!efi_sve_state)
- goto fail;
- return;
- fail:
- panic("Cannot allocate percpu memory for EFI SVE save/restore");
- }
- /*
- * Enable SVE for EL1.
- * Intended for use by the cpufeatures code during CPU boot.
- */
- void sve_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p)
- {
- write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_ZEN_EL1EN, CPACR_EL1);
- isb();
- }
- /*
- * Read the pseudo-ZCR used by cpufeatures to identify the supported SVE
- * vector length.
- *
- * Use only if SVE is present.
- * This function clobbers the SVE vector length.
- */
- u64 read_zcr_features(void)
- {
- /*
- * Set the maximum possible VL, and write zeroes to all other
- * bits to see if they stick.
- */
- sve_kernel_enable(NULL);
- write_sysreg_s(ZCR_ELx_LEN_MASK, SYS_ZCR_EL1);
- /* Return LEN value that would be written to get the maximum VL */
- return sve_vq_from_vl(sve_get_vl()) - 1;
- }
- void __init sve_setup(void)
- {
- struct vl_info *info = &vl_info[ARM64_VEC_SVE];
- u64 zcr;
- DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
- unsigned long b;
- if (!system_supports_sve())
- return;
- /*
- * The SVE architecture mandates support for 128-bit vectors,
- * so sve_vq_map must have at least SVE_VQ_MIN set.
- * If something went wrong, at least try to patch it up:
- */
- if (WARN_ON(!test_bit(__vq_to_bit(SVE_VQ_MIN), info->vq_map)))
- set_bit(__vq_to_bit(SVE_VQ_MIN), info->vq_map);
- zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
- info->max_vl = sve_vl_from_vq((zcr & ZCR_ELx_LEN_MASK) + 1);
- /*
- * Sanity-check that the max VL we determined through CPU features
- * corresponds properly to sve_vq_map. If not, do our best:
- */
- if (WARN_ON(info->max_vl != find_supported_vector_length(ARM64_VEC_SVE,
- info->max_vl)))
- info->max_vl = find_supported_vector_length(ARM64_VEC_SVE,
- info->max_vl);
- /*
- * For the default VL, pick the maximum supported value <= 64.
- * VL == 64 is guaranteed not to grow the signal frame.
- */
- set_sve_default_vl(find_supported_vector_length(ARM64_VEC_SVE, 64));
- bitmap_andnot(tmp_map, info->vq_partial_map, info->vq_map,
- SVE_VQ_MAX);
- b = find_last_bit(tmp_map, SVE_VQ_MAX);
- if (b >= SVE_VQ_MAX)
- /* No non-virtualisable VLs found */
- info->max_virtualisable_vl = SVE_VQ_MAX;
- else if (WARN_ON(b == SVE_VQ_MAX - 1))
- /* No virtualisable VLs? This is architecturally forbidden. */
- info->max_virtualisable_vl = SVE_VQ_MIN;
- else /* b + 1 < SVE_VQ_MAX */
- info->max_virtualisable_vl = sve_vl_from_vq(__bit_to_vq(b + 1));
- if (info->max_virtualisable_vl > info->max_vl)
- info->max_virtualisable_vl = info->max_vl;
- pr_info("%s: maximum available vector length %u bytes per vector\n",
- info->name, info->max_vl);
- pr_info("%s: default vector length %u bytes per vector\n",
- info->name, get_sve_default_vl());
- /* KVM decides whether to support mismatched systems. Just warn here: */
- if (sve_max_virtualisable_vl() < sve_max_vl())
- pr_warn("%s: unvirtualisable vector lengths present\n",
- info->name);
- sve_efi_setup();
- }
- /*
- * Called from the put_task_struct() path, which cannot get here
- * unless dead_task is really dead and not schedulable.
- */
- void fpsimd_release_task(struct task_struct *dead_task)
- {
- __sve_free(dead_task);
- sme_free(dead_task);
- }
- #endif /* CONFIG_ARM64_SVE */
- #ifdef CONFIG_ARM64_SME
- /*
- * Ensure that task->thread.za_state is allocated and sufficiently large.
- *
- * This function should be used only in preparation for replacing
- * task->thread.za_state with new data. The memory is always zeroed
- * here to prevent stale data from showing through: this is done in
- * the interest of testability and predictability, the architecture
- * guarantees that when ZA is enabled it will be zeroed.
- */
- void sme_alloc(struct task_struct *task, bool flush)
- {
- if (task->thread.za_state && flush) {
- memset(task->thread.za_state, 0, za_state_size(task));
- return;
- }
- /* This could potentially be up to 64K. */
- task->thread.za_state =
- kzalloc(za_state_size(task), GFP_KERNEL);
- }
- static void sme_free(struct task_struct *task)
- {
- kfree(task->thread.za_state);
- task->thread.za_state = NULL;
- }
- void sme_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p)
- {
- /* Set priority for all PEs to architecturally defined minimum */
- write_sysreg_s(read_sysreg_s(SYS_SMPRI_EL1) & ~SMPRI_EL1_PRIORITY_MASK,
- SYS_SMPRI_EL1);
- /* Allow SME in kernel */
- write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_SMEN_EL1EN, CPACR_EL1);
- isb();
- /* Allow EL0 to access TPIDR2 */
- write_sysreg(read_sysreg(SCTLR_EL1) | SCTLR_ELx_ENTP2, SCTLR_EL1);
- isb();
- }
- /*
- * This must be called after sme_kernel_enable(), we rely on the
- * feature table being sorted to ensure this.
- */
- void fa64_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p)
- {
- /* Allow use of FA64 */
- write_sysreg_s(read_sysreg_s(SYS_SMCR_EL1) | SMCR_ELx_FA64_MASK,
- SYS_SMCR_EL1);
- }
- /*
- * Read the pseudo-SMCR used by cpufeatures to identify the supported
- * vector length.
- *
- * Use only if SME is present.
- * This function clobbers the SME vector length.
- */
- u64 read_smcr_features(void)
- {
- sme_kernel_enable(NULL);
- /*
- * Set the maximum possible VL.
- */
- write_sysreg_s(read_sysreg_s(SYS_SMCR_EL1) | SMCR_ELx_LEN_MASK,
- SYS_SMCR_EL1);
- /* Return LEN value that would be written to get the maximum VL */
- return sve_vq_from_vl(sme_get_vl()) - 1;
- }
- void __init sme_setup(void)
- {
- struct vl_info *info = &vl_info[ARM64_VEC_SME];
- u64 smcr;
- int min_bit;
- if (!system_supports_sme())
- return;
- /*
- * SME doesn't require any particular vector length be
- * supported but it does require at least one. We should have
- * disabled the feature entirely while bringing up CPUs but
- * let's double check here.
- */
- WARN_ON(bitmap_empty(info->vq_map, SVE_VQ_MAX));
- min_bit = find_last_bit(info->vq_map, SVE_VQ_MAX);
- info->min_vl = sve_vl_from_vq(__bit_to_vq(min_bit));
- smcr = read_sanitised_ftr_reg(SYS_SMCR_EL1);
- info->max_vl = sve_vl_from_vq((smcr & SMCR_ELx_LEN_MASK) + 1);
- /*
- * Sanity-check that the max VL we determined through CPU features
- * corresponds properly to sme_vq_map. If not, do our best:
- */
- if (WARN_ON(info->max_vl != find_supported_vector_length(ARM64_VEC_SME,
- info->max_vl)))
- info->max_vl = find_supported_vector_length(ARM64_VEC_SME,
- info->max_vl);
- WARN_ON(info->min_vl > info->max_vl);
- /*
- * For the default VL, pick the maximum supported value <= 32
- * (256 bits) if there is one since this is guaranteed not to
- * grow the signal frame when in streaming mode, otherwise the
- * minimum available VL will be used.
- */
- set_sme_default_vl(find_supported_vector_length(ARM64_VEC_SME, 32));
- pr_info("SME: minimum available vector length %u bytes per vector\n",
- info->min_vl);
- pr_info("SME: maximum available vector length %u bytes per vector\n",
- info->max_vl);
- pr_info("SME: default vector length %u bytes per vector\n",
- get_sme_default_vl());
- }
- #endif /* CONFIG_ARM64_SME */
- static void sve_init_regs(void)
- {
- /*
- * Convert the FPSIMD state to SVE, zeroing all the state that
- * is not shared with FPSIMD. If (as is likely) the current
- * state is live in the registers then do this there and
- * update our metadata for the current task including
- * disabling the trap, otherwise update our in-memory copy.
- * We are guaranteed to not be in streaming mode, we can only
- * take a SVE trap when not in streaming mode and we can't be
- * in streaming mode when taking a SME trap.
- */
- if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) {
- unsigned long vq_minus_one =
- sve_vq_from_vl(task_get_sve_vl(current)) - 1;
- sve_set_vq(vq_minus_one);
- sve_flush_live(true, vq_minus_one);
- fpsimd_bind_task_to_cpu();
- } else {
- fpsimd_to_sve(current);
- }
- }
- /*
- * Trapped SVE access
- *
- * Storage is allocated for the full SVE state, the current FPSIMD
- * register contents are migrated across, and the access trap is
- * disabled.
- *
- * TIF_SVE should be clear on entry: otherwise, fpsimd_restore_current_state()
- * would have disabled the SVE access trap for userspace during
- * ret_to_user, making an SVE access trap impossible in that case.
- */
- void do_sve_acc(unsigned long esr, struct pt_regs *regs)
- {
- /* Even if we chose not to use SVE, the hardware could still trap: */
- if (unlikely(!system_supports_sve()) || WARN_ON(is_compat_task())) {
- force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
- return;
- }
- sve_alloc(current, true);
- if (!current->thread.sve_state) {
- force_sig(SIGKILL);
- return;
- }
- get_cpu_fpsimd_context();
- if (test_and_set_thread_flag(TIF_SVE))
- WARN_ON(1); /* SVE access shouldn't have trapped */
- /*
- * Even if the task can have used streaming mode we can only
- * generate SVE access traps in normal SVE mode and
- * transitioning out of streaming mode may discard any
- * streaming mode state. Always clear the high bits to avoid
- * any potential errors tracking what is properly initialised.
- */
- sve_init_regs();
- put_cpu_fpsimd_context();
- }
- /*
- * Trapped SME access
- *
- * Storage is allocated for the full SVE and SME state, the current
- * FPSIMD register contents are migrated to SVE if SVE is not already
- * active, and the access trap is disabled.
- *
- * TIF_SME should be clear on entry: otherwise, fpsimd_restore_current_state()
- * would have disabled the SME access trap for userspace during
- * ret_to_user, making an SVE access trap impossible in that case.
- */
- void do_sme_acc(unsigned long esr, struct pt_regs *regs)
- {
- /* Even if we chose not to use SME, the hardware could still trap: */
- if (unlikely(!system_supports_sme()) || WARN_ON(is_compat_task())) {
- force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
- return;
- }
- /*
- * If this not a trap due to SME being disabled then something
- * is being used in the wrong mode, report as SIGILL.
- */
- if (ESR_ELx_ISS(esr) != ESR_ELx_SME_ISS_SME_DISABLED) {
- force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc, 0);
- return;
- }
- sve_alloc(current, false);
- sme_alloc(current, true);
- if (!current->thread.sve_state || !current->thread.za_state) {
- force_sig(SIGKILL);
- return;
- }
- get_cpu_fpsimd_context();
- /* With TIF_SME userspace shouldn't generate any traps */
- if (test_and_set_thread_flag(TIF_SME))
- WARN_ON(1);
- if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) {
- unsigned long vq_minus_one =
- sve_vq_from_vl(task_get_sme_vl(current)) - 1;
- sme_set_vq(vq_minus_one);
- fpsimd_bind_task_to_cpu();
- }
- put_cpu_fpsimd_context();
- }
- /*
- * Trapped FP/ASIMD access.
- */
- void do_fpsimd_acc(unsigned long esr, struct pt_regs *regs)
- {
- /* TODO: implement lazy context saving/restoring */
- WARN_ON(1);
- }
- /*
- * Raise a SIGFPE for the current process.
- */
- void do_fpsimd_exc(unsigned long esr, struct pt_regs *regs)
- {
- unsigned int si_code = FPE_FLTUNK;
- if (esr & ESR_ELx_FP_EXC_TFV) {
- if (esr & FPEXC_IOF)
- si_code = FPE_FLTINV;
- else if (esr & FPEXC_DZF)
- si_code = FPE_FLTDIV;
- else if (esr & FPEXC_OFF)
- si_code = FPE_FLTOVF;
- else if (esr & FPEXC_UFF)
- si_code = FPE_FLTUND;
- else if (esr & FPEXC_IXF)
- si_code = FPE_FLTRES;
- }
- send_sig_fault(SIGFPE, si_code,
- (void __user *)instruction_pointer(regs),
- current);
- }
- void fpsimd_thread_switch(struct task_struct *next)
- {
- bool wrong_task, wrong_cpu;
- if (!system_supports_fpsimd())
- return;
- __get_cpu_fpsimd_context();
- /* Save unsaved fpsimd state, if any: */
- fpsimd_save();
- /*
- * Fix up TIF_FOREIGN_FPSTATE to correctly describe next's
- * state. For kernel threads, FPSIMD registers are never loaded
- * and wrong_task and wrong_cpu will always be true.
- */
- wrong_task = __this_cpu_read(fpsimd_last_state.st) !=
- &next->thread.uw.fpsimd_state;
- wrong_cpu = next->thread.fpsimd_cpu != smp_processor_id();
- update_tsk_thread_flag(next, TIF_FOREIGN_FPSTATE,
- wrong_task || wrong_cpu);
- __put_cpu_fpsimd_context();
- }
- static void fpsimd_flush_thread_vl(enum vec_type type)
- {
- int vl, supported_vl;
- /*
- * Reset the task vector length as required. This is where we
- * ensure that all user tasks have a valid vector length
- * configured: no kernel task can become a user task without
- * an exec and hence a call to this function. By the time the
- * first call to this function is made, all early hardware
- * probing is complete, so __sve_default_vl should be valid.
- * If a bug causes this to go wrong, we make some noise and
- * try to fudge thread.sve_vl to a safe value here.
- */
- vl = task_get_vl_onexec(current, type);
- if (!vl)
- vl = get_default_vl(type);
- if (WARN_ON(!sve_vl_valid(vl)))
- vl = vl_info[type].min_vl;
- supported_vl = find_supported_vector_length(type, vl);
- if (WARN_ON(supported_vl != vl))
- vl = supported_vl;
- task_set_vl(current, type, vl);
- /*
- * If the task is not set to inherit, ensure that the vector
- * length will be reset by a subsequent exec:
- */
- if (!test_thread_flag(vec_vl_inherit_flag(type)))
- task_set_vl_onexec(current, type, 0);
- }
- void fpsimd_flush_thread(void)
- {
- void *sve_state = NULL;
- void *za_state = NULL;
- if (!system_supports_fpsimd())
- return;
- get_cpu_fpsimd_context();
- fpsimd_flush_task_state(current);
- memset(¤t->thread.uw.fpsimd_state, 0,
- sizeof(current->thread.uw.fpsimd_state));
- if (system_supports_sve()) {
- clear_thread_flag(TIF_SVE);
- /* Defer kfree() while in atomic context */
- sve_state = current->thread.sve_state;
- current->thread.sve_state = NULL;
- fpsimd_flush_thread_vl(ARM64_VEC_SVE);
- }
- if (system_supports_sme()) {
- clear_thread_flag(TIF_SME);
- /* Defer kfree() while in atomic context */
- za_state = current->thread.za_state;
- current->thread.za_state = NULL;
- fpsimd_flush_thread_vl(ARM64_VEC_SME);
- current->thread.svcr = 0;
- }
- put_cpu_fpsimd_context();
- kfree(sve_state);
- kfree(za_state);
- }
- /*
- * Save the userland FPSIMD state of 'current' to memory, but only if the state
- * currently held in the registers does in fact belong to 'current'
- */
- void fpsimd_preserve_current_state(void)
- {
- if (!system_supports_fpsimd())
- return;
- get_cpu_fpsimd_context();
- fpsimd_save();
- put_cpu_fpsimd_context();
- }
- /*
- * Like fpsimd_preserve_current_state(), but ensure that
- * current->thread.uw.fpsimd_state is updated so that it can be copied to
- * the signal frame.
- */
- void fpsimd_signal_preserve_current_state(void)
- {
- fpsimd_preserve_current_state();
- if (test_thread_flag(TIF_SVE))
- sve_to_fpsimd(current);
- }
- /*
- * Associate current's FPSIMD context with this cpu
- * The caller must have ownership of the cpu FPSIMD context before calling
- * this function.
- */
- static void fpsimd_bind_task_to_cpu(void)
- {
- struct fpsimd_last_state_struct *last =
- this_cpu_ptr(&fpsimd_last_state);
- WARN_ON(!system_supports_fpsimd());
- last->st = ¤t->thread.uw.fpsimd_state;
- last->sve_state = current->thread.sve_state;
- last->za_state = current->thread.za_state;
- last->sve_vl = task_get_sve_vl(current);
- last->sme_vl = task_get_sme_vl(current);
- last->svcr = ¤t->thread.svcr;
- current->thread.fpsimd_cpu = smp_processor_id();
- /*
- * Toggle SVE and SME trapping for userspace if needed, these
- * are serialsied by ret_to_user().
- */
- if (system_supports_sme()) {
- if (test_thread_flag(TIF_SME))
- sme_user_enable();
- else
- sme_user_disable();
- }
- if (system_supports_sve()) {
- if (test_thread_flag(TIF_SVE))
- sve_user_enable();
- else
- sve_user_disable();
- }
- }
- void fpsimd_bind_state_to_cpu(struct user_fpsimd_state *st, void *sve_state,
- unsigned int sve_vl, void *za_state,
- unsigned int sme_vl, u64 *svcr)
- {
- struct fpsimd_last_state_struct *last =
- this_cpu_ptr(&fpsimd_last_state);
- WARN_ON(!system_supports_fpsimd());
- WARN_ON(!in_softirq() && !irqs_disabled());
- last->st = st;
- last->svcr = svcr;
- last->sve_state = sve_state;
- last->za_state = za_state;
- last->sve_vl = sve_vl;
- last->sme_vl = sme_vl;
- }
- /*
- * Load the userland FPSIMD state of 'current' from memory, but only if the
- * FPSIMD state already held in the registers is /not/ the most recent FPSIMD
- * state of 'current'. This is called when we are preparing to return to
- * userspace to ensure that userspace sees a good register state.
- */
- void fpsimd_restore_current_state(void)
- {
- /*
- * For the tasks that were created before we detected the absence of
- * FP/SIMD, the TIF_FOREIGN_FPSTATE could be set via fpsimd_thread_switch(),
- * e.g, init. This could be then inherited by the children processes.
- * If we later detect that the system doesn't support FP/SIMD,
- * we must clear the flag for all the tasks to indicate that the
- * FPSTATE is clean (as we can't have one) to avoid looping for ever in
- * do_notify_resume().
- */
- if (!system_supports_fpsimd()) {
- clear_thread_flag(TIF_FOREIGN_FPSTATE);
- return;
- }
- get_cpu_fpsimd_context();
- if (test_and_clear_thread_flag(TIF_FOREIGN_FPSTATE)) {
- task_fpsimd_load();
- fpsimd_bind_task_to_cpu();
- }
- put_cpu_fpsimd_context();
- }
- /*
- * Load an updated userland FPSIMD state for 'current' from memory and set the
- * flag that indicates that the FPSIMD register contents are the most recent
- * FPSIMD state of 'current'. This is used by the signal code to restore the
- * register state when returning from a signal handler in FPSIMD only cases,
- * any SVE context will be discarded.
- */
- void fpsimd_update_current_state(struct user_fpsimd_state const *state)
- {
- if (WARN_ON(!system_supports_fpsimd()))
- return;
- get_cpu_fpsimd_context();
- current->thread.uw.fpsimd_state = *state;
- if (test_thread_flag(TIF_SVE))
- fpsimd_to_sve(current);
- task_fpsimd_load();
- fpsimd_bind_task_to_cpu();
- clear_thread_flag(TIF_FOREIGN_FPSTATE);
- put_cpu_fpsimd_context();
- }
- /*
- * Invalidate live CPU copies of task t's FPSIMD state
- *
- * This function may be called with preemption enabled. The barrier()
- * ensures that the assignment to fpsimd_cpu is visible to any
- * preemption/softirq that could race with set_tsk_thread_flag(), so
- * that TIF_FOREIGN_FPSTATE cannot be spuriously re-cleared.
- *
- * The final barrier ensures that TIF_FOREIGN_FPSTATE is seen set by any
- * subsequent code.
- */
- void fpsimd_flush_task_state(struct task_struct *t)
- {
- t->thread.fpsimd_cpu = NR_CPUS;
- /*
- * If we don't support fpsimd, bail out after we have
- * reset the fpsimd_cpu for this task and clear the
- * FPSTATE.
- */
- if (!system_supports_fpsimd())
- return;
- barrier();
- set_tsk_thread_flag(t, TIF_FOREIGN_FPSTATE);
- barrier();
- }
- /*
- * Invalidate any task's FPSIMD state that is present on this cpu.
- * The FPSIMD context should be acquired with get_cpu_fpsimd_context()
- * before calling this function.
- */
- static void fpsimd_flush_cpu_state(void)
- {
- WARN_ON(!system_supports_fpsimd());
- __this_cpu_write(fpsimd_last_state.st, NULL);
- /*
- * Leaving streaming mode enabled will cause issues for any kernel
- * NEON and leaving streaming mode or ZA enabled may increase power
- * consumption.
- */
- if (system_supports_sme())
- sme_smstop();
- set_thread_flag(TIF_FOREIGN_FPSTATE);
- }
- /*
- * Save the FPSIMD state to memory and invalidate cpu view.
- * This function must be called with preemption disabled.
- */
- void fpsimd_save_and_flush_cpu_state(void)
- {
- if (!system_supports_fpsimd())
- return;
- WARN_ON(preemptible());
- __get_cpu_fpsimd_context();
- fpsimd_save();
- fpsimd_flush_cpu_state();
- __put_cpu_fpsimd_context();
- }
- #ifdef CONFIG_KERNEL_MODE_NEON
- /*
- * Kernel-side NEON support functions
- */
- /*
- * kernel_neon_begin(): obtain the CPU FPSIMD registers for use by the calling
- * context
- *
- * Must not be called unless may_use_simd() returns true.
- * Task context in the FPSIMD registers is saved back to memory as necessary.
- *
- * A matching call to kernel_neon_end() must be made before returning from the
- * calling context.
- *
- * The caller may freely use the FPSIMD registers until kernel_neon_end() is
- * called.
- */
- void kernel_neon_begin(void)
- {
- if (WARN_ON(!system_supports_fpsimd()))
- return;
- BUG_ON(!may_use_simd());
- get_cpu_fpsimd_context();
- /* Save unsaved fpsimd state, if any: */
- fpsimd_save();
- /* Invalidate any task state remaining in the fpsimd regs: */
- fpsimd_flush_cpu_state();
- }
- EXPORT_SYMBOL(kernel_neon_begin);
- /*
- * kernel_neon_end(): give the CPU FPSIMD registers back to the current task
- *
- * Must be called from a context in which kernel_neon_begin() was previously
- * called, with no call to kernel_neon_end() in the meantime.
- *
- * The caller must not use the FPSIMD registers after this function is called,
- * unless kernel_neon_begin() is called again in the meantime.
- */
- void kernel_neon_end(void)
- {
- if (!system_supports_fpsimd())
- return;
- put_cpu_fpsimd_context();
- }
- EXPORT_SYMBOL(kernel_neon_end);
- #ifdef CONFIG_EFI
- static DEFINE_PER_CPU(struct user_fpsimd_state, efi_fpsimd_state);
- static DEFINE_PER_CPU(bool, efi_fpsimd_state_used);
- static DEFINE_PER_CPU(bool, efi_sve_state_used);
- static DEFINE_PER_CPU(bool, efi_sm_state);
- /*
- * EFI runtime services support functions
- *
- * The ABI for EFI runtime services allows EFI to use FPSIMD during the call.
- * This means that for EFI (and only for EFI), we have to assume that FPSIMD
- * is always used rather than being an optional accelerator.
- *
- * These functions provide the necessary support for ensuring FPSIMD
- * save/restore in the contexts from which EFI is used.
- *
- * Do not use them for any other purpose -- if tempted to do so, you are
- * either doing something wrong or you need to propose some refactoring.
- */
- /*
- * __efi_fpsimd_begin(): prepare FPSIMD for making an EFI runtime services call
- */
- void __efi_fpsimd_begin(void)
- {
- if (!system_supports_fpsimd())
- return;
- WARN_ON(preemptible());
- if (may_use_simd()) {
- kernel_neon_begin();
- } else {
- /*
- * If !efi_sve_state, SVE can't be in use yet and doesn't need
- * preserving:
- */
- if (system_supports_sve() && likely(efi_sve_state)) {
- char *sve_state = this_cpu_ptr(efi_sve_state);
- bool ffr = true;
- u64 svcr;
- __this_cpu_write(efi_sve_state_used, true);
- if (system_supports_sme()) {
- svcr = read_sysreg_s(SYS_SVCR);
- __this_cpu_write(efi_sm_state,
- svcr & SVCR_SM_MASK);
- /*
- * Unless we have FA64 FFR does not
- * exist in streaming mode.
- */
- if (!system_supports_fa64())
- ffr = !(svcr & SVCR_SM_MASK);
- }
- sve_save_state(sve_state + sve_ffr_offset(sve_max_vl()),
- &this_cpu_ptr(&efi_fpsimd_state)->fpsr,
- ffr);
- if (system_supports_sme())
- sysreg_clear_set_s(SYS_SVCR,
- SVCR_SM_MASK, 0);
- } else {
- fpsimd_save_state(this_cpu_ptr(&efi_fpsimd_state));
- }
- __this_cpu_write(efi_fpsimd_state_used, true);
- }
- }
- /*
- * __efi_fpsimd_end(): clean up FPSIMD after an EFI runtime services call
- */
- void __efi_fpsimd_end(void)
- {
- if (!system_supports_fpsimd())
- return;
- if (!__this_cpu_xchg(efi_fpsimd_state_used, false)) {
- kernel_neon_end();
- } else {
- if (system_supports_sve() &&
- likely(__this_cpu_read(efi_sve_state_used))) {
- char const *sve_state = this_cpu_ptr(efi_sve_state);
- bool ffr = true;
- /*
- * Restore streaming mode; EFI calls are
- * normal function calls so should not return in
- * streaming mode.
- */
- if (system_supports_sme()) {
- if (__this_cpu_read(efi_sm_state)) {
- sysreg_clear_set_s(SYS_SVCR,
- 0,
- SVCR_SM_MASK);
- /*
- * Unless we have FA64 FFR does not
- * exist in streaming mode.
- */
- if (!system_supports_fa64())
- ffr = false;
- }
- }
- sve_load_state(sve_state + sve_ffr_offset(sve_max_vl()),
- &this_cpu_ptr(&efi_fpsimd_state)->fpsr,
- ffr);
- __this_cpu_write(efi_sve_state_used, false);
- } else {
- fpsimd_load_state(this_cpu_ptr(&efi_fpsimd_state));
- }
- }
- }
- #endif /* CONFIG_EFI */
- #endif /* CONFIG_KERNEL_MODE_NEON */
- #ifdef CONFIG_CPU_PM
- static int fpsimd_cpu_pm_notifier(struct notifier_block *self,
- unsigned long cmd, void *v)
- {
- switch (cmd) {
- case CPU_PM_ENTER:
- fpsimd_save_and_flush_cpu_state();
- break;
- case CPU_PM_EXIT:
- break;
- case CPU_PM_ENTER_FAILED:
- default:
- return NOTIFY_DONE;
- }
- return NOTIFY_OK;
- }
- static struct notifier_block fpsimd_cpu_pm_notifier_block = {
- .notifier_call = fpsimd_cpu_pm_notifier,
- };
- static void __init fpsimd_pm_init(void)
- {
- cpu_pm_register_notifier(&fpsimd_cpu_pm_notifier_block);
- }
- #else
- static inline void fpsimd_pm_init(void) { }
- #endif /* CONFIG_CPU_PM */
- #ifdef CONFIG_HOTPLUG_CPU
- static int fpsimd_cpu_dead(unsigned int cpu)
- {
- per_cpu(fpsimd_last_state.st, cpu) = NULL;
- return 0;
- }
- static inline void fpsimd_hotplug_init(void)
- {
- cpuhp_setup_state_nocalls(CPUHP_ARM64_FPSIMD_DEAD, "arm64/fpsimd:dead",
- NULL, fpsimd_cpu_dead);
- }
- #else
- static inline void fpsimd_hotplug_init(void) { }
- #endif
- /*
- * FP/SIMD support code initialisation.
- */
- static int __init fpsimd_init(void)
- {
- if (cpu_have_named_feature(FP)) {
- fpsimd_pm_init();
- fpsimd_hotplug_init();
- } else {
- pr_notice("Floating-point is not implemented\n");
- }
- if (!cpu_have_named_feature(ASIMD))
- pr_notice("Advanced SIMD is not implemented\n");
- if (cpu_have_named_feature(SME) && !cpu_have_named_feature(SVE))
- pr_notice("SME is implemented but not SVE\n");
- sve_sysctl_init();
- sme_sysctl_init();
- return 0;
- }
- core_initcall(fpsimd_init);
|